load("C:/Users/Jacqueline Vanessa/Desktop/UES/Ciclo I - 2022/EMA118/DOCUMENTOS/Parcial 1/Practica 1/datos_parcial_1.RData")
a) Estimar el modelo para los ingresos
modelo_ingresos<-lm(formula=income~sex+status+verbal+gamble,data = teengamb)
summary(modelo_ingresos)
##
## Call:
## lm(formula = income ~ sex + status + verbal + gamble, data = teengamb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9561 -1.9072 -0.6399 1.1958 7.1716
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.41097 2.00311 2.202 0.0332 *
## sex 0.09035 1.07210 0.084 0.9332
## status -0.06279 0.03250 -1.932 0.0601 .
## verbal 0.24660 0.26492 0.931 0.3572
## gamble 0.07214 0.01491 4.839 1.79e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.736 on 42 degrees of freedom
## Multiple R-squared: 0.4581, Adjusted R-squared: 0.4065
## F-statistic: 8.877 on 4 and 42 DF, p-value: 2.743e-05
b) Calcular intervalo de confianza del 92.5% en las variables “verbal” y “gamble”
confint(object=modelo_ingresos,parm = "verbal",level = 0.925)
## 3.75 % 96.25 %
## verbal -0.2370767 0.730284
confint(object=modelo_ingresos,parm = "gamble",level = 0.925)
## 3.75 % 96.25 %
## gamble 0.04492279 0.09936007
Las variables no tienen relación en cuanto sus ingresos.
c) ¿El modelo resulta ser estadisticamente significativo?
d) Matriz A, P, M
model.matrix(modelo_ingresos)->matriz_X
matriz_XX<-t(matriz_X)%*%matriz_X
# Cálculo de la matriz A
matriz_A<-solve(matriz_XX)%*%t(matriz_X)
print(matriz_A[1:5,1:5])
## 1 2 3 4
## (Intercept) -0.1074542196 -2.196091e-02 0.0166636550 0.1071925261
## sex 0.0809403937 2.485496e-02 0.0546438428 0.0478553863
## status 0.0012534153 -1.991280e-03 0.0004440685 0.0004276380
## verbal 0.0053215827 1.872697e-02 -0.0052703695 -0.0181905266
## gamble 0.0002006996 -7.513551e-05 -0.0001277504 -0.0001794904
## 5
## (Intercept) -0.1997769992
## sex 0.1347212618
## status 0.0034635069
## verbal -0.0012648221
## gamble 0.0009505469
# Cálculo de la matriz P
matriz_P<-matriz_X%*%matriz_A
print(matriz_P[1:5,1:5])
## 1 2 3 4 5
## 1 0.07998301 0.05115446 0.05179203 0.03133324 0.10146454
## 2 0.05115446 0.09695391 0.04157846 0.02149756 0.02180388
## 3 0.05179203 0.04157846 0.05611581 0.06172736 0.05550509
## 4 0.03133324 0.02149756 0.06172736 0.09294939 0.03380216
## 5 0.10146454 0.02180388 0.05550509 0.03380216 0.16858435
# Cálculo de la matriz M
n<-nrow(matriz_X)
matriz_M<-diag(n)-matriz_P
print(matriz_M[1:5,1:5])
## 1 2 3 4 5
## 1 0.92001699 -0.05115446 -0.05179203 -0.03133324 -0.10146454
## 2 -0.05115446 0.90304609 -0.04157846 -0.02149756 -0.02180388
## 3 -0.05179203 -0.04157846 0.94388419 -0.06172736 -0.05550509
## 4 -0.03133324 -0.02149756 -0.06172736 0.90705061 -0.03380216
## 5 -0.10146454 -0.02180388 -0.05550509 -0.03380216 0.83141565