This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
getwd()
## [1] "C:/Users/elozano7/Documents/elia"
setwd("C:/Users/elozano7/Documents")
mydata <-read.csv("customer_segmentation.csv")
str(mydata)
## 'data.frame': 22 obs. of 15 variables:
## $ ID : int 1 2 3 4 5 6 7 8 9 10 ...
## $ CS_helpful : int 2 1 2 3 2 1 2 1 1 1 ...
## $ Recommend : int 2 2 1 3 1 1 1 1 1 1 ...
## $ Come_again : int 2 1 1 2 3 3 1 1 1 1 ...
## $ All_Products : int 2 1 1 4 5 2 2 2 2 1 ...
## $ Profesionalism: int 2 1 1 1 2 1 2 1 2 1 ...
## $ Limitation : int 2 1 2 2 1 1 1 2 1 1 ...
## $ Online_grocery: int 2 2 3 3 2 1 2 1 2 3 ...
## $ delivery : int 3 3 3 3 3 2 2 1 1 2 ...
## $ Pick_up : int 4 3 2 2 1 1 2 2 3 2 ...
## $ Find_items : int 1 1 1 2 2 1 1 2 1 1 ...
## $ other_shops : int 2 2 3 2 3 4 1 4 1 1 ...
## $ Gender : int 1 1 1 1 2 1 1 1 2 2 ...
## $ Age : int 2 2 2 3 4 2 2 2 2 2 ...
## $ Education : int 2 2 2 5 2 5 3 2 1 2 ...
# it looks like the following is one of the best rregression equation for this project
summary(lm(CS_helpful ~Recommend + factor(Gender), data=mydata))
##
## Call:
## lm(formula = CS_helpful ~ Recommend + factor(Gender), data = mydata)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9430 -0.3896 -0.3896 0.5873 1.5178
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.83610 0.34202 2.445 0.0244 *
## Recommend 0.55344 0.22696 2.438 0.0247 *
## factor(Gender)2 0.09264 0.32181 0.288 0.7766
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6722 on 19 degrees of freedom
## Multiple R-squared: 0.2415, Adjusted R-squared: 0.1617
## F-statistic: 3.025 on 2 and 19 DF, p-value: 0.07233
## the following regression equation does not generate any significant results
summary(lm(Come_again ~Online_grocery + All_Products + factor(Gender) + Education + Age,
data=mydata))
##
## Call:
## lm(formula = Come_again ~ Online_grocery + All_Products + factor(Gender) +
## Education + Age, data = mydata)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9635 -0.3383 -0.1662 0.1812 1.4269
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.99884 0.79708 1.253 0.228
## Online_grocery -0.08464 0.21264 -0.398 0.696
## All_Products 0.22544 0.16049 1.405 0.179
## factor(Gender)2 0.54431 0.38325 1.420 0.175
## Education 0.08690 0.11185 0.777 0.449
## Age -0.10114 0.24950 -0.405 0.691
##
## Residual standard error: 0.7355 on 16 degrees of freedom
## Multiple R-squared: 0.2443, Adjusted R-squared: 0.008206
## F-statistic: 1.035 on 5 and 16 DF, p-value: 0.4308
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.