xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Bachelor Thesis Katja Geierhaas

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Reference for PLS-Technique https://www.youtube.com/watch?v=Q-KiO2urNEU

Install Packages

Load Data

setwd("C:/Users/RIECK/Desktop/KatjaGeierhaas")
Katjadat<-read.csv("DatenKatja2.csv",sep=";")
head(Katjadat)
##   ResponseID Agreeableness1 Agreeableness2 HumanlikeDesign1 HumanlikeDesign2
## 1          1              1              1                1                1
## 2          2              1              5                1                5
## 3          3              1              1                1                1
## 4          4              1              1                1                1
## 5          5              1              6                1                1
## 6          6              1              7                1                1
##   HedonicNature1 HedonicNature2 HedonicNature3 PerceivedUsefulness1
## 1              4              4              4                    4
## 2              2              2              2                    2
## 3              5              4              4                    4
## 4              4              4              4                    4
## 5              4              5              3                    3
## 6              3              2              3                    4
##   PerceivedUsefulness2 PerceivedUsefulness3 PerceivedUsefulness4
## 1                    4                    4                    5
## 2                    3                    2                    2
## 3                    4                    4                    5
## 4                    4                    4                    3
## 5                    4                    4                    5
## 6                    4                    3                    4
##   PerceivedEaseofUse1 PerceivedEaseofUse2 BehavioralIntention1
## 1                   5                   5                    5
## 2                   4                   3                    1
## 3                   5                   5                    5
## 4                   4                   4                    3
## 5                   4                   4                    3
## 6                   4                   5                    2
##   BehavioralIntention2 BehavioralIntention3 ActualUsage1 ActualUsage2
## 1                    4                    3          0.1        -16.6
## 2                    1                    1          0.1         -1.0
## 3                    5                    5          7.1          0.0
## 4                    3                    3          0.0        -16.6
## 5                    3                    2          0.1         -5.2
## 6                    2                    1          0.1        -16.6

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Model Analysis

(1) Factor Analysis

(2) PLS-Regression

We estimate 4 different Model Specifications

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Define PLS model structure

AGR<-c(0,0,0,0,0,0,0)
HD<-c(0,0,0,0,0,0,0)
HN<-c(0,1,0,0,0,0,0)
PEOU<-c(0,0,1,0,0,0,0)
PU<-c(1,0,1,1,0,0,0)
BI<-c(0,0,0,1,1,0,0)
AU<-c(0,0,0,0,0,1,0)

Path<-rbind(AGR,HD,HN,PEOU,PU,BI,AU)
KatjaBlocks<-list(2,4,6:8,13:14,9:12,15:17,18:19)
KatjaModes<-rep("A",7)
innerplot(Path)

PLS_Katjadat

factanal(Katjadat[,6:19],factors=5, rotation="varimax")
## 
## Call:
## factanal(x = Katjadat[, 6:19], factors = 5, rotation = "varimax")
## 
## Uniquenesses:
##       HedonicNature1       HedonicNature2       HedonicNature3 
##                0.235                0.221                0.216 
## PerceivedUsefulness1 PerceivedUsefulness2 PerceivedUsefulness3 
##                0.260                0.388                0.296 
## PerceivedUsefulness4  PerceivedEaseofUse1  PerceivedEaseofUse2 
##                0.387                0.415                0.138 
## BehavioralIntention1 BehavioralIntention2 BehavioralIntention3 
##                0.185                0.080                0.379 
##         ActualUsage1         ActualUsage2 
##                0.847                0.855 
## 
## Loadings:
##                      Factor1 Factor2 Factor3 Factor4 Factor5
## HedonicNature1        0.384   0.467   0.553   0.192   0.239 
## HedonicNature2        0.187   0.265   0.800   0.136   0.125 
## HedonicNature3        0.240   0.356   0.685   0.212   0.294 
## PerceivedUsefulness1  0.766   0.245           0.228   0.193 
## PerceivedUsefulness2  0.739   0.159           0.183         
## PerceivedUsefulness3  0.707   0.287   0.206           0.270 
## PerceivedUsefulness4  0.706   0.192   0.245          -0.104 
## PerceivedEaseofUse1   0.539           0.190   0.496         
## PerceivedEaseofUse2   0.411   0.225   0.264   0.756         
## BehavioralIntention1  0.299   0.811   0.194   0.124  -0.125 
## BehavioralIntention2  0.152   0.909   0.200   0.172         
## BehavioralIntention3  0.232   0.682   0.228          -0.223 
## ActualUsage1                         -0.156          -0.336 
## ActualUsage2         -0.134                          -0.349 
## 
##                Factor1 Factor2 Factor3 Factor4 Factor5
## SS loadings      3.018   2.634   1.789   1.067   0.591
## Proportion Var   0.216   0.188   0.128   0.076   0.042
## Cumulative Var   0.216   0.404   0.531   0.608   0.650
## 
## Test of the hypothesis that 5 factors are sufficient.
## The chi square statistic is 26.32 on 31 degrees of freedom.
## The p-value is 0.706
KatjaPLS<-plspm(Katjadat[1:116,],Path,KatjaBlocks,mode=KatjaModes)

