This chapter has been an informal introduction to Markov chain Monte Carlo (MCMC) estimation. The goal has been to introduce the purpose and approach MCMC algorithms. The major algorithms introduced were the Metropolis, Gibbs sampling, and Hamiltonian Monte Carlo algorithms. Each has its advantages and disadvantages. The ulam function in the rethinking package was introduced. It uses the Stan (mc-stan.org) Hamiltonian Monte Carlo engine to fit models as they are defined in this book. General advice about diagnosing poor MCMC fits was introduced by the use of a couple of pathological examples.
Place each answer inside the code chunk (grey box). The code chunks should contain a text response or a code that completes/answers the question or activity requested. Make sure to include plots if the question requests them.
Finally, upon completion, name your final output .html file as: YourName_ANLY505-Year-Semester.html and publish the assignment to your R Pubs account and submit the link to Canvas. Each question is worth 5 points.
9-1. Re-estimate the terrain ruggedness model from the chapter, but now using a uniform prior for the standard deviation, sigma. The uniform prior should be dunif(0,1). Visualize the priors. Use ulam to estimate the posterior. Visualize the posteriors for both models. Does the different prior have any detectible influence on the posterior distribution of sigma? Why or why not?
library(rethinking)
data(rugged)
data= rugged
data$log_gdp = log(data$rgdppc_2000)
dd = data[ complete.cases(data$rgdppc_2000) , ]
dd$log_gdp_std = dd$log_gdp/ mean(dd$log_gdp)
dd$rugged_std = dd$rugged/max(dd$rugged)
dd$cid=ifelse(dd$cont_africa==1,1,2)
dat_slim = list(
log_gdp_std = dd$log_gdp_std,
rugged_std = dd$rugged_std,
cid = as.integer( dd$cid )
)
model1 = ulam(
alist(
log_gdp_std ~ dnorm( mu , sigma ) ,
mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
a[cid] ~ dnorm( 1 , 0.1 ) ,
b[cid] ~ dnorm( 0 , 0.3 ) ,
sigma ~ dexp( 1 )
), data=dat_slim , chains=4, cores = 4)
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
##
## Chain 1 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 2 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 1 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 1 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 1 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 1 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 1 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 1 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 1 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 1 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 1 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 1 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 2 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 2 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 2 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 2 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 2 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 2 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 2 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 2 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 2 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 2 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 2 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 3 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 3 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 3 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 3 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 3 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 3 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 3 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 3 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 4 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 4 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 4 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 4 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 1 finished in 0.4 seconds.
## Chain 2 finished in 0.4 seconds.
## Chain 3 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 3 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 3 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 3 finished in 0.4 seconds.
## Chain 4 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 4 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 4 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 4 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 4 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 4 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 4 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 4 finished in 0.3 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 0.4 seconds.
## Total execution time: 1.1 seconds.
pairs(model1)
model2 = ulam(
alist(
log_gdp_std ~ dnorm( mu , sigma ) ,
mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
a[cid] ~ dnorm( 1 , 0.1 ) ,
b[cid] ~ dnorm( 0 , 0.3 ) ,
sigma ~ dunif(0, 1 )
), data=dat_slim , chains=4, cores = 4 )
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
##
## Chain 1 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 2 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 1 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 1 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 1 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 1 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 1 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 1 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 2 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 2 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 2 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 2 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 2 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 3 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 1 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 1 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 1 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 1 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 2 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 2 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 2 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 2 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 2 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 2 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 3 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 3 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 3 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 3 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 3 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 3 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 3 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 3 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 4 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 4 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 4 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 4 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 4 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 4 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 1 finished in 0.4 seconds.
## Chain 2 finished in 0.4 seconds.
## Chain 3 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 3 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 3 finished in 0.4 seconds.
## Chain 4 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 4 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 4 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 4 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 4 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 4 finished in 0.3 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 0.4 seconds.
## Total execution time: 1.0 seconds.
pairs(model2)
# Does not have detectible influence on the posterior distribution of sigma
9-2. Modify the terrain ruggedness model again. This time, change the prior for b[cid] to dexp(0.3). What does this do to the posterior distribution? Can you explain it?
model3 = ulam(
alist(
log_gdp_std ~ dnorm( mu , sigma ) ,
mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
a[cid] ~ dnorm( 1 , 0.1 ) ,
b[cid] ~ dexp(0.3) ,
sigma ~ dexp( 1 )
), data=dat_slim , chains=4, cores = 4 )
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
##
## Chain 1 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 2 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 3 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 4 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 1 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 1 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 1 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 1 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 1 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 2 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 3 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 1 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 2 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 2 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 2 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 2 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 2 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 3 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 3 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 3 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 1 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 1 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 2 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 2 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 3 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 3 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 4 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 1 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 1 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 2 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 3 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 3 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 4 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 4 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 4 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 1 finished in 1.0 seconds.
## Chain 2 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 2 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 3 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 3 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 4 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 4 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 2 finished in 1.1 seconds.
## Chain 3 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 4 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 4 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 3 finished in 1.1 seconds.
## Chain 4 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 4 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 4 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 4 finished in 1.1 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 1.1 seconds.
## Total execution time: 1.9 seconds.
pairs(model3)
# There is not differences in the posterior distribution.
9-3. Re-estimate one of the Stan models from the chapter, but at different numbers of warmup iterations. Be sure to use the same number of sampling iterations in each case. Compare the n_eff values. How much warmup is enough?
