Chapter 9 - Markov Chain Monte Carlo

This chapter has been an informal introduction to Markov chain Monte Carlo (MCMC) estimation. The goal has been to introduce the purpose and approach MCMC algorithms. The major algorithms introduced were the Metropolis, Gibbs sampling, and Hamiltonian Monte Carlo algorithms. Each has its advantages and disadvantages. The ulam function in the rethinking package was introduced. It uses the Stan (mc-stan.org) Hamiltonian Monte Carlo engine to fit models as they are defined in this book. General advice about diagnosing poor MCMC fits was introduced by the use of a couple of pathological examples.

Place each answer inside the code chunk (grey box). The code chunks should contain a text response or a code that completes/answers the question or activity requested. Make sure to include plots if the question requests them.

Finally, upon completion, name your final output .html file as: YourName_ANLY505-Year-Semester.html and publish the assignment to your R Pubs account and submit the link to Canvas. Each question is worth 5 points.

Questions

9-1. Re-estimate the terrain ruggedness model from the chapter, but now using a uniform prior for the standard deviation, sigma. The uniform prior should be dunif(0,1). Visualize the priors. Use ulam to estimate the posterior. Visualize the posteriors for both models. Does the different prior have any detectible influence on the posterior distribution of sigma? Why or why not?

library(rethinking)
data(rugged)
data= rugged
data$log_gdp = log(data$rgdppc_2000)
dd = data[ complete.cases(data$rgdppc_2000) , ]

dd$log_gdp_std = dd$log_gdp/ mean(dd$log_gdp)
dd$rugged_std = dd$rugged/max(dd$rugged)

dd$cid=ifelse(dd$cont_africa==1,1,2)

dat_slim = list(
  log_gdp_std = dd$log_gdp_std,
  rugged_std = dd$rugged_std,
  cid = as.integer( dd$cid )
)

model1 = ulam(
  alist(
    log_gdp_std ~ dnorm( mu , sigma ) ,
    mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
    a[cid] ~ dnorm( 1 , 0.1 ) ,
    b[cid] ~ dnorm( 0 , 0.3 ) ,
    sigma ~ dexp( 1 )
  ), data=dat_slim , chains=4, cores = 4)
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
## 
## Chain 1 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 1 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 2 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 1 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 1 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 1 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 1 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 2 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 2 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 2 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 2 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 2 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 3 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 3 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 3 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 3 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 3 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 3 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 4 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 4 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 4 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 4 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 4 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 1 finished in 0.4 seconds.
## Chain 2 finished in 0.4 seconds.
## Chain 3 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 3 finished in 0.4 seconds.
## Chain 4 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 4 finished in 0.3 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.4 seconds.
## Total execution time: 1.1 seconds.
pairs(model1)

model2 = ulam(
  alist(
    log_gdp_std ~ dnorm( mu , sigma ) ,
    mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
    a[cid] ~ dnorm( 1 , 0.1 ) ,
    b[cid] ~ dnorm( 0 , 0.3 ) ,
    sigma ~ dunif(0, 1 )
  ), data=dat_slim , chains=4, cores = 4 )
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
## 
## Chain 1 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 2 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 1 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 1 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 1 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 1 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 1 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 2 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 2 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 2 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 2 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 3 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 3 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 1 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 2 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 3 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 3 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 3 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 3 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 4 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 4 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 4 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 4 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 4 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 4 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 1 finished in 0.4 seconds.
## Chain 2 finished in 0.4 seconds.
## Chain 3 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 3 finished in 0.4 seconds.
## Chain 4 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 4 finished in 0.3 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.4 seconds.
## Total execution time: 1.0 seconds.
pairs(model2)

# Does not have detectible influence on the posterior distribution of sigma

9-2. Modify the terrain ruggedness model again. This time, change the prior for b[cid] to dexp(0.3). What does this do to the posterior distribution? Can you explain it?

model3 = ulam(
  alist(
    log_gdp_std ~ dnorm( mu , sigma ) ,
    mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
    a[cid] ~ dnorm( 1 , 0.1 ) ,
    b[cid] ~ dexp(0.3) ,
    sigma ~ dexp( 1 )
  ), data=dat_slim , chains=4, cores = 4 )
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
## 
## Chain 1 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 2 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 3 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 1 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 4 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 1 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 1 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 1 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 1 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 3 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 1 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 2 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 2 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 2 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 3 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 3 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 1 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 1 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 2 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 4 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 4 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 1 finished in 1.0 seconds.
## Chain 2 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 3 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 2 finished in 1.1 seconds.
## Chain 3 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 4 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 3 finished in 1.1 seconds.
## Chain 4 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 4 finished in 1.1 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 1.1 seconds.
## Total execution time: 1.9 seconds.
pairs(model3)

# There is not differences in the posterior distribution.

9-3. Re-estimate one of the Stan models from the chapter, but at different numbers of warmup iterations. Be sure to use the same number of sampling iterations in each case. Compare the n_eff values. How much warmup is enough?

