For this discusion i will be using the Colombian GDP between 2005 and 2021.
PIB <- ts(PIB_Export$GDP, frequency = 4, start=c(2005))
plot(PIB)
ETS <- ets(PIB)
plot(ETS)
accuracy(ETS)
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 920.9457 8218.59 3503.934 0.2879688 1.676985 0.2277208 0.1059353
In order to make a comparison we will forecast the next 6 months. First with ets and then with an arima model. In both cases we will let R to chose the best model.
forecast_ETS <- forecast(ETS, 6)
#FC <- accuracy(forecast_ETS, PIB_Export$GDP[1:6])
#FC
plot(forecast_ETS, main="ETS M,A,N Forecast")
ARIMA1 <- auto.arima(PIB)
plot(ARIMA1)
## Warning in plot.Arima(ARIMA1): No roots to plot
As we can see, we got an ARIMA(0,1,0) This means that we only have to differentiate one time in order to get a stationary series.
Forecast_ARIMA <- forecast(ARIMA1, 6)
#acc2 <- accuracy(fe2, df$Sales[1:6])
plot(Forecast_ARIMA)
test1 <- accuracy(forecast_ETS, PIB_Export$GDP[1:6])
test1
## ME RMSE MAE MPE MAPE
## Training set 920.9457 8218.59 3503.934 0.2879688 1.676985
## Test set -240527.6745 240529.49 240527.674 -277.4588782 277.458878
## MASE ACF1
## Training set 0.6763552 0.1059353
## Test set 46.4284256 NA
test2<- accuracy(Forecast_ARIMA, PIB_Export$GDP[1:6])
test2
## ME RMSE MAE MPE MAPE
## Training set 1.14173 8127.306 3414.284 -0.2630386 1.685507
## Test set -246436.28393 246446.441 246436.284 -284.2041831 284.204183
## MASE ACF1
## Training set 0.6590503 -0.02317325
## Test set 47.5689490 NA
Taking a look into the two accuracy tests we will choose the forecast using the ARIMA(0,1,0). Even so, we can see that both methods give us a fairly similar prediction.