Stan_model_100 = map2stan(
alist(
log_gdp_std ~ dnorm( mu , sigma ) ,
mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
a[cid] ~ dnorm( 1 , 0.1 ) ,
b[cid] ~ dnorm( 0 , 0.3 ) ,
sigma ~ dexp( 1 )
), data=dat_slim , warmup = 100, iter = 4000, chains=4, cores = 4 )
## Running MCMC with 4 parallel chains...
##
## Chain 1 WARNING: There aren't enough warmup iterations to fit the
## Chain 1 three stages of adaptation as currently configured.
## Chain 1 Reducing each adaptation stage to 15%/75%/10% of
## Chain 1 the given number of warmup iterations:
## Chain 1 init_buffer = 15
## Chain 1 adapt_window = 75
## Chain 1 term_buffer = 10
## Chain 1 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 2 WARNING: There aren't enough warmup iterations to fit the
## Chain 2 three stages of adaptation as currently configured.
## Chain 2 Reducing each adaptation stage to 15%/75%/10% of
## Chain 2 the given number of warmup iterations:
## Chain 2 init_buffer = 15
## Chain 2 adapt_window = 75
## Chain 2 term_buffer = 10
## Chain 2 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 1 Iteration: 101 / 4000 [ 2%] (Sampling)
## Chain 1 Iteration: 200 / 4000 [ 5%] (Sampling)
## Chain 2 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 2 Iteration: 101 / 4000 [ 2%] (Sampling)
## Chain 2 Iteration: 200 / 4000 [ 5%] (Sampling)
## Chain 1 Iteration: 300 / 4000 [ 7%] (Sampling)
## Chain 1 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 2 Iteration: 300 / 4000 [ 7%] (Sampling)
## Chain 3 WARNING: There aren't enough warmup iterations to fit the
## Chain 3 three stages of adaptation as currently configured.
## Chain 3 Reducing each adaptation stage to 15%/75%/10% of
## Chain 3 the given number of warmup iterations:
## Chain 3 init_buffer = 15
## Chain 3 adapt_window = 75
## Chain 3 term_buffer = 10
## Chain 3 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 3 Iteration: 101 / 4000 [ 2%] (Sampling)
## Chain 1 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 1 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 2 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 3 Iteration: 200 / 4000 [ 5%] (Sampling)
## Chain 3 Iteration: 300 / 4000 [ 7%] (Sampling)
## Chain 4 WARNING: There aren't enough warmup iterations to fit the
## Chain 4 three stages of adaptation as currently configured.
## Chain 4 Reducing each adaptation stage to 15%/75%/10% of
## Chain 4 the given number of warmup iterations:
## Chain 4 init_buffer = 15
## Chain 4 adapt_window = 75
## Chain 4 term_buffer = 10
## Chain 4 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 4 Iteration: 101 / 4000 [ 2%] (Sampling)
## Chain 4 Iteration: 200 / 4000 [ 5%] (Sampling)
## Chain 1 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 1 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 2 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 2 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 3 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 3 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 3 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 4 Iteration: 300 / 4000 [ 7%] (Sampling)
## Chain 4 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 4 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 1 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 2 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 2 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 3 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 4 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 1 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 3 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 4 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 1 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 2 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 3 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 4 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 1 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 1 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 2 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 2 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 3 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 3 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 4 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 4 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 1 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 2 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 3 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 4 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 1 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 2 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 3 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 4 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 1 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 2 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 3 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 4 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 1 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 2 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 3 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 4 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 1 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 1 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 2 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 3 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 3 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 4 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 4 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 1 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 2 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 3 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 4 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 1 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 3 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 4 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 1 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 2 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 3 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 4 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 1 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 2 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 3 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 4 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 1 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 2 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 3 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 4 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 1 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 2 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 3 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 4 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 1 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 2 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 3 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 4 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 1 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 2 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 3 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 3 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 4 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 1 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 1 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 2 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 3 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 4 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 1 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 2 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 3 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 4 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 1 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 1 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 2 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 3 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 3 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 4 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 4 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 1 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 2 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 3 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 4 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 1 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 1 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 2 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 3 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 3 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 4 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 1 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 2 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 2 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 3 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 4 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 4 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 1 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 2 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 3 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 4 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 1 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 1 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 2 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 3 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 3 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 4 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 4 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 1 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 2 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 3 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 4 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 1 finished in 3.8 seconds.
## Chain 2 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 3 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 3 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 4 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 3 finished in 3.7 seconds.
## Chain 2 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 2 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 4 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 2 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 4 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4 finished in 3.7 seconds.
## Chain 2 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 2 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 2 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 2 finished in 4.4 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 3.9 seconds.