Stan_model_100 = map2stan(
  alist(
    log_gdp_std ~ dnorm( mu , sigma ) ,
    mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
    a[cid] ~ dnorm( 1 , 0.1 ) ,
    b[cid] ~ dnorm( 0 , 0.3 )  ,
    sigma ~ dexp( 1 )
  ), data=dat_slim , warmup = 100, iter = 4000, chains=4, cores = 4 )
## Running MCMC with 4 parallel chains...
## 
## Chain 1 WARNING: There aren't enough warmup iterations to fit the 
## Chain 1          three stages of adaptation as currently configured. 
## Chain 1          Reducing each adaptation stage to 15%/75%/10% of 
## Chain 1          the given number of warmup iterations: 
## Chain 1            init_buffer = 15 
## Chain 1            adapt_window = 75 
## Chain 1            term_buffer = 10 
## Chain 1 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 2 WARNING: There aren't enough warmup iterations to fit the 
## Chain 2          three stages of adaptation as currently configured. 
## Chain 2          Reducing each adaptation stage to 15%/75%/10% of 
## Chain 2          the given number of warmup iterations: 
## Chain 2            init_buffer = 15 
## Chain 2            adapt_window = 75 
## Chain 2            term_buffer = 10 
## Chain 2 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 1 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 1 Iteration:  101 / 4000 [  2%]  (Sampling) 
## Chain 1 Iteration:  200 / 4000 [  5%]  (Sampling) 
## Chain 2 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 2 Iteration:  101 / 4000 [  2%]  (Sampling) 
## Chain 2 Iteration:  200 / 4000 [  5%]  (Sampling) 
## Chain 1 Iteration:  300 / 4000 [  7%]  (Sampling) 
## Chain 1 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 2 Iteration:  300 / 4000 [  7%]  (Sampling) 
## Chain 3 WARNING: There aren't enough warmup iterations to fit the 
## Chain 3          three stages of adaptation as currently configured. 
## Chain 3          Reducing each adaptation stage to 15%/75%/10% of 
## Chain 3          the given number of warmup iterations: 
## Chain 3            init_buffer = 15 
## Chain 3            adapt_window = 75 
## Chain 3            term_buffer = 10 
## Chain 3 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 3 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 3 Iteration:  101 / 4000 [  2%]  (Sampling) 
## Chain 1 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 1 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 2 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 3 Iteration:  200 / 4000 [  5%]  (Sampling) 
## Chain 3 Iteration:  300 / 4000 [  7%]  (Sampling) 
## Chain 4 WARNING: There aren't enough warmup iterations to fit the 
## Chain 4          three stages of adaptation as currently configured. 
## Chain 4          Reducing each adaptation stage to 15%/75%/10% of 
## Chain 4          the given number of warmup iterations: 
## Chain 4            init_buffer = 15 
## Chain 4            adapt_window = 75 
## Chain 4            term_buffer = 10 
## Chain 4 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 4 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 4 Iteration:  101 / 4000 [  2%]  (Sampling) 
## Chain 4 Iteration:  200 / 4000 [  5%]  (Sampling) 
## Chain 1 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 1 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 2 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 2 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 3 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 3 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 3 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 4 Iteration:  300 / 4000 [  7%]  (Sampling) 
## Chain 4 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 4 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 1 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 2 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 2 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 3 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 4 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 1 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 3 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 4 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 1 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 2 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 3 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 4 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 1 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 1 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 2 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 2 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 3 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 3 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 4 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 4 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 1 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 2 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 3 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 4 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 1 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 2 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 3 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 4 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 1 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 2 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 3 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 4 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 1 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 2 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 3 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 4 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 1 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 1 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 2 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 3 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 3 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 4 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 4 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 1 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 3 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 4 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 1 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 3 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 4 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 1 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 2 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 3 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 1 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 2 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 3 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 4 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 4 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 1 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 2 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 3 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 4 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 2 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 1 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 2 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 3 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 3 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 2 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 4 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 1 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 3 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 1 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 3 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 3 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 4 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 4 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 2 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 3 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 4 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 1 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 1 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 2 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 4 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 2 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 3 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 4 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 2 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 3 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 4 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 1 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 1 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 2 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 4 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 1 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 2 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 3 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 1 finished in 3.8 seconds.
## Chain 2 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 3 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 3 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 4 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 4 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 3 finished in 3.7 seconds.
## Chain 2 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 2 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 2 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 4 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 4 finished in 3.7 seconds.
## Chain 2 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 2 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 2 finished in 4.4 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 3.9 seconds.
## Total execution time: 4.8 seconds.
precis(Stan_model_100,depth=2)
