xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Bachelor Thesis Fabian Stein

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Reference for PLS-Technique https://www.youtube.com/watch?v=Q-KiO2urNEU

Install Packages

Load Data

setwd("C:/Users/RIECK/Desktop/Fabian")
Fabiandat<-read.csv("DatenFabian2.csv",sep=";")
head(Fabiandat)
##   OS09_06 OS09_07 OS09_08 OS10_04 OS10_05 OS09_01 OS09_02 SA04_01 SA04_02
## 1       6       6       6       1       3       7       4       6       6
## 2       6       6       7       5       3       7       2       5       5
## 3       6       7       7       5       6       7       5       5       5
## 4       5       7       6       3       5       6       4       7       7
## 5       5       7       6       5       3       6       5       6       7
## 6       6       7       7       4       6       7       6       5       6
##   SA04_04 SA05_02 SA05_03 SA05_04 SA05_05 SA05_06 SA05_08
## 1       7       7       5       5       5       5       6
## 2       6       6       6       6       6       6       6
## 3       6       6       6       6       6       7       6
## 4       7       7       4       4       5       6       7
## 5       7       7       7       6       7       7       6
## 6       5       6       3       5       1       6       6

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Model Analysis

(1) Factor Analysis

(2) PLS-Regression

We estimate 4 different Model Specifications

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Define PLS model structure

Functional<-c(0,0,0,0,0)
Emotional<-c(0,0,0,0,0)
PQ<-c(0,0,0,0,0)
RelAtt<-c(1,1,1,0,0)
CustLoyaltyBeh<-c(0,0,0,1,0)
Path<-rbind(Functional,Emotional,PQ,RelAtt,CustLoyaltyBeh)
FabianBlocks<-list(1:3,4:5,6:7,8:10,11:16)
FabianModes<-rep("A",5)
innerplot(Path)

PLS_Fabiandat

factanal(Fabiandat[,1:16],factors=5, rotation="varimax")
## 
## Call:
## factanal(x = Fabiandat[, 1:16], factors = 5, rotation = "varimax")
## 
## Uniquenesses:
## OS09_06 OS09_07 OS09_08 OS10_04 OS10_05 OS09_01 OS09_02 SA04_01 SA04_02 SA04_04 
##   0.457   0.337   0.570   0.217   0.367   0.938   0.692   0.499   0.023   0.433 
## SA05_02 SA05_03 SA05_04 SA05_05 SA05_06 SA05_08 
##   0.449   0.453   0.425   0.525   0.445   0.327 
## 
## Loadings:
##         Factor1 Factor2 Factor3 Factor4 Factor5
## OS09_06  0.106   0.208   0.664   0.175  -0.129 
## OS09_07          0.166   0.787                 
## OS09_08  0.157           0.622           0.128 
## OS10_04          0.128           0.838   0.243 
## OS10_05  0.124           0.147   0.766         
## OS09_01          0.147   0.158                 
## OS09_02  0.128                           0.526 
## SA04_01  0.262   0.608           0.228         
## SA04_02  0.234   0.929   0.184           0.158 
## SA04_04  0.456   0.533   0.265                 
## SA05_02  0.679   0.222   0.200                 
## SA05_03  0.665                   0.145   0.272 
## SA05_04  0.723   0.104                   0.196 
## SA05_05  0.672                           0.143 
## SA05_06  0.658   0.239   0.238                 
## SA05_08  0.699   0.188           0.253  -0.282 
## 
##                Factor1 Factor2 Factor3 Factor4 Factor5
## SS loadings      3.211   1.799   1.714   1.497   0.623
## Proportion Var   0.201   0.112   0.107   0.094   0.039
## Cumulative Var   0.201   0.313   0.420   0.514   0.553
## 
## Test of the hypothesis that 5 factors are sufficient.
## The chi square statistic is 80.35 on 50 degrees of freedom.
## The p-value is 0.00416
FabianPLS<-plspm(Fabiandat,Path,FabianBlocks,mode=FabianModes)