## Total execution time: 4.8 seconds.
precis(Stan_model_100,depth=2)
## mean sd 5.5% 94.5% n_eff Rhat4
## a[1] 0.8865697 0.016053562 0.86106756 0.91210676 17515.448 0.9998771
## a[2] 1.0505813 0.010063725 1.03440945 1.06655055 16752.181 0.9998515
## b[1] 0.1328875 0.075847978 0.01279902 0.25552628 6711.880 1.0000552
## b[2] -0.1426609 0.056161535 -0.23277309 -0.05239599 9700.626 1.0001119
## sigma 0.1115139 0.006162754 0.10210094 0.12179044 9469.505 1.0002201
## mu[1] 0.8763829 0.016162036 0.85067467 0.90216888 17089.682 0.9999813
## mu[2] 1.0024242 0.020792315 0.96912462 1.03590055 10778.117 0.9999569
## mu[3] 1.0635646 0.011621117 1.04518945 1.08217055 13934.052 0.9999976
## mu[4] 1.0634266 0.011593813 1.04509000 1.08198000 13964.410 0.9999962
## mu[5] 1.0194230 0.015276880 0.99495934 1.04396000 11941.514 0.9998862
## mu[6] 1.0811154 0.016240559 1.05556945 1.10712055 11485.267 1.0001095
## mu[7] 1.0779641 0.015284416 1.05394945 1.10250000 11756.697 1.0000978
## mu[8] 1.0004460 0.021477643 0.96613050 1.03506110 10701.759 0.9999630
## mu[9] 1.0427934 0.010300016 1.02624945 1.05900000 16733.241 0.9998013
## mu[10] 0.8961382 0.017776819 0.86783245 0.92455922 12955.664 0.9998309
## mu[11] 1.0723285 0.013688822 1.05074000 1.09437000 12393.823 1.0000690
## mu[12] 0.8610200 0.019858341 0.82908861 0.89265706 11079.868 1.0001080
## mu[13] 0.8630556 0.019180071 0.83230589 0.89357205 11601.237 1.0000974
## mu[14] 1.0769750 0.014992965 1.05332000 1.10106055 11852.583 1.0000936
## mu[15] 1.0472329 0.010052030 1.03110945 1.06300000 17047.402 0.9998229
## mu[16] 1.0759399 0.014692734 1.05273945 1.09957000 11959.873 1.0000887
## mu[17] 1.0799883 0.015894046 1.05500000 1.10543055 11578.475 1.0001057
## mu[18] 1.0280949 0.012899435 1.00742890 1.04864110 13197.395 0.9998394
## mu[19] 1.0774811 0.015141548 1.05366945 1.10176055 11802.950 1.0000958
## mu[20] 1.0672910 0.012425489 1.04772000 1.08712000 13187.110 1.0000322
## mu[21] 1.0616324 0.011256780 1.04380945 1.07974000 14372.212 0.9999773
## mu[22] 1.0757329 0.014633249 1.05262945 1.09929110 11981.974 1.0000878
## mu[23] 1.0591021 0.010842034 1.04184000 1.07658000 14982.012 0.9999486
## mu[24] 0.8618771 0.019567209 0.83052056 0.89305721 11291.243 1.0001038
## mu[25] 0.8622199 0.019452983 0.83099795 0.89320606 11379.070 1.0001020
## mu[26] 1.0634266 0.011593813 1.04509000 1.08198000 13964.410 0.9999962
## mu[27] 0.9717390 0.031909127 0.92102061 1.02293055 10119.874 1.0000207
## mu[28] 1.0241845 0.013918155 1.00187945 1.04647055 12548.003 0.9998608
## mu[29] 1.0380549 0.010872765 1.02059835 1.05528055 15540.937 0.9997994
## mu[30] 0.8627985 0.019263196 0.83187289 0.89345071 11531.642 1.0000988
## mu[31] 0.8690336 0.017484795 0.84103446 0.89698616 13568.313 1.0000549
## mu[32] 0.8674909 0.017875383 0.83890383 0.89626238 12995.855 1.0000675
## mu[33] 0.8612557 0.019777501 0.82947594 0.89274405 11136.832 1.0001069
## mu[34] 1.0608963 0.011128517 1.04323000 1.07883000 14545.832 0.9999692
## mu[35] 0.9293065 0.031303222 0.87944351 0.97900217 8039.491 0.9998944
## mu[36] 0.9087156 0.021986065 0.87353020 0.94392617 9888.984 0.9998406
## mu[37] 1.0326723 0.011850511 1.01367000 1.05152000 14162.723 0.9998165
## mu[38] 1.0187329 0.015482709 0.99393667 1.04356000 11867.514 0.9998898
## mu[39] 1.0609193 0.011132503 1.04324945 1.07886000 14541.177 0.9999693
## mu[40] 1.0675210 0.012479109 1.04787000 1.08742000 13145.650 1.0000342
## mu[41] 0.9101083 0.022544599 0.87389156 0.94620739 9678.534 0.9998439
## mu[42] 1.0811844 0.016261911 1.05559945 1.10722055 11479.696 1.0001097
## mu[43] 1.0769060 0.014972748 1.05328945 1.10097000 11859.519 1.0000932
## mu[44] 1.0435065 0.010240537 1.02702000 1.05956000 16882.356 0.9998035
## mu[45] 0.8689264 0.017510768 0.84086790 0.89691228 13527.440 1.0000558
## mu[46] 1.0518563 0.010113424 1.03556945 1.06783000 16567.701 0.9998645
## mu[47] 0.8734903 0.016568914 0.84701006 0.89976964 15415.614 1.0000124
## mu[48] 0.9111582 0.022974862 0.87423468 0.94802915 9532.346 0.9998465
## mu[49] 1.0424024 0.010335750 1.02584000 1.05865165 16646.009 0.9998004
## mu[50] 1.0784241 0.015421508 1.05420945 1.10315000 11714.167 1.0000998
## mu[51] 0.8916386 0.016768130 0.86491378 0.91851205 14614.891 0.9998449
## mu[52] 1.0737087 0.014063981 1.05147945 1.09634055 12215.856 1.0000772
## mu[53] 1.0491421 0.010037527 1.03304000 1.06498000 16926.177 0.9998380
## mu[54] 1.0559968 0.010440961 1.03932000 1.07266000 15737.633 0.9999119
## mu[55] 