##               mean          sd        5.5%       94.5%     n_eff     Rhat4
## a[1]     0.8865697 0.016053562  0.86106756  0.91210676 17515.448 0.9998771
## a[2]     1.0505813 0.010063725  1.03440945  1.06655055 16752.181 0.9998515
## b[1]     0.1328875 0.075847978  0.01279902  0.25552628  6711.880 1.0000552
## b[2]    -0.1426609 0.056161535 -0.23277309 -0.05239599  9700.626 1.0001119
## sigma    0.1115139 0.006162754  0.10210094  0.12179044  9469.505 1.0002201
## mu[1]    0.8763829 0.016162036  0.85067467  0.90216888 17089.682 0.9999813
## mu[2]    1.0024242 0.020792315  0.96912462  1.03590055 10778.117 0.9999569
## mu[3]    1.0635646 0.011621117  1.04518945  1.08217055 13934.052 0.9999976
## mu[4]    1.0634266 0.011593813  1.04509000  1.08198000 13964.410 0.9999962
## mu[5]    1.0194230 0.015276880  0.99495934  1.04396000 11941.514 0.9998862
## mu[6]    1.0811154 0.016240559  1.05556945  1.10712055 11485.267 1.0001095
## mu[7]    1.0779641 0.015284416  1.05394945  1.10250000 11756.697 1.0000978
## mu[8]    1.0004460 0.021477643  0.96613050  1.03506110 10701.759 0.9999630
## mu[9]    1.0427934 0.010300016  1.02624945  1.05900000 16733.241 0.9998013
## mu[10]   0.8961382 0.017776819  0.86783245  0.92455922 12955.664 0.9998309
## mu[11]   1.0723285 0.013688822  1.05074000  1.09437000 12393.823 1.0000690
## mu[12]   0.8610200 0.019858341  0.82908861  0.89265706 11079.868 1.0001080
## mu[13]   0.8630556 0.019180071  0.83230589  0.89357205 11601.237 1.0000974
## mu[14]   1.0769750 0.014992965  1.05332000  1.10106055 11852.583 1.0000936
## mu[15]   1.0472329 0.010052030  1.03110945  1.06300000 17047.402 0.9998229
## mu[16]   1.0759399 0.014692734  1.05273945  1.09957000 11959.873 1.0000887
## mu[17]   1.0799883 0.015894046  1.05500000  1.10543055 11578.475 1.0001057
## mu[18]   1.0280949 0.012899435  1.00742890  1.04864110 13197.395 0.9998394
## mu[19]   1.0774811 0.015141548  1.05366945  1.10176055 11802.950 1.0000958
## mu[20]   1.0672910 0.012425489  1.04772000  1.08712000 13187.110 1.0000322
## mu[21]   1.0616324 0.011256780  1.04380945  1.07974000 14372.212 0.9999773
## mu[22]   1.0757329 0.014633249  1.05262945  1.09929110 11981.974 1.0000878
## mu[23]   1.0591021 0.010842034  1.04184000  1.07658000 14982.012 0.9999486
## mu[24]   0.8618771 0.019567209  0.83052056  0.89305721 11291.243 1.0001038
## mu[25]   0.8622199 0.019452983  0.83099795  0.89320606 11379.070 1.0001020
## mu[26]   1.0634266 0.011593813  1.04509000  1.08198000 13964.410 0.9999962
## mu[27]   0.9717390 0.031909127  0.92102061  1.02293055 10119.874 1.0000207
## mu[28]   1.0241845 0.013918155  1.00187945  1.04647055 12548.003 0.9998608
## mu[29]   1.0380549 0.010872765  1.02059835  1.05528055 15540.937 0.9997994
## mu[30]   0.8627985 0.019263196  0.83187289  0.89345071 11531.642 1.0000988
## mu[31]   0.8690336 0.017484795  0.84103446  0.89698616 13568.313 1.0000549
## mu[32]   0.8674909 0.017875383  0.83890383  0.89626238 12995.855 1.0000675
## mu[33]   0.8612557 0.019777501  0.82947594  0.89274405 11136.832 1.0001069
## mu[34]   1.0608963 0.011128517  1.04323000  1.07883000 14545.832 0.9999692
## mu[35]   0.9293065 0.031303222  0.87944351  0.97900217  8039.491 0.9998944
## mu[36]   0.9087156 0.021986065  0.87353020  0.94392617  9888.984 0.9998406
## mu[37]   1.0326723 0.011850511  1.01367000  1.05152000 14162.723 0.9998165
## mu[38]   1.0187329 0.015482709  0.99393667  1.04356000 11867.514 0.9998898
## mu[39]   1.0609193 0.011132503  1.04324945  1.07886000 14541.177 0.9999693
## mu[40]   1.0675210 0.012479109  1.04787000  1.08742000 13145.650 1.0000342
## mu[41]   0.9101083 0.022544599  0.87389156  0.94620739  9678.534 0.9998439
## mu[42]   1.0811844 0.016261911  1.05559945  1.10722055 11479.696 1.0001097
## mu[43]   1.0769060 0.014972748  1.05328945  1.10097000 11859.519 1.0000932
## mu[44]   1.0435065 0.010240537  1.02702000  1.05956000 16882.356 0.9998035
## mu[45]   0.8689264 0.017510768  0.84086790  0.89691228 13527.440 1.0000558
## mu[46]   1.0518563 0.010113424  1.03556945  1.06783000 16567.701 0.9998645
## mu[47]   0.8734903 0.016568914  0.84701006  0.89976964 15415.614 1.0000124
## mu[48]   0.9111582 0.022974862  0.87423468  0.94802915  9532.346 0.9998465
## mu[49]   1.0424024 0.010335750  1.02584000  1.05865165 16646.009 0.9998004
## mu[50]   1.0784241 0.015421508  1.05420945  1.10315000 11714.167 1.0000998
## mu[51]   0.8916386 0.016768130  0.86491378  0.91851205 14614.891 0.9998449
## mu[52]   1.0737087 0.014063981  1.05147945  1.09634055 12215.856 1.0000772
## mu[53]   1.0491421 0.010037527  1.03304000  1.06498000 16926.177 0.9998380
## mu[54]   1.0559968 0.010440961  1.03932000  1.07266000 15737.633 0.9999119
## mu[55]   0.8626699 0.019305047  0.83168246  0.89341011 11497.270 1.0000995
## mu[56]   1.0681881 0.012636984  1.04830945  1.08833000 13027.887 1.0000397
## mu[57]   0.9970876 0.022654922  0.96078445  1.03354165 10588.443 0.9999726
## mu[58]   0.8628842 0.019235407  0.83202873  0.89349577 11554.717 1.0000983
## mu[59]   0.8738546 0.016509143  0.84755978  0.90006816 15634.046 1.0000086
## mu[60]   0.8655625 0.018411257  0.83607794  0.89495611 12338.155 1.0000817
## mu[61]   0.8685193 0.017611062  0.84027640  0.89676688 13373.664 1.0000592
## mu[62]   0.8699764 0.017263865  0.84224862  0.89756861 13933.587 1.0000466
## mu[63]   1.0098770 0.018277708  0.98079367  1.03938055 11151.764 0.9999302
## mu[64]   1.0332244 0.011736354  1.01444000  1.05188000 14293.798 0.9998141
## mu[65]   1.0396881 0.010641987  1.02258835  1.05649000 15975.350 0.9997979
## mu[66]   1.0749738 0.014417260  1.05219000  1.09817000 12066.247 1.0000840
## mu[67]   1.0237244 0.014044275  1.00117890  1.04618055 12481.207 0.9998633
## mu[68]   1.0317983 0.012037016  1.01251000  1.05096110 13961.044 0.9998205
## mu[69]   1.0521094 0.010126174  1.03578890  1.06810055 16531.817 0.9998672
## mu[70]   1.0269217 0.013194471  1.00583945  1.04795055 12986.439 0.9998458
## mu[71]   1.0732946 0.013950228  1.05121945  1.09574110 12267.418 1.0000748
## mu[72]   1.0590101 0.010828410  1.04177000  1.07646000 15004.887 0.9999476
## mu[73]   1.0579520 0.010678948  1.04089835  1.07509000 15265.185 0.9999351
## mu[74]   1.0694532 0.012945637  1.04907000  1.09012055 12817.089 1.0000495
## mu[75]   1.0250126 0.013694331  1.00309945  1.04691110 12672.682 0.9998563
## mu[76]   1.0473939 0.010048629  1.03128945  1.06318055 17041.847 0.9998240
## mu[77]   1.0420343 0.010371329  1.02540000  1.05837055 16561.570 0.9997997
## mu[78]   1.0247135 0.013774700  1.00264835  1.04674110 12627.144 0.9998579
## mu[79]   1.0401251 0.010585992  1.02312945  1.05679055 16089.206 0.9997978
## mu[80]   1.0560198 0.010443468  1.03934000  1.07269055 15732.463 0.9999120
## mu[81]   1.0322124 0.011947830  1.01304945  1.05122055 14055.596 0.9998186
## mu[82]   1.0726965 0.013787767  1.05091945  1.09487000 12344.563 1.0000712
## mu[83]   0.8723333 0.016774450  0.84539184  0.89909771 14874.827 1.0000242
## mu[84]   0.9826421 0.027867396  0.93832056  1.02733165 10262.934 1.0000041
## mu[85]   1.0688322 0.012792650  1.04871000  1.08928055 12918.860 1.0000448
## mu[86]   1.0811154 0.016240559  1.05556945  1.10712055 11485.267 1.0001095
## mu[87]   1.0361687 0.011179481  1.01821945  1.05393110 15038.785 0.9998036
## mu[88]   1.0756178 0.014600393  1.05256945  1.09911110 11994.365 1.0000872
## mu[89]   1.0225283 0.014377675  0.99933578  1.04553055 12316.348 0.9998698
## mu[90]   0.9847123 0.027108650  0.94163240  1.02811055 10297.841 1.0000004
## mu[91]   1.0318673 0.012022062  1.01259000  1.05101055 13976.419 0.9998202
## mu[92]   1.0663019 0.012199957  1.04712945  1.08581000 13371.993 1.0000238
## mu[93]   0.9908864 0.064134309  0.88956130  1.09384110  6975.024 0.9999777
## mu[94]   1.0772280 0.015067034  1.05348945  1.10139055 11827.282 1.0000947
## mu[95]   1.0609883 0.011144237  1.04329945  1.07894055 14524.173 0.9999702
## mu[96]   1.0777111 0.015209412  1.05380000  1.10212000 11780.674 1.0000968
## mu[97]   1.0644157 0.011793600  1.04581945  1.08322055 13751.393 1.0000061
## mu[98]   0.9097012 0.022379860  0.87377507  0.94554977  9738.033 0.9998429
## mu[99]   1.0628745 0.011486513  1.04473945  1.08126055 14086.633 0.9999905
## mu[100]  0.8830466 0.015851725  0.85795661  0.90834605 18447.721 0.9999091
## mu[101]  1.0414133 0.010435729  1.02468000  1.05781000 16413.249 0.9997987
## mu[102]  1.0199520 0.015120454  0.99570989  1.04420000 12000.207 0.9998835
## mu[103]  0.8611486 0.019814177  0.82932806  0.89267854 11110.828 1.0001074
## mu[104]  1.0461288 0.010086040  1.02990000  1.06198000 17092.472 0.9998157
## mu[105]  1.0569399 0.010549438  1.04006000  1.07386055 15512.315 0.9999230
## mu[106]  0.8711120 0.017016544  0.84375867  0.89834122 14384.701 1.0000361
## mu[107]  0.8604630 0.020051708  0.82809573  0.89239006 10948.631 1.0001106
## mu[108]  0.8783327 0.015978432  0.85288200  0.90380333 18013.989 0.9999597
## mu[109]  0.8800040 0.015881555  0.85473467  0.90523005 18334.998 0.9999412
## mu[110]  1.0580440 0.010691385  1.04097000  