#Data

library(readxl)
Numeric <- read_excel("D:/NURSING/2021/Dan/DataDan.xlsx")
## New names:
## * `` -> ...25
## * `` -> ...26
## * `` -> ...27
## * `` -> ...28
Numeric
## # A tibble: 100 x 28
##    Timestamp           `I have read, understood ~` `Name (Optiona~`   Age Gender
##    <dttm>              <chr>                       <lgl>            <dbl> <chr> 
##  1 2021-05-12 17:41:46 Agree                       NA                  18 Female
##  2 2021-05-18 07:57:59 Agree                       NA                  17 Female
##  3 2021-05-18 08:19:13 Agree                       NA                  18 Female
##  4 2021-05-18 08:22:07 Agree                       NA                  16 Female
##  5 2021-05-18 08:37:43 Agree                       NA                  17 Female
##  6 2021-05-18 08:48:36 Agree                       NA                  18 Female
##  7 2021-05-18 08:54:00 Agree                       NA                  19 Female
##  8 2021-05-18 08:56:50 Agree                       NA                  17 Female
##  9 2021-05-18 08:57:40 Agree                       NA                  17 Female
## 10 2021-05-18 08:58:19 Agree                       NA                  18 Female
## # ... with 90 more rows, and 23 more variables: `Social support` <chr>,
## #   `Living condition1` <chr>, `Family income per month` <chr>,
## #   `1. Feeling nervous, anxious, or on edge` <dbl>,
## #   `2. Not being able to stop or control worrying` <dbl>,
## #   `3. Worrying too much about different things` <dbl>,
## #   `4. Trouble relaxing` <dbl>,
## #   `5. Being so restless that it is hard to sit still` <dbl>, ...

#Demographic Profice

Socio-demographic profile of the respondents in terms of: 1.1 Age 1.2 Gender 1.3 Social Support 1.4 Living Condition 1.5 Family Income

summary(Numeric$Age)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   16.00   17.00   18.00   17.83   18.00   24.00       1
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
AgeComplete<-Numeric %>% 
  filter(!is.na(Age))

#Age of the Respondents

summary(AgeComplete$Age)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   16.00   17.00   18.00   17.83   18.00   24.00
dim(Numeric)
## [1] 100  28

#Gender of the Respondents

Gender= Numeric$Gender
Gender.freq = table(Gender)
Gender.relfreq = Gender.freq 
Gender.freq
## Gender
## Female   Male 
##     56     44
Gender.relfreq = Gender.freq / nrow(Numeric)
cbind(Gender.relfreq)
##        Gender.relfreq
## Female           0.56
## Male             0.44
prop.table(table(Numeric$Gender))
## 
## Female   Male 
##   0.56   0.44
table(Numeric$Gender)
## 
## Female   Male 
##     56     44

#Social Support

SocialSupport= Numeric$`Social support`
SocialSupport.freq = table(SocialSupport)
SocialSupport.relfreq = SocialSupport.freq 
SocialSupport.freq
## SocialSupport
##  Family Friends  People 
##      96       3       1
SocialSupport.relfreq = SocialSupport.freq / nrow(Numeric)
cbind(SocialSupport.relfreq)
##         SocialSupport.relfreq
## Family                   0.96
## Friends                  0.03
## People                   0.01
prop.table(table(Numeric$`Social support`))
## 
##  Family Friends  People 
##    0.96    0.03    0.01