0.8626699 0.019305047 0.83168246 0.89341011 11497.270 1.0000995
## mu[56] 1.0681881 0.012636984 1.04830945 1.08833000 13027.887 1.0000397
## mu[57] 0.9970876 0.022654922 0.96078445 1.03354165 10588.443 0.9999726
## mu[58] 0.8628842 0.019235407 0.83202873 0.89349577 11554.717 1.0000983
## mu[59] 0.8738546 0.016509143 0.84755978 0.90006816 15634.046 1.0000086
## mu[60] 0.8655625 0.018411257 0.83607794 0.89495611 12338.155 1.0000817
## mu[61] 0.8685193 0.017611062 0.84027640 0.89676688 13373.664 1.0000592
## mu[62] 0.8699764 0.017263865 0.84224862 0.89756861 13933.587 1.0000466
## mu[63] 1.0098770 0.018277708 0.98079367 1.03938055 11151.764 0.9999302
## mu[64] 1.0332244 0.011736354 1.01444000 1.05188000 14293.798 0.9998141
## mu[65] 1.0396881 0.010641987 1.02258835 1.05649000 15975.350 0.9997979
## mu[66] 1.0749738 0.014417260 1.05219000 1.09817000 12066.247 1.0000840
## mu[67] 1.0237244 0.014044275 1.00117890 1.04618055 12481.207 0.9998633
## mu[68] 1.0317983 0.012037016 1.01251000 1.05096110 13961.044 0.9998205
## mu[69] 1.0521094 0.010126174 1.03578890 1.06810055 16531.817 0.9998672
## mu[70] 1.0269217 0.013194471 1.00583945 1.04795055 12986.439 0.9998458
## mu[71] 1.0732946 0.013950228 1.05121945 1.09574110 12267.418 1.0000748
## mu[72] 1.0590101 0.010828410 1.04177000 1.07646000 15004.887 0.9999476
## mu[73] 1.0579520 0.010678948 1.04089835 1.07509000 15265.185 0.9999351
## mu[74] 1.0694532 0.012945637 1.04907000 1.09012055 12817.089 1.0000495
## mu[75] 1.0250126 0.013694331 1.00309945 1.04691110 12672.682 0.9998563
## mu[76] 1.0473939 0.010048629 1.03128945 1.06318055 17041.847 0.9998240
## mu[77] 1.0420343 0.010371329 1.02540000 1.05837055 16561.570 0.9997997
## mu[78] 1.0247135 0.013774700 1.00264835 1.04674110 12627.144 0.9998579
## mu[79] 1.0401251 0.010585992 1.02312945 1.05679055 16089.206 0.9997978
## mu[80] 1.0560198 0.010443468 1.03934000 1.07269055 15732.463 0.9999120
## mu[81] 1.0322124 0.011947830 1.01304945 1.05122055 14055.596 0.9998186
## mu[82] 1.0726965 0.013787767 1.05091945 1.09487000 12344.563 1.0000712
## mu[83] 0.8723333 0.016774450 0.84539184 0.89909771 14874.827 1.0000242
## mu[84] 0.9826421 0.027867396 0.93832056 1.02733165 10262.934 1.0000041
## mu[85] 1.0688322 0.012792650 1.04871000 1.08928055 12918.860 1.0000448
## mu[86] 1.0811154 0.016240559 1.05556945 1.10712055 11485.267 1.0001095
## mu[87] 1.0361687 0.011179481 1.01821945 1.05393110 15038.785 0.9998036
## mu[88] 1.0756178 0.014600393 1.05256945 1.09911110 11994.365 1.0000872
## mu[89] 1.0225283 0.014377675 0.99933578 1.04553055 12316.348 0.9998698
## mu[90] 0.9847123 0.027108650 0.94163240 1.02811055 10297.841 1.0000004
## mu[91] 1.0318673 0.012022062 1.01259000 1.05101055 13976.419 0.9998202
## mu[92] 1.0663019 0.012199957 1.04712945 1.08581000 13371.993 1.0000238
## mu[93] 0.9908864 0.064134309 0.88956130 1.09384110 6975.024 0.9999777
## mu[94] 1.0772280 0.015067034 1.05348945 1.10139055 11827.282 1.0000947
## mu[95] 1.0609883 0.011144237 1.04329945 1.07894055 14524.173 0.9999702
## mu[96] 1.0777111 0.015209412 1.05380000 1.10212000 11780.674 1.0000968
## mu[97] 1.0644157 0.011793600 1.04581945 1.08322055 13751.393 1.0000061
## mu[98] 0.9097012 0.022379860 0.87377507 0.94554977 9738.033 0.9998429
## mu[99] 1.0628745 0.011486513 1.04473945 1.08126055 14086.633 0.9999905
## mu[100] 0.8830466 0.015851725 0.85795661 0.90834605 18447.721 0.9999091
## mu[101] 1.0414133 0.010435729 1.02468000 1.05781000 16413.249 0.9997987
## mu[102] 1.0199520 0.015120454 0.99570989 1.04420000 12000.207 0.9998835
## mu[103] 0.8611486 0.019814177 0.82932806 0.89267854 11110.828 1.0001074
## mu[104] 1.0461288 0.010086040 1.02990000 1.06198000 17092.472 0.9998157
## mu[105] 1.0569399 0.010549438 1.04006000 1.07386055 15512.315 0.9999230
## mu[106] 0.8711120 0.017016544 0.84375867 0.89834122 14384.701 1.0000361
## mu[107] 0.8604630 0.020051708 0.82809573 0.89239006 10948.631 1.0001106
## mu[108] 0.8783327 0.015978432 0.85288200 0.90380333 18013.989 0.9999597
## mu[109] 0.8800040 0.015881555 0.85473467 0.90523005 18334.998 0.9999412
## mu[110] 1.0580440 0.010691385 1.04097000 1.07520000 15242.674 0.9999362
## mu[111] 0.8775614 0.016042095 0.85196673 0.90313322 17679.961 0.9999683
## mu[112] 1.0447716 0.010153146 1.02844000 1.06071000 17113.383 0.9998084
## mu[113] 0.8618128 0.019588771 0.83044191 0.89301711 11274.975 1.0001041
## mu[114] 0.8646840 0.018671796 0.83478690 0.89437326 12067.789 1.0000875
## mu[115] 