1.07520000 15242.674 0.9999362
## mu[111]  0.8775614 0.016042095  0.85196673  0.90313322 17679.961 0.9999683
## mu[112]  1.0447716 0.010153146  1.02844000  1.06071000 17113.383 0.9998084
## mu[113]  0.8618128 0.019588771  0.83044191  0.89301711 11274.975 1.0001041
## mu[114]  0.8646840 0.018671796  0.83478690  0.89437326 12067.789 1.0000875
## mu[115]  1.0584350 0.010745460  1.04126945  1.07569000 15146.239 0.9999407
## mu[116]  1.0804023 0.016020760  1.05517945  1.10606055 11544.809 1.0001071
## mu[117]  1.0258406 0.013474670  1.00429000  1.04734055 12804.467 0.9998517
## mu[118]  0.9652523 0.034342539  0.91069356  1.02053165 10058.482 1.0000285
## mu[119]  1.0343745 0.011508153  1.01599945  1.05268055 14576.917 0.9998095
## mu[120]  1.0557437 0.010413903  1.03910000  1.07236000 15797.443 0.9999087
## mu[121]  1.0364218 0.011135969  1.01854000  1.05409055 15105.687 0.9998029
## mu[122]  1.0458297 0.010098449  1.02956945  1.06167000 17107.783 0.9998140
## mu[123]  1.0502692 0.010055345  1.03411945  1.06622055 16796.176 0.9998484
## mu[124]  1.0346046 0.011464094  1.01631000  1.05284055 14634.674 0.9998086
## mu[125]  1.0447026 0.010157319  1.02837000  1.06063055 17102.197 0.9998082
## mu[126]  1.0744218 0.014262033  1.05186890  1.09740055 12129.868 1.0000811
## mu[127]  1.0479690 0.010039775  1.03183000  1.06374055 17015.712 0.9998283
## mu[128]  1.0512583 0.010087025  1.03502890  1.06723055 16649.170 0.9998583
## mu[129]  1.0756178 0.014600393  1.05256945  1.09911110 11994.365 1.0000872
## mu[130]  1.0335925 0.011661916  1.01494000  1.05213055 14382.959 0.9998126
## mu[131]  1.0521094 0.010126174  1.03578890  1.06810055 16531.817 0.9998672
## mu[132]  1.0596312 0.010922516  1.04225000  1.07718000 14852.482 0.9999547
## mu[133]  0.9288994 0.031103039  0.87928557  0.97830438  8059.099 0.9998934
## mu[134]  1.0602292 0.011017581  1.04270890  1.07793055 14707.180 0.9999616
## mu[135]  0.8674694 0.017881053  0.83887667  0.89625311 12988.160 1.0000677
## mu[136]  0.8632270 0.019125076  0.83255751  0.89366422 11648.231 1.0000964
## mu[137]  1.0808854 0.016169431  1.05545945  1.10679000 11504.508 1.0001088
## mu[138]  1.0458297 0.010098449  1.02956945  1.06167000 17107.783 0.9998140
## mu[139]  0.8686693 0.017573820  0.84050079  0.89682011 13430.043 1.0000580
## mu[140]  1.0409992 0.010481582  1.02417945  1.05747055 16311.184 0.9997983
## mu[141]  1.0453697 0.010120192  1.02907000  1.06123055 17124.883 0.9998115
## mu[142]  1.0238394 0.014012648  1.00134945  1.04626000 12497.548 0.9998627
## mu[143]  1.0648067 0.011875149  1.04610890  1.08375000 13670.134 1.0000099
## mu[144]  0.9236285 0.028555094  0.87779383  0.96914982  8356.477 0.9998802
## mu[145]  0.9626677 0.048689718  0.88593650  1.04018000  7201.167 0.9999519
## mu[146]  1.0638636 0.011680882  1.04538000  1.08252000 13869.683 1.0000007
## mu[147]  0.8669766 0.018013269  0.83819812  0.89600166 12813.228 1.0000715
## mu[148]  0.8639983 0.018881894  0.83380089  0.89403209 11865.888 1.0000918
## mu[149]  1.0570779 0.010566312  1.04015000  1.07400055 15479.014 0.9999246
## mu[150]  0.9593177 0.036583196  0.90117202  1.01811330 10013.085 1.0000347
## mu[151]  1.0747208 0.014345912  1.05204000  1.09781000 12095.166 1.0000827
## mu[152]  1.0634725 0.011602861  1.04512945  1.08204000 13953.877 0.9999968
## mu[153]  1.0673830 0.012446877  1.04778000  1.08723000 13170.104 1.0000331
## mu[154]  0.8735546 0.016558186  0.84709683  0.89982138 15454.183 1.0000118
## mu[155]  1.0209872 0.014818122  0.99715878  1.04472110 12121.148 0.9998781
## mu[156]  0.8725047 0.016742513  0.84560267  0.89917600 14941.005 1.0000225
## mu[157]  0.8775614 0.016042095  0.85196673  0.90313322 17679.961 0.9999683
## mu[158]  1.0716844 0.013517676  1.05033835  1.09340000 12481.988 1.0000650
## mu[159]  1.0712474 0.013403042  1.05009945  1.09275220 12544.247 1.0000620
## mu[160]  1.0565718 0.010505675  1.03978945  1.07338000 15601.360 0.9999186
## mu[161]  1.0691542 0.012871635  1.04890945  1.08968055 12865.522 1.0000473
## mu[162]  1.0106131 0.018036202  0.98193646  1.03973000 11197.902 0.9999272
## mu[163]  1.0666699 0.012282960  1.04731000  1.08632000 13301.885 1.0000270
## mu[164]  1.0340065 0.011579737  1.01550945  1.05243000 14484.890 0.9998109
## mu[165]  1.0414822 0.010428315  1.02476000  1.05788000 16430.382 0.9997988
## mu[166]  1.0426784 0.010310323  1.02611945  1.05891000 16707.765 0.9998010
## mu[167]  1.0278188 0.012967970  1.00703945  1.04846000 13146.821 0.9998409
## mu[168]  0.8957311 0.017672568  0.86755200  0.92397005 13095.395 0.9998316
## mu[169]  0.8694193 0.017392742  0.84152384  0.89722576 13716.480 1.0000515
## mu[170]  0.8835822 0.015866153  0.85843078  0.90892805 18418.545 0.9999038
Stan_model_200 = map2stan(
  alist(
    log_gdp_std ~ dnorm( mu , sigma ) ,
    mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
    a[cid] ~ dnorm( 1 , 0.1 ) ,
    b[cid] ~ dnorm( 0 , 0.3 )  ,
    sigma ~ dexp( 1 )
  ), data=dat_slim , warmup = 200, iter = 4000, chains=4, cores = 4 )
## Running MCMC with 4 parallel chains...
## 
## Chain 1 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 2 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 1 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 1 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 1 Iteration:  201 / 4000 [  5%]  (Sampling) 
## Chain 1 Iteration:  300 / 4000 [  7%]  (Sampling) 
## Chain 1 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 1 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 2 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 2 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 2 Iteration:  201 / 4000 [  5%]  (Sampling) 
## Chain 2 Iteration:  300 / 4000 [  7%]  (Sampling) 
## Chain 2 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 3 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 3 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 3 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 3 Iteration:  201 / 4000 [  5%]  (Sampling) 
## Chain 3 Iteration:  300 / 4000 [  7%]  (Sampling) 
## Chain 1 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 1 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 1 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 1 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 2 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 2 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 2 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 3 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 3 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 3 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 4 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 4 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 4 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 4 Iteration:  201 / 4000 [  5%]  (Sampling) 
## Chain 4 Iteration:  300 / 4000 [  7%]  (Sampling) 
## Chain 1 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 1 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 1 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 2 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 2 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 2 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 3 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 3 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 3 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 4 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 4 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 4 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 1 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 1 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 2 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 2 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 3 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 3 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 4 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 4 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 1 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 1 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 1 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 2 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 2 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 2 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 3 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 3 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 3 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 4 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 4 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 1 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 1 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 2 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 2 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 3 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 3 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 4 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 4 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 4 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 1 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 1 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 2 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 2 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 2 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 3 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 3 