setwd("~/pye1pm")
library(pacman)
p_load("base64enc", "htmltools", "mime", "xfun", "prettydoc","readr", "knitr","DT","dplyr", "ggplot2")
\[ \begin{equation}\label{eq:IE} IE = \frac{\varnothing_{tallo}}{(h_{tallo}/10)+2} \end{equation} \]
El índice de Esbeltez (IE) alcanza valores máximos de 1.2 lo que indica que la plántulas tienen mayor probabilidad de éxito al llevarse a campo. Valores cercanos a 1 indica que la planta tendrá menos problemas en el establecimiento y valores por abajo de 0.5 son plántulas de mala calidad (Olivo and Buduba 2006).
plantas <- read_csv("plantas.csv")
## Rows: 42 Columns: 3
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (1): Tratamiento
## dbl (2): planta, IE
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
boxplot(plantas$IE ~ plantas$Tratamiento, col= "pink" )
Fert <- subset(plantas, Tratamiento == "Fert")
hist(Fert$IE, col = "blue", main="Histograma de Fert")
Ctrl <- subset(plantas, Tratamiento == "Ctrl")
hist(Ctrl$IE, col = "red", main="Histograma de Ctrl")
summary(Fert$IE)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.5600 0.7800 0.9100 0.9067 1.0400 1.1600
summary(Ctrl$IE)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.5500 0.7000 0.7700 0.7676 0.8700 0.9500
sd(Fert$IE)
## [1] 0.1799537
sd(Ctrl$IE)
## [1] 0.1153215
shapiro.test(Fert$IE)
##
## Shapiro-Wilk normality test
##
## data: Fert$IE
## W = 0.95339, p-value = 0.3941
shapiro.test(Ctrl$IE)
##
## Shapiro-Wilk normality test
##
## data: Ctrl$IE
## W = 0.9532, p-value = 0.3908
ks.test(Fert$IE, "pnorm", mean=mean(Fert$IE), sd=sd(Fert$IE))
## Warning in ks.test(Fert$IE, "pnorm", mean = mean(Fert$IE), sd = sd(Fert$IE)):
## ties should not be present for the Kolmogorov-Smirnov test
##
## One-sample Kolmogorov-Smirnov test
##
## data: Fert$IE
## D = 0.10776, p-value = 0.9677
## alternative hypothesis: two-sided
ks.test(Ctrl$IE, "pnorm", mean=mean(Ctrl$IE), sd=sd(Ctrl$IE))
## Warning in ks.test(Ctrl$IE, "pnorm", mean = mean(Ctrl$IE), sd = sd(Ctrl$IE)):
## ties should not be present for the Kolmogorov-Smirnov test
##
## One-sample Kolmogorov-Smirnov test
##
## data: Ctrl$IE
## D = 0.11991, p-value = 0.9233
## alternative hypothesis: two-sided
xfun::embed_file("A13U3 Eq.Rmd")
xfun::embed_file("plantas.csv")