1.0584350 0.010745460 1.04126945 1.07569000 15146.239 0.9999407
## mu[116] 1.0804023 0.016020760 1.05517945 1.10606055 11544.809 1.0001071
## mu[117] 1.0258406 0.013474670 1.00429000 1.04734055 12804.467 0.9998517
## mu[118] 0.9652523 0.034342539 0.91069356 1.02053165 10058.482 1.0000285
## mu[119] 1.0343745 0.011508153 1.01599945 1.05268055 14576.917 0.9998095
## mu[120] 1.0557437 0.010413903 1.03910000 1.07236000 15797.443 0.9999087
## mu[121] 1.0364218 0.011135969 1.01854000 1.05409055 15105.687 0.9998029
## mu[122] 1.0458297 0.010098449 1.02956945 1.06167000 17107.783 0.9998140
## mu[123] 1.0502692 0.010055345 1.03411945 1.06622055 16796.176 0.9998484
## mu[124] 1.0346046 0.011464094 1.01631000 1.05284055 14634.674 0.9998086
## mu[125] 1.0447026 0.010157319 1.02837000 1.06063055 17102.197 0.9998082
## mu[126] 1.0744218 0.014262033 1.05186890 1.09740055 12129.868 1.0000811
## mu[127] 1.0479690 0.010039775 1.03183000 1.06374055 17015.712 0.9998283
## mu[128] 1.0512583 0.010087025 1.03502890 1.06723055 16649.170 0.9998583
## mu[129] 1.0756178 0.014600393 1.05256945 1.09911110 11994.365 1.0000872
## mu[130] 1.0335925 0.011661916 1.01494000 1.05213055 14382.959 0.9998126
## mu[131] 1.0521094 0.010126174 1.03578890 1.06810055 16531.817 0.9998672
## mu[132] 1.0596312 0.010922516 1.04225000 1.07718000 14852.482 0.9999547
## mu[133] 0.9288994 0.031103039 0.87928557 0.97830438 8059.099 0.9998934
## mu[134] 1.0602292 0.011017581 1.04270890 1.07793055 14707.180 0.9999616
## mu[135] 0.8674694 0.017881053 0.83887667 0.89625311 12988.160 1.0000677
## mu[136] 0.8632270 0.019125076 0.83255751 0.89366422 11648.231 1.0000964
## mu[137] 1.0808854 0.016169431 1.05545945 1.10679000 11504.508 1.0001088
## mu[138] 1.0458297 0.010098449 1.02956945 1.06167000 17107.783 0.9998140
## mu[139] 0.8686693 0.017573820 0.84050079 0.89682011 13430.043 1.0000580
## mu[140] 1.0409992 0.010481582 1.02417945 1.05747055 16311.184 0.9997983
## mu[141] 1.0453697 0.010120192 1.02907000 1.06123055 17124.883 0.9998115
## mu[142] 1.0238394 0.014012648 1.00134945 1.04626000 12497.548 0.9998627
## mu[143] 1.0648067 0.011875149 1.04610890 1.08375000 13670.134 1.0000099
## mu[144] 0.9236285 0.028555094 0.87779383 0.96914982 8356.477 0.9998802
## mu[145] 0.9626677 0.048689718 0.88593650 1.04018000 7201.167 0.9999519
## mu[146] 1.0638636 0.011680882 1.04538000 1.08252000 13869.683 1.0000007
## mu[147] 0.8669766 0.018013269 0.83819812 0.89600166 12813.228 1.0000715
## mu[148] 0.8639983 0.018881894 0.83380089 0.89403209 11865.888 1.0000918
## mu[149] 1.0570779 0.010566312 1.04015000 1.07400055 15479.014 0.9999246
## mu[150] 0.9593177 0.036583196 0.90117202 1.01811330 10013.085 1.0000347
## mu[151] 1.0747208 0.014345912 1.05204000 1.09781000 12095.166 1.0000827
## mu[152] 1.0634725 0.011602861 1.04512945 1.08204000 13953.877 0.9999968
## mu[153] 1.0673830 0.012446877 1.04778000 1.08723000 13170.104 1.0000331
## mu[154] 0.8735546 0.016558186 0.84709683 0.89982138 15454.183 1.0000118
## mu[155] 1.0209872 0.014818122 0.99715878 1.04472110 12121.148 0.9998781
## mu[156] 0.8725047 0.016742513 0.84560267 0.89917600 14941.005 1.0000225
## mu[157] 0.8775614 0.016042095 0.85196673 0.90313322 17679.961 0.9999683
## mu[158] 1.0716844 0.013517676 1.05033835 1.09340000 12481.988 1.0000650
## mu[159] 1.0712474 0.013403042 1.05009945 1.09275220 12544.247 1.0000620
## mu[160] 1.0565718 0.010505675 1.03978945 1.07338000 15601.360 0.9999186
## mu[161] 1.0691542 0.012871635 1.04890945 1.08968055 12865.522 1.0000473
## mu[162] 1.0106131 0.018036202 0.98193646 1.03973000 11197.902 0.9999272
## mu[163] 1.0666699 0.012282960 1.04731000 1.08632000 13301.885 1.0000270
## mu[164] 1.0340065 0.011579737 1.01550945 1.05243000 14484.890 0.9998109
## mu[165] 1.0414822 0.010428315 1.02476000 1.05788000 16430.382 0.9997988
## mu[166] 1.0426784 0.010310323 1.02611945 1.05891000 16707.765 0.9998010
## mu[167] 1.0278188 0.012967970 1.00703945 1.04846000 13146.821 0.9998409
## mu[168] 0.8957311 0.017672568 0.86755200 0.92397005 13095.395 0.9998316
## mu[169] 0.8694193 0.017392742 0.84152384 0.89722576 13716.480 1.0000515
## mu[170] 0.8835822 0.015866153 0.85843078 0.90892805 18418.545 0.9999038
Stan_model_200 = map2stan(
alist(
log_gdp_std ~ dnorm( mu , sigma ) ,
mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
a[cid] ~ dnorm( 1 , 0.1 ) ,
b[cid] ~ dnorm( 0 , 0.3 ) ,
sigma ~ dexp( 1 )
), data=dat_slim , warmup = 200, iter = 4000, chains=4, cores = 4 )