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 4 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 4 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 1 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 2 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 2 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 4 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 4 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 1 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 1 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 2 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 3 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 4 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 4 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 1 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 1 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 2 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 2 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 3 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 4 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 1 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 2 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 2 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 3 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 3 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 4 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 1 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 2 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 2 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 3 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 4 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 4 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 2 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 2 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 3 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 3 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 1 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 1 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 2 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 2 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 3 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 1 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 2 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 2 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 3 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 3 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 4 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 1 finished in 2.1 seconds.
## Chain 2 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 2 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 3 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 3 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 2 finished in 2.2 seconds.
## Chain 3 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 3 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 4 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 4 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 3 finished in 2.2 seconds.
## Chain 4 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 4 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 4 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 4 finished in 2.3 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 2.2 seconds.
## Total execution time: 3.0 seconds.
Stan_model_300 = map2stan(
  alist(
    log_gdp_std ~ dnorm( mu , sigma ) ,
    mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
    a[cid] ~ dnorm( 1 , 0.1 ) ,
    b[cid] ~ dnorm( 0 , 0.3 )  ,
    sigma ~ dexp( 1 )
  ), data=dat_slim , warmup = 300, iter = 4000, chains=4, cores = 4 )
## Running MCMC with 4 parallel chains...
## 
## Chain 1 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 1 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 1 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 1 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 1 Iteration:  301 / 4000 [  7%]  (Sampling) 
## Chain 2 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 2 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 2 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 1 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 1 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 2 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 2 Iteration:  301 / 4000 [  7%]  (Sampling) 
## Chain 3 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 3 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 3 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 1 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 1 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 2 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 2 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 2 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 3 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 3 Iteration:  301 / 4000 [  7%]  (Sampling) 
## Chain 3 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 3 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 4 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 4 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 1 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 1 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 2 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 2 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 3 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 4 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 4 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 4 Iteration:  301 / 4000 [  7%]  (Sampling) 
## Chain 1 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 2 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 3 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 3 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 4 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 4 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 1 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 1 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 2 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 2 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 3 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 4 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 1 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 2 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 3 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 3 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 4 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 4 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 1 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 1 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 2 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 2 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 3 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 4 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 1 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 2 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 3 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 3 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 4 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 4 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 1 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 1 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 2 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 2 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 3 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 3 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 4 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 1 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 1 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 2 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 3 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 3 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 4 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 4 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 1 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 1 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 2 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 3 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 3 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 4 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 1 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 1 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 3 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 4 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 4 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 1 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 1 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 2 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 2 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 3 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 4 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 1 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 2 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 3 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 3 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 4 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 2 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 3 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 