library(mblm)
library(Rfit)
## Warning: package 'Rfit' was built under R version 4.1.3
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:Rfit':
##
## subsets
setwd("C:/Users/lhomm/OneDrive/Documents/R")
Dat <- read.csv("C:/Users/lhomm/Downloads/BiodiversityData - Sheet1.csv")
attach(Dat)
View(Dat)
Group <- as.factor(Dat$Group)
KS <- kruskal.test(Biodiversity ~ Group)
summary(KS)
## Length Class Mode
## statistic 1 -none- numeric
## parameter 1 -none- numeric
## p.value 1 -none- numeric
## method 1 -none- character
## data.name 1 -none- character
KS
##
## Kruskal-Wallis rank sum test
##
## data: Biodiversity by Group
## Kruskal-Wallis chi-squared = 8, df = 8, p-value = 0.4335
detach(Dat)
Dat2 <- read.csv("C:/Users/lhomm/Downloads/Biodiversity2 - Sheet1.csv")
## Warning in read.table(file = file, header = header, sep = sep, quote = quote, :
## incomplete final line found by readTableHeader on 'C:/Users/lhomm/Downloads/
## Biodiversity2 - Sheet1.csv'
attach(Dat2)
View(Dat2)
KS2 <- kruskal.test(Biodiversity ~ Average.Distance)
summary(KS)
## Length Class Mode
## statistic 1 -none- numeric
## parameter 1 -none- numeric
## p.value 1 -none- numeric
## method 1 -none- character
## data.name 1 -none- character
KS2
##
## Kruskal-Wallis rank sum test
##
## data: Biodiversity by Average.Distance
## Kruskal-Wallis chi-squared = 2, df = 2, p-value = 0.3679
detach(Dat2)
attach(Dat)
## The following object is masked _by_ .GlobalEnv:
##
## Group
Lm <- lm(Biodiversity ~ Disturbance)
summary(Lm)
##
## Call:
## lm(formula = Biodiversity ~ Disturbance)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.163 -2.127 -1.290 2.776 4.750
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.00374 1.30320 10.746 1.33e-05 ***
## Disturbance 0.01061 0.00521 2.037 0.081 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.172 on 7 degrees of freedom
## Multiple R-squared: 0.3723, Adjusted R-squared: 0.2826
## F-statistic: 4.151 on 1 and 7 DF, p-value: 0.08102
Lm
##
## Call:
## lm(formula = Biodiversity ~ Disturbance)
##
## Coefficients:
## (Intercept) Disturbance
## 14.00374 0.01062
source("https://raw.githubusercontent.com/athienit/STA4210material/main/check.R")
check(Lm,tests=TRUE)
## Loading required package: lawstat
##
## Attaching package: 'lawstat'
## The following object is masked from 'package:car':
##
## levene.test

## $Independence
## $Independence[[1]]
##
## Runs Test - Two sided
##
## data: re
## Standardized Runs Statistic = 0.40161, p-value = 0.688
##
##
## $Independence[[2]]
## lag Autocorrelation D-W Statistic p-value
## 1 -0.6427093 3.189958 0.08
## Alternative hypothesis: rho != 0
##
##
## $Normality
##
## Shapiro-Wilk normality test
##
## data: re
## W = 0.88219, p-value = 0.1655
##
##
## [[3]]
## [1] "Constant Variance only valid if data are in groups"
##
## $ConstantVar
## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 0.2833167, Df = 1, p = 0.59454
Lmr <- rstudent(Lm)
Lmr
## 1 2 3 4 5 6 7
## -0.3374152 1.4432740 -1.1029345 0.9438862 -0.4141095 -0.4576842 -0.6867345
## 8 9
## 2.2062535 -1.3754739
Rfit <- rfit(Biodiversity ~ Disturbance)
summary(Rfit)
## Call:
## rfit.default(formula = Biodiversity ~ Disturbance)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 12.7589286 1.9369154 6.5872 0.0003079 ***
## Disturbance 0.0089286 0.0051827 1.7228 0.1285959
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.3854421
## Reduction in Dispersion Test: 4.3903 p-value: 0.07439
Rfit
## Call:
## rfit.default(formula = Biodiversity ~ Disturbance)
##
## Coefficients:
## (Intercept) Disturbance
## 12.758928571 0.008928571
BiodiversityV <- as.vector(Biodiversity)
DisturbanceV <- as.vector(Disturbance)
Mblm <- mblm(BiodiversityV ~ DisturbanceV)
summary(Mblm)
##
## Call:
## mblm(formula = BiodiversityV ~ DisturbanceV)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9652 -0.0780 0.1009 4.0005 7.7189
##
## Coefficients:
## Estimate MAD V value Pr(>|V|)
## (Intercept) 12.875000 0.145321 45 0.00391 **
## DisturbanceV 0.006015 0.004633 31 0.35938
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.919 on 7 degrees of freedom
detach(Dat)