## Running MCMC with 4 parallel chains...
##
## Chain 1 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 2 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 1 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 1 Iteration: 201 / 4000 [ 5%] (Sampling)
## Chain 1 Iteration: 300 / 4000 [ 7%] (Sampling)
## Chain 1 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 1 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 2 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 2 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 2 Iteration: 201 / 4000 [ 5%] (Sampling)
## Chain 2 Iteration: 300 / 4000 [ 7%] (Sampling)
## Chain 2 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 3 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 3 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 3 Iteration: 201 / 4000 [ 5%] (Sampling)
## Chain 3 Iteration: 300 / 4000 [ 7%] (Sampling)
## Chain 1 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 1 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 1 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 1 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 2 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 2 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 2 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 3 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 3 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 3 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 4 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 4 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 4 Iteration: 201 / 4000 [ 5%] (Sampling)
## Chain 4 Iteration: 300 / 4000 [ 7%] (Sampling)
## Chain 1 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 1 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 1 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 2 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 2 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 2 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 3 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 3 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 3 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 4 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 4 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 4 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 1 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 1 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 2 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 2 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 3 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 3 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 4 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 4 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 1 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 1 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 1 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 2 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 2 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 2 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 3 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 3 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 3 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 4 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 4 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 1 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 1 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 2 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 2 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 3 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 3 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 4 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 4 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 4 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 1 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 1 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 1 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 1 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 2 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 2 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 2 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 3 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 3 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 3 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 4 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 4 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 1 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 1 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 2 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 2 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 3 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 3 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 4 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 4 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 1 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 1 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 1 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 2 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 2 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 2 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 3 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 3 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 4 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 4 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 1 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 1 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 2 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 2 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 2 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 3 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 3 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 3 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 4 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 4 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 4 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 1 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 1 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 1 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 2 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 2 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 3 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 3 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 4 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 4 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 1 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 1 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 2 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 2 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 3 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 3 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 4 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 4 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 1 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 1 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 2 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 2 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 3 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 3 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 4 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 1 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 1 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 2 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 2 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 3 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 3 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 4 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 4 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 1 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 2 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 2 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 3 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 3 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 4 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 4 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 1 finished in 2.1 seconds.
## Chain 2 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 2 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 3 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 3 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 4 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 4 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 2 finished in 2.2 seconds.
## Chain 3 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 3 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 4 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 4 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 3 finished in 2.2 seconds.
## Chain 4 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 4 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 4 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 4 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4 finished in 2.3 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 2.2 seconds.
## Total execution time: 3.0 seconds.
Stan_model_300 = map2stan(
alist(
log_gdp_std ~ dnorm( mu , sigma ) ,
mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
a[cid] ~ dnorm( 1 , 0.1 ) ,
b[cid] ~ dnorm( 0 , 0.3 ) ,
sigma ~ dexp( 1 )
), data=dat_slim , warmup = 300, iter = 4000, chains=4, cores = 4 )
## Running MCMC with 4 parallel chains...
##
## Chain 1 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 1 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 1 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 1 Iteration: 301 / 4000 [ 7%] (Sampling)
## Chain 2 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 2 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 2 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 1 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 1 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 2 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 2 Iteration: 301 / 4000 [ 7%] (Sampling)
## Chain 3 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 3 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 1 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 1 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 2 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 2 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 2 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 3 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 3 Iteration: 301 / 4000 [ 7%] (Sampling)
## Chain 3 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 3 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 4 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 1 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 1 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 2 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 2 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 3 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 4 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 4 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 4 Iteration: 301 / 4000 [ 7%] (Sampling)
## Chain 1 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 2 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 3 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 3 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 4 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 4 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 1 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 1 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 2 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 2 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 3 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 4 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 1 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 2 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 3 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 3 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 4 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 4 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 1 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 1 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 2 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 2 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 3 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 4 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 1 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 2 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 3 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 3 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 4 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 4 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 1 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 1 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 2 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 2 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 3 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 3 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 4 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 1 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 1 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 2 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 2 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 3 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 3 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 4 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 4 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 1 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 1 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 2 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 2 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 3 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 3 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 4 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 4 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 1 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 1 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 2 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 3 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 3 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 4 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 4 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 1 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 1 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 2 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 2 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 3 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 3 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 4 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 4 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 1 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 1 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 2 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 2 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 3 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 3 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 4 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 4 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 1 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 2 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 3 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 3 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 4 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 1 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 1 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 2 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 2 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 3 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 3 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 4 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 4 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 1 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 2 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 2 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 3 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 3 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 4 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 4 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 1 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 1 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 2 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 3 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 3 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 4 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 4 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 1 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 1 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 2 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 2 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 3 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 3 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 4 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 1 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 1 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 2 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 2 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 3 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 3 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 4 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 4 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 1 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 1 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 2 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 2 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 3 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 3 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 4 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 1 finished in 3.0 seconds.