3 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 1 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 2 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 3 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 3 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 4 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 1 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 3 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 3 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 1 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 1 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 2 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 3 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 1 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 1 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 2 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 3 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 3 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 1 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 2 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 3 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 4 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 1 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 2 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 2 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 3 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 3 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 4 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 4 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 1 finished in 3.0 seconds.
## Chain 3 finished in 2.7 seconds.
## Chain 2 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 2 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 4 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 4 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 2 finished in 3.1 seconds.
## Chain 4 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 4 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 4 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 4 finished in 2.9 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 2.9 seconds.
## Total execution time: 3.8 seconds.
Stan_model_400 = map2stan(
  alist(
    log_gdp_std ~ dnorm( mu , sigma ) ,
    mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
    a[cid] ~ dnorm( 1 , 0.1 ) ,
    b[cid] ~ dnorm( 0 , 0.3 )  ,
    sigma ~ dexp( 1 )
  ), data=dat_slim , warmup = 400, iter = 4000, chains=4, cores = 4 )
## Running MCMC with 4 parallel chains...
## 
## Chain 1 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 2 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 1 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 1 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 1 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 2 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 2 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 2 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 1 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 1 Iteration:  401 / 4000 [ 10%]  (Sampling) 
## Chain 1 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 2 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 2 Iteration:  401 / 4000 [ 10%]  (Sampling) 
## Chain 2 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 3 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 3 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 3 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 3 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 4 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 4 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 4 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 1 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 1 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 1 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 1 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 2 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 2 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 2 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 2 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 3 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 3 Iteration:  401 / 4000 [ 10%]  (Sampling) 
## Chain 3 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 3 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 3 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 4 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 4 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 4 Iteration:  401 / 4000 [ 10%]  (Sampling) 
## Chain 4 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 1 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 1 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 2 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 2 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 3 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 3 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 4 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 4 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 1 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 1 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 2 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 3 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 3 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 4 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 4 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 1 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 1 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 2 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 2 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 3 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 3 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 4 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 4 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 1 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 2 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 2 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 3 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 3 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 4 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 4 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 1 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 1 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 2 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 2 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 3 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 3 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 3 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 4 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 4 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 1 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 1 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 2 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 2 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 3 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 4 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 1 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 2 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 2 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 2 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 3 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 3 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 4 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 4 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 1 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 2 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 3 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 3 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 4 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 1 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 2 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 2 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 3 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 3 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 4 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 4 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 4 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 2 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 3 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 4 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 1 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 2 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 3 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 3 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 3 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 1 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 2 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 3 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 3 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 1 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 2 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 2 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 3 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 3 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 4 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 1 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 1 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 2 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 3 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 3 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 3 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 4 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 4 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 1 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 1 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 2 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 3 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 4 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 4 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 3 finished in 2.2 seconds.
## Chain 1 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 2 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 4 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 4 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 1 finished in 2.6 seconds.
## Chain 2 finished in 2.5 seconds.
## Chain 4 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 4 finished in 2.5 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 2.5 seconds.
## Total execution time: 3.2 seconds.
Stan_model_500 = map2stan(