FabianPLS
## Partial Least Squares Path Modeling (PLS-PM) 
## ---------------------------------------------
##    NAME             DESCRIPTION
## 1  $outer_model     outer model
## 2  $inner_model     inner model
## 3  $path_coefs      path coefficients matrix
## 4  $scores          latent variable scores
## 5  $crossloadings   cross-loadings
## 6  $inner_summary   summary inner model
## 7  $effects         total effects
## 8  $unidim          unidimensionality
## 9  $gof             goodness-of-fit
## 10 $boot            bootstrap results
## 11 $data            data matrix
## ---------------------------------------------
## You can also use the function 'summary'
FabianPLS$unidim
##                Mode MVs   C.alpha       DG.rho  eig.1st   eig.2nd
## Functional        A   3 0.7422971 8.539912e-01 1.985768 0.6395306
## Emotional         A   2 0.7919803 9.057890e-01 1.655602 0.3443978
## PQ                A   2 0.0000000 9.170677e-31 1.139801 0.8601992
## RelAtt            A   3 0.8123142 8.891564e-01 2.184443 0.5194564
## CustLoyaltyBeh    A   6 0.8523681 8.905209e-01 3.454021 0.7017346
FabianPLS$crossloadings
##       name          block  Functional  Emotional          PQ    RelAtt
## 1  OS09_06     Functional  0.86758955 0.23920800 0.010116300 0.3531295
## 2  OS09_07     Functional  0.88777856 0.18320664 0.102864024 0.3440475
## 3  OS09_08     Functional  0.64930374 0.05593711 0.207752699 0.1680394
## 4  OS10_04      Emotional  0.15708554 0.91845707 0.244610168 0.2385811
## 5  OS10_05      Emotional  0.24305070 0.90080267 0.127046707 0.2173110
## 6  OS09_01             PQ  0.14926015 0.11660240 0.641715612 0.1484318
## 7  OS09_02             PQ -0.01222855 0.15461822 0.669698693 0.1532902
## 8  SA04_01         RelAtt  0.23718078 0.30375004 0.218464422 0.8233960
## 9  SA04_02         RelAtt  0.34096286 0.14772545 0.243576807 0.8925009
## 10 SA04_04         RelAtt  0.37813300 0.19312328 0.132105433 0.8416320
## 11 SA05_02 CustLoyaltyBeh  0.29176726 0.11778078 0.126361762 0.4821464
## 12 SA05_03 CustLoyaltyBeh  0.17758057 0.22826782 0.183713024 0.3767411
## 13 SA05_04 CustLoyaltyBeh  0.13996635 0.11955720 0.116933315 0.3736187
## 14 SA05_05 CustLoyaltyBeh  0.10449723 0.06750335 0.100853463 0.2952600
## 15 SA05_06 CustLoyaltyBeh  0.34466510 0.20700927 0.116188971 0.4867754
## 16 SA05_08 CustLoyaltyBeh  0.11482997 0.27294128 0.002025047 0.4059858
##    CustLoyaltyBeh
## 1      0.23746804
## 2      0.22196874
## 3      0.22196117
## 4      0.19133870
## 5      0.22379736
## 6      0.02259068
## 7      0.16089438
## 8      0.39043540
## 9      0.42931732
## 10     0.56175565
## 11     0.78918847
## 12     0.74007475
## 13     0.77393373
## 14     0.69731030
## 15     0.79358205
## 16     0.74612348
FabianPLS$inner_model
## $RelAtt
##                 Estimate Std. Error       t value     Pr(>|t|)
## Intercept  -4.402334e-16 0.06300838 -6.986902e-15 1.000000e+00
## Functional  3.276750e-01 0.06467272  5.066664e+00 9.112941e-07
## Emotional   1.452318e-01 0.06575950  2.208529e+00 2.833198e-02
## PQ          1.663829e-01 0.06452282  2.578667e+00 1.062913e-02
## 
## $CustLoyaltyBeh
##               Estimate Std. Error      t value     Pr(>|t|)
## Intercept 1.053004e-16 0.05874678 1.792446e-15 1.000000e+00
## RelAtt    5.440206e-01 0.05874678 9.260433e+00 2.891512e-17
FabianPLS$outer_model
