UNIDAD 3: INFERENCIAS ESTADÍSTICAS

setwd("~/pye1pm")
library(pacman)
p_load("base64enc", "htmltools", "mime", "xfun", "prettydoc","readr", "knitr","DT","dplyr", "ggplot2")

Ejemplo 1:

Un problema a resolver podría ser la importancia del efecto de las fertilizaciones de plántulas producidas en viveros forestales; ya contamos con el paso 1 del método científico. Luego efectuamos observaciones en dos grupos de plántulas, uno control (Sin fertilización, llamados de aquí en adelante Control) y otro de plántulas fertilizadas con un complejo complejo N:P:K (denominados de aquí en adelante como Fertilizados). El tamaño de dichas muestras se basa en estudios similares ya publicados como por ejemplo Fraysse and Crémière (1998) y también es valido de acuerdo con la experiencia del investigador.

Uno de los indicadores más comunes que miden el efecto de la fertilización de una plántula es el Índice de esbeltez (IE). Dicho índice relaciona la altura y el diámetro del tallo y se define con la siguiente ecuación (Olivo and Buduba 2006)

\[ \begin{equation}\label{eq:IE} IE = \frac{\varnothing_{tallo}}{(h_{tallo}/10)+2} \end{equation} \]

El índice de Esbeltez (IE) alcanza valores máximos de 1.2 lo que indica que la plántulas tienen mayor probabilidad de éxito al llevarse a campo. Valores cercanos a 1 indica que la planta tendrá menos problemas en el establecimiento y valores por abajo de 0.5 son plántulas de mala calidad (Olivo and Buduba 2006).

  • Conociendo los datos
plantas <- read_csv("plantas.csv")
## Rows: 42 Columns: 3
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (1): Tratamiento
## dbl (2): planta, IE
## 
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Estimación de parámetros descriptivos

boxplot(plantas$IE  ~ plantas$Tratamiento, col= "pink" )

Fert <- subset(plantas, Tratamiento == "Fert")
hist(Fert$IE, col = "blue", main="Histograma de Fert")

Ctrl <- subset(plantas, Tratamiento == "Ctrl")
hist(Ctrl$IE, col = "red", main="Histograma de Ctrl")

summary(Fert$IE)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.5600  0.7800  0.9100  0.9067  1.0400  1.1600
summary(Ctrl$IE)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.5500  0.7000  0.7700  0.7676  0.8700  0.9500
sd(Fert$IE)
## [1] 0.1799537
sd(Ctrl$IE)
## [1] 0.1153215

Prueba de normalidad de Shapiro-Wilk

shapiro.test(Fert$IE)
## 
##  Shapiro-Wilk normality test
## 
## data:  Fert$IE
## W = 0.95339, p-value = 0.3941
shapiro.test(Ctrl$IE)
## 
##  Shapiro-Wilk normality test
## 
## data:  Ctrl$IE
## W = 0.9532, p-value = 0.3908

La prueba de normalidad de Shapiro-Wilk nos ha arrojado valores mayores a 0.05, esto quiere decir que pasan la prueba de normalidad.

Prueba de normalidad de Kolmogorov-Smirnov

ks.test(Fert$IE, "pnorm", mean=mean(Fert$IE), sd=sd(Fert$IE))
## Warning in ks.test(Fert$IE, "pnorm", mean = mean(Fert$IE), sd = sd(Fert$IE)):
## ties should not be present for the Kolmogorov-Smirnov test
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  Fert$IE
## D = 0.10776, p-value = 0.9677
## alternative hypothesis: two-sided
ks.test(Ctrl$IE, "pnorm", mean=mean(Ctrl$IE), sd=sd(Ctrl$IE))
## Warning in ks.test(Ctrl$IE, "pnorm", mean = mean(Ctrl$IE), sd = sd(Ctrl$IE)):
## ties should not be present for the Kolmogorov-Smirnov test
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  Ctrl$IE
## D = 0.11991, p-value = 0.9233
## alternative hypothesis: two-sided

Los datos son mayores a 0.05, esto nos quiere decir que pasan la prueba de normalidad con la prueba de Kolmogorov-Smirnov

Descargas

  • Código
xfun::embed_file("A13U3 Eq.Rmd")

Download A13U3 Eq.Rmd

  • Datos de plas plantas de la UANL
xfun::embed_file("plantas.csv")

Download plantas.csv