  alist(
    log_gdp_std ~ dnorm( mu , sigma ) ,
    mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
    a[cid] ~ dnorm( 1 , 0.1 ) ,
    b[cid] ~ dnorm( 0 , 0.3 )  ,
    sigma ~ dexp( 1 )
  ), data=dat_slim , warmup = 500, iter = 4000, chains=4, cores = 4 )
## Running MCMC with 4 parallel chains...
## 
## Chain 1 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 1 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 1 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 2 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 2 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 1 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 1 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 1 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 1 Iteration:  501 / 4000 [ 12%]  (Sampling) 
## Chain 2 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 2 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 3 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 3 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 3 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 4 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 1 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 1 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 1 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 1 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 2 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 2 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 2 Iteration:  501 / 4000 [ 12%]  (Sampling) 
## Chain 2 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 2 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 3 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 3 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 3 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 3 Iteration:  501 / 4000 [ 12%]  (Sampling) 
## Chain 4 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 4 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 4 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 1 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 2 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 3 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 4 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 1 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 1 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 2 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 3 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 3 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 4 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 4 Iteration:  501 / 4000 [ 12%]  (Sampling) 
## Chain 4 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 1 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 1 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 2 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 2 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 3 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 3 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 4 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 4 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 1 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 2 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 3 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 3 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 4 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 1 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 1 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 2 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 2 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 3 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 4 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 4 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 1 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 1 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 2 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 3 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 3 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 4 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 4 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 1 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 2 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 2 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 3 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 3 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 4 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 1 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 2 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 3 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 3 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 4 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 4 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 1 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 2 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 2 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 4 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 4 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 1 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 2 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 3 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 3 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 4 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 1 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 2 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 3 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 3 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 4 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 1 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 3 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 3 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 1 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 1 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 2 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 3 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 3 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 4 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 1 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 2 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 2 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 3 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 1 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 2 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 3 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 3 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 1 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 2 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 3 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 3 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 4 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 2 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 3 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 3 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 4 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 1 finished in 2.7 seconds.
## Chain 2 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 2 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 3 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 3 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 4 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 4 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 3 finished in 2.7 seconds.
## Chain 2 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 4 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 2 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 4 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 4 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 4 finished in 2.8 seconds.
## Chain 2 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 2 finished in 3.1 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 2.8 seconds.
## Total execution time: 3.7 seconds.
#As warmup is increased,n_eff got closer to number of iterations. 400 warmup iterations are enough