##       name          block    weight   loading communality redundancy
## 1  OS09_06     Functional 0.4898276 0.8675895   0.7527116  0.0000000
## 2  OS09_07     Functional 0.4772303 0.8877786   0.7881508  0.0000000
## 3  OS09_08     Functional 0.2331048 0.6493037   0.4215953  0.0000000
## 4  OS10_04      Emotional 0.5750562 0.9184571   0.8435634  0.0000000
## 5  OS10_05      Emotional 0.5237946 0.9008027   0.8114455  0.0000000
## 6  OS09_01             PQ 0.7499982 0.6417156   0.4117989  0.0000000
## 7  OS09_02             PQ 0.7745490 0.6696987   0.4484963  0.0000000
## 8  SA04_01         RelAtt 0.3772155 0.8233960   0.6779810  0.1342733
## 9  SA04_02         RelAtt 0.3810661 0.8925009   0.7965579  0.1577573
## 10 SA04_04         RelAtt 0.4150275 0.8416320   0.7083444  0.1402867
## 11 SA05_02 CustLoyaltyBeh 0.2615320 0.7891885   0.6228184  0.1843284
## 12 SA05_03 CustLoyaltyBeh 0.2043473 0.7400747   0.5477106  0.1620996
## 13 SA05_04 CustLoyaltyBeh 0.2026590 0.7739337   0.5989734  0.1772712
## 14 SA05_05 CustLoyaltyBeh 0.1601586 0.6973103   0.4862417  0.1439073
## 15 SA05_06 CustLoyaltyBeh 0.2640402 0.7935821   0.6297725  0.1863865
## 16 SA05_08 CustLoyaltyBeh 0.2202145 0.7461235   0.5567002  0.1647601
FabianPLS$path_coefs
##                Functional Emotional        PQ    RelAtt CustLoyaltyBeh
## Functional       0.000000 0.0000000 0.0000000 0.0000000              0
## Emotional        0.000000 0.0000000 0.0000000 0.0000000              0
## PQ               0.000000 0.0000000 0.0000000 0.0000000              0
## RelAtt           0.327675 0.1452318 0.1663829 0.0000000              0
## CustLoyaltyBeh   0.000000 0.0000000 0.0000000 0.5440206              0
FabianPLS$gof
## [1] 0.3949243
FabianPLS$effects
##                   relationships    direct   indirect      total
## 1       Functional -> Emotional 0.0000000 0.00000000 0.00000000
## 2              Functional -> PQ 0.0000000 0.00000000 0.00000000
## 3          Functional -> RelAtt 0.3276750 0.00000000 0.32767498
## 4  Functional -> CustLoyaltyBeh 0.0000000 0.17826194 0.17826194
## 5               Emotional -> PQ 0.0000000 0.00000000 0.00000000
## 6           Emotional -> RelAtt 0.1452318 0.00000000 0.14523177
## 7   Emotional -> CustLoyaltyBeh 0.0000000 0.07900907 0.07900907
## 8                  PQ -> RelAtt 0.1663829 0.00000000 0.16638289
## 9          PQ -> CustLoyaltyBeh 0.0000000 0.09051572 0.09051572
## 10     RelAtt -> CustLoyaltyBeh 0.5440206 0.00000000 0.54402061
FabianPLS$inner_summary
##                      Type        R2 Block_Communality Mean_Redundancy       AVE
## Functional      Exogenous 0.0000000         0.6541526       0.0000000 0.6541526
## Emotional       Exogenous 0.0000000         0.8275044       0.0000000 0.8275044
## PQ              Exogenous 0.0000000         0.4301476       0.0000000 0.4301476
## RelAtt         Endogenous 0.1980487         0.7276278       0.1441058 0.7276278
## CustLoyaltyBeh Endogenous 0.2959584         0.5737028       0.1697922 0.5737028
plot(FabianPLS)

End of Analysis