## Chain 3 finished in 2.7 seconds.
## Chain 2 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 2 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 4 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 2 finished in 3.1 seconds.
## Chain 4 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 4 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 4 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 4 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4 finished in 2.9 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 2.9 seconds.
## Total execution time: 3.8 seconds.
Stan_model_400 = map2stan(
alist(
log_gdp_std ~ dnorm( mu , sigma ) ,
mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
a[cid] ~ dnorm( 1 , 0.1 ) ,
b[cid] ~ dnorm( 0 , 0.3 ) ,
sigma ~ dexp( 1 )
), data=dat_slim , warmup = 400, iter = 4000, chains=4, cores = 4 )
## Running MCMC with 4 parallel chains...
##
## Chain 1 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 2 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 1 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 1 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 2 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 2 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 2 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 1 Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 1 Iteration: 401 / 4000 [ 10%] (Sampling)
## Chain 1 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 2 Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 2 Iteration: 401 / 4000 [ 10%] (Sampling)
## Chain 2 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 3 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 3 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 3 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 4 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 4 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 1 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 1 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 1 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 1 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 2 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 2 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 2 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 2 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 3 Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 3 Iteration: 401 / 4000 [ 10%] (Sampling)
## Chain 3 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 3 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 3 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 4 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 4 Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 4 Iteration: 401 / 4000 [ 10%] (Sampling)
## Chain 4 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 1 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 1 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 2 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 2 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 3 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 3 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 4 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 4 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 1 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 1 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 2 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 3 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 3 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 4 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 4 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 1 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 1 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 2 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 2 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 3 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 3 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 4 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 4 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 1 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 2 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 2 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 3 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 3 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 4 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 4 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 1 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 1 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 2 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 2 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 3 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 3 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 3 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 4 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 4 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 1 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 1 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 1 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 2 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 2 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 3 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 3 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 4 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 4 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 1 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 1 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 2 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 2 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 2 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 3 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 3 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 4 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 4 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 1 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 1 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 2 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 2 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 3 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 3 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 3 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 4 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 4 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 1 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 1 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 2 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 2 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 3 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 3 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 4 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 4 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 4 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 1 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 1 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 2 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 2 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 3 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 3 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 4 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 1 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 1 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 2 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 2 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 3 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 3 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 3 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 4 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 4 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 1 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 1 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 2 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 2 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 3 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 3 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 4 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 4 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 1 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 2 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 2 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 3 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 3 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 4 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 4 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 1 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 1 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 1 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 2 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 2 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 3 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 3 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 3 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 4 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 4 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 4 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 1 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 1 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 2 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 2 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 3 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 4 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 3 finished in 2.2 seconds.
## Chain 1 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 2 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 4 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 4 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 1 finished in 2.6 seconds.
## Chain 2 finished in 2.5 seconds.
## Chain 4 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4 finished in 2.5 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 2.5 seconds.
## Total execution time: 3.2 seconds.
Stan_model_500 = map2stan(
alist(
log_gdp_std ~ dnorm( mu , sigma ) ,
mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
a[cid] ~ dnorm( 1 , 0.1 ) ,
b[cid] ~ dnorm( 0 , 0.3 ) ,
sigma ~ dexp( 1 )
), data=dat_slim , warmup = 500, iter = 4000, chains=4, cores = 4 )
## Running MCMC with 4 parallel chains...
##
## Chain 1 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 1 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 2 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 2 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 1 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 1 Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 1 Iteration: 500 / 4000 [ 12%] (Warmup)
## Chain 1 Iteration: 501 / 4000 [ 12%] (Sampling)
## Chain 2 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 2 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 3 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 3 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 4 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 1 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 1 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 1 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 1 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 2 Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 2 Iteration: 500 / 4000 [ 12%] (Warmup)
## Chain 2 Iteration: 501 / 4000 [ 12%] (Sampling)
## Chain 2 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 2 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 3 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 3 Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 3 Iteration: 500 / 4000 [ 12%] (Warmup)
## Chain 3 Iteration: 501 / 4000 [ 12%] (Sampling)
## Chain 4 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 4 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 4 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 1 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 2 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 3 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 4 Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 1 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 1 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 2 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 3 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 3 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 4 Iteration: 500 / 4000 [ 12%] (Warmup)
## Chain 4 Iteration: 501 / 4000 [ 12%] (Sampling)
## Chain 4 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 1 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 1 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 2 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 2 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 3 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 3 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 4 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 4 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 1 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 2 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 3 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 3 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 4 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 1 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 1 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 2 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 2 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 3 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 4 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 4 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 1 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 1 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 2 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 3 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 3 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 4 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 4 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 1 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 1 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 2 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 2 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 3 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 3 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 4 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 1 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 1 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 2 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 3 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 3 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 4 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 4 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 1 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 1 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 2 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 2 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 3 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 3 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 4 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 4 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 1 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 1 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 2 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 3 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 3 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 3 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 4 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 4 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 1 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 1 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 1 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 2 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 2 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 3 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 3 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 4 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 4 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 1 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 1 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 2 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 2 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 3 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 3 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 4 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 1 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 1 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 2 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 3 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 3 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 4 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 4 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 1 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 2 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 2 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 3 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 3 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 4 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 4 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 1 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 1 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 2 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 3 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 3 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 4 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 1 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 1 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 2 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 2 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 3 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 3 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 4 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 4 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 1 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 2 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 2 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 3 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 3 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 4 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 4 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 1 finished in 2.7 seconds.
## Chain 2 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 2 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 3 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 3 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 4 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 4 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 3 finished in 2.7 seconds.