9-4. Run the model below and then inspect the posterior distribution and explain what it is accomplishing.

mp = ulam(
 alist(
   a ~ dnorm(0,1),
   b ~ dcauchy(0,1)
 ), data=list(y=1) , chains=1 )
## Running MCMC with 1 chain, with 1 thread(s) per chain...
## 
## Chain 1 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 1 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 1 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 1 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 1 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 1 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 1 finished in 0.1 seconds.
p=precis(mp)

traceplot(mp)

Compare the samples for the parameters a and b. Can you explain the different trace plots? If you are unfamiliar with the Cauchy distribution, you should look it up. The key feature to attend to is that it has no expected value. Can you connect this fact to the trace plot?

#From the plot we can see plot a should be a normal distribution as the prior is aroung 0 and spread in between 2 and -2. Plot b is Cauchy distribution which contains some extreme value go up to over 30 and -50.

9-5. Recall the divorce rate example from Chapter 5. Repeat that analysis, using ulam this time, fitting models m5.1, m5.2, and m5.3. Use compare to compare the models on the basis of WAIC or PSIS. To use WAIC or PSIS with ulam, you need add the argument log_log=TRUE. Explain the model comparison results.

library(tidybayes)
data(WaffleDivorce)
data = WaffleDivorce

data$Divorce_sd=standardize(data$Divorce)
data$Marriage_sd=standardize(data$Marriage)
data$MedianAgeMarriage_sd=standardize(data$MedianAgeMarriage)

d_trim = list(D = data$Divorce_sd, M = data$Marriage_sd, A = data$MedianAgeMarriage_sd)

m5.1 = ulam(
  alist(
    D ~ dnorm(mu, sigma),
    mu <- a + bA * A,
    a ~ dnorm(0, 0.2),
    bA ~ dnorm(0, 0.5),
    sigma ~ dexp(1)
  ),
  data = d_trim,
  chains = 4, 
  cores = 4,
  log_lik = TRUE
)
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
## 
## Chain 1 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 1 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 2 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 1 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 1 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 1 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 1 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 2 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 2 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 2 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 2 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 3 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 3 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 3 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 3 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 3 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 3 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 4 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 4 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 4 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 4 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 4 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 1 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 1 finished in 0.3 seconds.
## Chain 2 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 2 finished in 0.3 seconds.
## Chain 3 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 3 finished in 0.3 seconds.
## Chain 4 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 4 finished in 0.3 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.3 seconds.
## Total execution time: 0.9 seconds.
m5.2 = ulam(
  alist(
    D ~ dnorm(mu, sigma),
    mu <- a + bM * M,
    a ~ dnorm(0, 0.2),
    bM ~ dnorm(0, 0.5),
    sigma ~ dexp(1)
  ),
  data = d_trim,
  chains = 4, 
  cores = 4,
  log_lik = TRUE 
)
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
## 
## Chain 1 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 1 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 2 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 1 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 1 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 1 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 1 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 2 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 2 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 2 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 2 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 3 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 3 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 3 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 3 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 3 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 1 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 1 finished in 0.3 seconds.
## Chain 2 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 2 finished in 0.3 seconds.
## Chain 3 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 4 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 4 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 4 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 4 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 4 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 4 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 3 finished in 0.3 seconds.
## Chain 4 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 4 finished in 0.3 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.3 seconds.
## Total execution time: 1.0 seconds.
m5.3 = ulam(
  alist(
    D ~ dnorm(mu, sigma),
    mu <- a + bA * A + bM * M,
    a ~ dnorm(0, 0.2),
    bA ~ dnorm(0, 0.5),
    bM ~ dnorm(0, 0.5),
    sigma ~ dexp(1)
  ),
  data = d_trim,
  chains = 4, 
  cores = 4,
  log_lik = TRUE 
)
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
## 
## Chain 1 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 1 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 1 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 1 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 1 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 2 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 2 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 2 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 2 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 1 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 2 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 3 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 3 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 3 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 1 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 3 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 3 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 4 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 4 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 4 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 1 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 1 finished in 0.7 seconds.
## Chain 2 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 3 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 4 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 4 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 2 finished in 0.7 seconds.
## Chain 3 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 4 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 3 finished in 0.8 seconds.
## Chain 4 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 4 finished in 0.7 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.7 seconds.
## Total execution time: 1.8 seconds.
set.seed(77)
compare( m5.1 , m5.2 , m5.3 , func=WAIC )
##          WAIC        SE    dWAIC       dSE    pWAIC       weight
## m5.1 125.5194 12.553225  0.00000        NA 3.530059 0.7636320968
## m5.3 127.8714 12.737362  2.35193 0.6948482 4.876636 0.2355965776
## m5.2 139.3149  9.881935 13.79546 9.1406045 2.965815 0.0007713256