KatjaPLS
## Partial Least Squares Path Modeling (PLS-PM) 
## ---------------------------------------------
##    NAME             DESCRIPTION
## 1  $outer_model     outer model
## 2  $inner_model     inner model
## 3  $path_coefs      path coefficients matrix
## 4  $scores          latent variable scores
## 5  $crossloadings   cross-loadings
## 6  $inner_summary   summary inner model
## 7  $effects         total effects
## 8  $unidim          unidimensionality
## 9  $gof             goodness-of-fit
## 10 $boot            bootstrap results
## 11 $data            data matrix
## ---------------------------------------------
## You can also use the function 'summary'
KatjaPLS$unidim
##      Mode MVs   C.alpha    DG.rho  eig.1st   eig.2nd
## AGR     A   1 1.0000000 1.0000000 1.000000 0.0000000
## HD      A   1 1.0000000 1.0000000 1.000000 0.0000000
## HN      A   3 0.8913512 0.9325031 2.464853 0.3088569
## PEOU    A   2 0.8010042 0.9095061 1.668063 0.3319374
## PU      A   4 0.8667299 0.9092258 2.858940 0.4766369
## BI      A   3 0.8978088 0.9365010 2.493395 0.3559977
## AU      A   2 0.2117372 0.7172925 1.118404 0.8815962
KatjaPLS$crossloadings
##                    name block          AGR            HD          HN
## 1        Agreeableness1   AGR  1.000000000  0.000000e+00  0.06393355
## 2      HumanlikeDesign1    HD  0.000000000  1.000000e+00  0.04404191
## 3        HedonicNature1    HN  0.033786869  3.378687e-02  0.91555929
## 4        HedonicNature2    HN  0.065653216  8.206652e-02  0.88291378
## 5        HedonicNature3    HN  0.079416230  8.824026e-03  0.91871254
## 6   PerceivedEaseofUse1  PEOU -0.009793103 -9.793103e-03  0.45909756
## 7   PerceivedEaseofUse2  PEOU  0.111436418  9.286368e-02  0.57338700
## 8  PerceivedUsefulness1    PU -0.019660827 -3.932165e-02  0.46933061
## 9  PerceivedUsefulness2    PU  0.009085279  9.085279e-03  0.39906932
## 10 PerceivedUsefulness3    PU  0.017444809 -1.744481e-02  0.56716006
## 11 PerceivedUsefulness4    PU -0.022186946  7.395649e-03  0.46166313
## 12 BehavioralIntention1    BI  0.046110212 -3.416172e-18  0.56965880
## 13 BehavioralIntention2    BI  0.085021337 -3.864606e-02  0.58979337
## 14 BehavioralIntention3    BI -0.030997509  6.199502e-02  0.45486692
## 15         ActualUsage1    AU -0.011385365  2.335626e-02 -0.16127564
## 16         ActualUsage2    AU  0.079681396  1.044243e-02 -0.11234432
##           PEOU           PU          BI           AU
## 1   0.06093578 -0.004595536 0.038553886  0.034880209
## 2   0.04995844 -0.013199070 0.007063656  0.023800312
## 3   0.56367326  0.609450797 0.621016196 -0.138688157
## 4   0.44060004  0.413070689 0.461556741 -0.176853700
## 5   0.53144073  0.487550181 0.509719969 -0.197628560
## 6   0.89809554  0.613952860 0.290417774 -0.042630626
## 7   0.92724174  0.589977600 0.437999940 -0.080828404
## 8   0.61673945  0.879978276 0.425377332 -0.107410709
## 9   0.55639284  0.824832335 0.365320531 -0.068845263
## 10  0.54432440  0.852808757 0.453032813 -0.135094943
## 11  0.50467594  0.822068215 0.425412822 -0.009116945
## 12  0.41486503  0.512077829 0.935112904  0.134560875
## 13  0.40404759  0.432362089 0.936855276  0.033968994
## 14  0.27631685  0.396865563 0.859962935  0.156715605
## 15 -0.05917080 -0.017968967 0.103194730  0.838784918
## 16 -0.04274277 -0.151651091 0.073101640  0.639948245
KatjaPLS$inner_model
## $HN
##                Estimate Std. Error       t value  Pr(>|t|)
## Intercept -3.001650e-17  0.0935677 -3.207998e-16 1.0000000
## HD         4.404191e-02  0.0935677  4.706956e-01 0.6387575
## 
## $PEOU
##               Estimate Std. Error      t value     Pr(>|t|)
## Intercept 5.124167e-16 0.07695834 6.658364e-15 1.000000e+00
## HN        5.699343e-01 0.07695834 7.405750e+00 2.432049e-11
## 
## $PU
##                Estimate Std. Error       t value     Pr(>|t|)
## Intercept -2.801651e-16 0.06757122 -4.146219e-15 1.000000e+00
## AGR       -5.313973e-02 0.06773998 -7.844663e-01 4.344226e-01
## HN         2.832227e-01 0.08228660  3.441905e+00 8.129709e-04
## PEOU       4.994892e-01 0.08227114  6.071257e+00 1.774942e-08
## 
## $BI
##                Estimate Std. Error       t value     Pr(>|t|)
## Intercept -3.181899e-17 0.08111637 -3.922634e-16 1.0000000000
## PEOU       1.396061e-01 0.10768041  1.296486e+00 0.1974496170
## PU         4.035794e-01 0.10768041  3.747936e+00 0.0002826101
## 
## $AU
##                Estimate Std. Error       t value Pr(>|t|)
## Intercept -1.793500e-17 0.09298246 -1.928858e-16 1.000000
## BI         1.199415e-01 0.09298246  1.289937e+00 0.199683
KatjaPLS$outer_model
##                    name block    weight   loading communality  redundancy
## 1        Agreeableness1   AGR 1.0000000 1.0000000   1.0000000 0.000000000
## 2      HumanlikeDesign1    HD 1.0000000 1.0000000   1.0000000 0.000000000
## 3        HedonicNature1    HN 0.4197308 0.9155593   0.8382488 0.001625943
## 4        HedonicNature2    HN 0.3254239 0.8829138   0.7795367 0.001512059
## 5        HedonicNature3    HN 0.3574462 0.9187125   0.8440327 0.001637162
## 6   PerceivedEaseofUse1  PEOU 0.5032398 0.8980955   0.8065756 0.261995999
## 7   PerceivedEaseofUse2  PEOU 0.5910461 0.9272417   0.8597772 0.279277230
## 8  PerceivedUsefulness1    PU 0.3117735 0.8799783   0.7743618 0.378370658
## 9  PerceivedUsefulness2    PU 0.2670913 0.8248323   0.6803484 0.332433594
## 10 PerceivedUsefulness3    PU 0.3150240 0.8528088   0.7272828 0.355366800
## 11 PerceivedUsefulness4    PU 0.2879145 0.8220682   0.6757962 0.330209271
## 12 BehavioralIntention1    BI 0.4209379 0.9351129   0.8744361 0.224271165
## 13 BehavioralIntention2    BI 0.3451562 0.9368553   0.8776978 0.225107701
## 14 BehavioralIntention3    BI 0.3291004 0.8599629   0.7395362 0.189672691
## 15         ActualUsage1    AU 0.7738617 0.8387849   0.7035601 0.010121398
## 16         ActualUsage2    AU 0.5483201 0.6399482   0.4095338 0.005891542
KatjaPLS$path_coefs