## Chain 2 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 2 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 4 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 4 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 2 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 2 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 4 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 4 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 4 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4 finished in 2.8 seconds.
## Chain 2 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 2 finished in 3.1 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 2.8 seconds.
## Total execution time: 3.7 seconds.
#As warmup is increased,n_eff got closer to number of iterations. 400 warmup iterations are enough
9-4. Run the model below and then inspect the posterior distribution and explain what it is accomplishing.
mp = ulam(
alist(
a ~ dnorm(0,1),
b ~ dcauchy(0,1)
), data=list(y=1) , chains=1 )
## Running MCMC with 1 chain, with 1 thread(s) per chain...
##
## Chain 1 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 1 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 1 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 1 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 1 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 1 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 1 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 1 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 1 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 1 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 1 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 1 finished in 0.1 seconds.
p=precis(mp)
traceplot(mp)
Compare the samples for the parameters a and b. Can you explain the different trace plots? If you are unfamiliar with the Cauchy distribution, you should look it up. The key feature to attend to is that it has no expected value. Can you connect this fact to the trace plot?
#From the plot we can see plot a should be a normal distribution as the prior is aroung 0 and spread in between 2 and -2. Plot b is Cauchy distribution which contains some extreme value go up to over 30 and -50.
9-5. Recall the divorce rate example from Chapter 5. Repeat that analysis, using ulam this time, fitting models m5.1, m5.2, and m5.3. Use compare to compare the models on the basis of WAIC or PSIS. To use WAIC or PSIS with ulam, you need add the argument log_log=TRUE. Explain the model comparison results.
library(tidybayes)
data(WaffleDivorce)
data = WaffleDivorce
data$Divorce_sd=standardize(data$Divorce)
data$Marriage_sd=standardize(data$Marriage)
data$MedianAgeMarriage_sd=standardize(data$MedianAgeMarriage)
d_trim = list(D = data$Divorce_sd, M = data$Marriage_sd, A = data$MedianAgeMarriage_sd)
m5.1 = ulam(
alist(
D ~ dnorm(mu, sigma),
mu <- a + bA * A,
a ~ dnorm(0, 0.2),
bA ~ dnorm(0, 0.5),
sigma ~ dexp(1)
),
data = d_trim,
chains = 4,
cores = 4,
log_lik = TRUE
)
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
##
## Chain 1 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 2 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 1 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 1 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 1 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 1 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 1 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 1 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 1 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 1 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 1 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 2 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 2 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 2 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 2 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 2 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 2 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 2 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 2 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 2 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 3 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 3 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 3 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 3 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 3 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 3 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 4 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 4 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 4 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 4 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 1 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 1 finished in 0.3 seconds.
## Chain 2 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 2 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 2 finished in 0.3 seconds.
## Chain 3 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 3 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 3 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 3 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 3 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 3 finished in 0.3 seconds.
## Chain 4 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 4 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 4 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 4 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 4 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 4 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 4 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 4 finished in 0.3 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 0.3 seconds.
## Total execution time: 0.9 seconds.
m5.2 = ulam(
alist(
D ~ dnorm(mu, sigma),
mu <- a + bM * M,
a ~ dnorm(0, 0.2),
bM ~ dnorm(0, 0.5),
sigma ~ dexp(1)
),
data = d_trim,
chains = 4,
cores = 4,
log_lik = TRUE
)
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
##
## Chain 1 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 2 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 1 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 1 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 1 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 1 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 1 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 1 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 1 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 1 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 1 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 2 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 2 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 2 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 2 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 2 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 2 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 2 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 2 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 2 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 3 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 3 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 3 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 3 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 1 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 1 finished in 0.3 seconds.
## Chain 2 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 2 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 2 finished in 0.3 seconds.
## Chain 3 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 3 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 3 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 3 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 3 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 3 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 3 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 4 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 4 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 4 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 4 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 4 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 4 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 4 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 4 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 4 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 4 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 3 finished in 0.3 seconds.
## Chain 4 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 4 finished in 0.3 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 0.3 seconds.
## Total execution time: 1.0 seconds.
m5.3 = ulam(
alist(
D ~ dnorm(mu, sigma),
mu <- a + bA * A + bM * M,
a ~ dnorm(0, 0.2),
bA ~ dnorm(0, 0.5),
bM ~ dnorm(0, 0.5),
sigma ~ dexp(1)
),
data = d_trim,
chains = 4,
cores = 4,
log_lik = TRUE
)
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
##
## Chain 1 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 1 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 1 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 1 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 2 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 2 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 2 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 2 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 1 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 1 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 1 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 2 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 2 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 2 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 3 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 3 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 1 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 1 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 1 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 2 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 2 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 2 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 3 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 3 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 3 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 3 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 4 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 4 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 1 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 1 finished in 0.7 seconds.
## Chain 2 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 2 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 3 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 3 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 3 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 4 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 4 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 4 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 4 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 2 finished in 0.7 seconds.
## Chain 3 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 4 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 4 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 3 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 4 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 4 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 3 finished in 0.8 seconds.
## Chain 4 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 4 finished in 0.7 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 0.7 seconds.
## Total execution time: 1.8 seconds.
set.seed(77)
compare( m5.1 , m5.2 , m5.3 , func=WAIC )
## WAIC SE dWAIC dSE pWAIC weight
## m5.1 125.5194 12.553225 0.00000 NA 3.530059 0.7636320968
## m5.3 127.8714 12.737362 2.35193 0.6948482 4.876636 0.2355965776
## m5.2 139.3149 9.881935 13.79546 9.1406045 2.965815 0.0007713256