##              AGR         HD        HN      PEOU        PU        BI AU
## AGR   0.00000000 0.00000000 0.0000000 0.0000000 0.0000000 0.0000000  0
## HD    0.00000000 0.00000000 0.0000000 0.0000000 0.0000000 0.0000000  0
## HN    0.00000000 0.04404191 0.0000000 0.0000000 0.0000000 0.0000000  0
## PEOU  0.00000000 0.00000000 0.5699343 0.0000000 0.0000000 0.0000000  0
## PU   -0.05313973 0.00000000 0.2832227 0.4994892 0.0000000 0.0000000  0
## BI    0.00000000 0.00000000 0.0000000 0.1396061 0.4035794 0.0000000  0
## AU    0.00000000 0.00000000 0.0000000 0.0000000 0.0000000 0.1199415  0
KatjaPLS$gof
## [1] 0.405395
KatjaPLS$effects
##    relationships      direct     indirect        total
## 1      AGR -> HD  0.00000000  0.000000000  0.000000000
## 2      AGR -> HN  0.00000000  0.000000000  0.000000000
## 3    AGR -> PEOU  0.00000000  0.000000000  0.000000000
## 4      AGR -> PU -0.05313973  0.000000000 -0.053139733
## 5      AGR -> BI  0.00000000 -0.021446099 -0.021446099
## 6      AGR -> AU  0.00000000 -0.002572278 -0.002572278
## 7       HD -> HN  0.04404191  0.000000000  0.044041909
## 8     HD -> PEOU  0.00000000  0.025100994  0.025100994
## 9       HD -> PU  0.00000000  0.025011344  0.025011344
## 10      HD -> BI  0.00000000  0.013598314  0.013598314
## 11      HD -> AU  0.00000000  0.001631003  0.001631003
## 12    HN -> PEOU  0.56993429  0.000000000  0.569934295
## 13      HN -> PU  0.28322268  0.284676051  0.567898728
## 14      HN -> BI  0.00000000  0.308758514  0.308758514
## 15      HN -> AU  0.00000000  0.037032974  0.037032974
## 16    PEOU -> PU  0.49948925  0.000000000  0.499489246
## 17    PEOU -> BI  0.13960611  0.201583547  0.341189661
## 18    PEOU -> AU  0.00000000  0.040922816  0.040922816
## 19      PU -> BI  0.40357935  0.000000000  0.403579354
## 20      PU -> AU  0.00000000  0.048405932  0.048405932
## 21      BI -> AU  0.11994155  0.000000000  0.119941547
KatjaPLS$inner_summary
##            Type         R2 Block_Communality Mean_Redundancy       AVE
## AGR   Exogenous 0.00000000         1.0000000     0.000000000 1.0000000
## HD    Exogenous 0.00000000         1.0000000     0.000000000 1.0000000
## HN   Endogenous 0.00193969         0.8206061     0.001591721 0.8206061
## PEOU Endogenous 0.32482510         0.8331764     0.270636614 0.8331764
## PU   Endogenous 0.48862260         0.7144473     0.349095080 0.7144473
## BI   Endogenous 0.25647518         0.8305567     0.213017186 0.8305567
## AU   Endogenous 0.01438597         0.5565469     0.008006470 0.5565469
plot(KatjaPLS)

End of Analysis