#Living Condition

LivingCondition= Numeric$`Living condition1`
LivingCondition.freq = table(LivingCondition)
LivingCondition.relfreq = LivingCondition.freq 
LivingCondition.freq
## LivingCondition
## Live in boarding house/dormitory                 Live with Family 
##                                1                               91 
##              Live with Relatives               Live with siblings 
##                                5                                1 
##                           People                         siblings 
##                                1                                1
LivingCondition.relfreq = LivingCondition.freq / nrow(Numeric)
cbind(LivingCondition.relfreq)
##                                  LivingCondition.relfreq
## Live in boarding house/dormitory                    0.01
## Live with Family                                    0.91
## Live with Relatives                                 0.05
## Live with siblings                                  0.01
## People                                              0.01
## siblings                                            0.01
prop.table(table(Numeric$`Living condition1`))
## 
## Live in boarding house/dormitory                 Live with Family 
##                             0.01                             0.91 
##              Live with Relatives               Live with siblings 
##                             0.05                             0.01 
##                           People                         siblings 
##                             0.01                             0.01
library(dplyr)
LC<- Numeric %>%
      mutate(Livingconditionrecode = ifelse(Livingconditionrecode == "Live with Family","With Parents","Away from Parents"))%>%
    mutate(SocialSupport = ifelse(`Social support`== "Family", "Family", "Others"))%>%
    mutate(Income = ifelse(`Family income per month` == "Below 5,000 Php","Below Php 5,000.00","More than Php 5,000.00")) 
Numeric
## # A tibble: 100 x 28
##    Timestamp           `I have read, understood ~` `Name (Optiona~`   Age Gender
##    <dttm>              <chr>                       <lgl>            <dbl> <chr> 
##  1 2021-05-12 17:41:46 Agree                       NA                  18 Female
##  2 2021-05-18 07:57:59 Agree                       NA                  17 Female
##  3 2021-05-18 08:19:13 Agree                       NA                  18 Female
##  4 2021-05-18 08:22:07 Agree                       NA                  16 Female
##  5 2021-05-18 08:37:43 Agree                       NA                  17 Female
##  6 2021-05-18 08:48:36 Agree                       NA                  18 Female
##  7 2021-05-18 08:54:00 Agree                       NA                  19 Female
##  8 2021-05-18 08:56:50 Agree                       NA                  17 Female
##  9 2021-05-18 08:57:40 Agree                       NA                  17 Female
## 10 2021-05-18 08:58:19 Agree                       NA                  18 Female
## # ... with 90 more rows, and 23 more variables: `Social support` <chr>,
## #   `Living condition1` <chr>, `Family income per month` <chr>,
## #   `1. Feeling nervous, anxious, or on edge` <dbl>,
## #   `2. Not being able to stop or control worrying` <dbl>,
## #   `3. Worrying too much about different things` <dbl>,
## #   `4. Trouble relaxing` <dbl>,
## #   `5. Being so restless that it is hard to sit still` <dbl>, ...
LC
## # A tibble: 100 x 30
##    Timestamp           `I have read, understood ~` `Name (Optiona~`   Age Gender
##    <dttm>              <chr>                       <lgl>            <dbl> <chr> 
##  1 2021-05-12 17:41:46 Agree                       NA                  18 Female
##  2 2021-05-18 07:57:59 Agree                       NA                  17 Female
##  3 2021-05-18 08:19:13 Agree                       NA                  18 Female
##  4 2021-05-18 08:22:07 Agree                       NA                  16 Female
##  5 2021-05-18 08:37:43 Agree                       NA                  17 Female
##  6 2021-05-18 08:48:36 Agree                       NA                  18 Female
##  7 2021-05-18 08:54:00 Agree                       NA                  19 Female
##  8 2021-05-18 08:56:50 Agree                       NA                  17 Female
##  9 2021-05-18 08:57:40 Agree                       NA                  17 Female
## 10 2021-05-18 08:58:19 Agree                       NA                  18 Female
## # ... with 90 more rows, and 25 more variables: `Social support` <chr>,
## #   `Living condition1` <chr>, `Family income per month` <chr>,
## #   `1. Feeling nervous, anxious, or on edge` <dbl>,
## #   `2. Not being able to stop or control worrying` <dbl>,
## #   `3. Worrying too much about different things` <dbl>,
## #   `4. Trouble relaxing` <dbl>,
## #   `5. Being so restless that it is hard to sit still` <dbl>, ...
LC$Livingconditionrecode<-as.factor(LC$Livingconditionrecode)
table(LC$Livingconditionrecode)
## 
## Away from Parents      With Parents 
##                 9                91
library(dplyr)
LC%>%
  group_by(Livingconditionrecode)%>%
  summarize(count = n())
## # A tibble: 2 x 2
##   Livingconditionrecode count
##   <fct>                 <int>
## 1 Away from Parents         9
## 2 With Parents             91
table(LC$SocialSupport)
## 
## Family Others 
##     96      4
LivingCondition= LC$Livingconditionrecode
LivingCondition.freq = table(LivingCondition)
LivingCondition.relfreq = LivingCondition.freq 
LivingCondition.freq
## LivingCondition
## Away from Parents      With Parents 
##                 9                91
LivingCondition.relfreq = LivingCondition.freq / nrow(Numeric)
cbind(LivingCondition.relfreq)
##                   LivingCondition.relfreq
## Away from Parents                    0.09
## With Parents                         0.91
prop.table(table(LC$Livingconditionrecode))
## 
## Away from Parents      With Parents 
##              0.09              0.91

#Family Income Per Month

FamilyIncome= LC$Income
FamilyIncome.freq = table(FamilyIncome)
FamilyIncome.relfreq = FamilyIncome.freq 
FamilyIncome.freq
## FamilyIncome
##     Below Php 5,000.00 More than Php 5,000.00 
##                     47                     53
FamilyIncome.relfreq = FamilyIncome.freq / nrow(LC)
cbind(FamilyIncome.relfreq)
##                        FamilyIncome.relfreq
## Below Php 5,000.00                     0.47
## More than Php 5,000.00                 0.53
prop.table(table(LC$Income))
## 
##     Below Php 5,000.00 More than Php 5,000.00 
##                   0.47                   0.53

1. What is the anxiety level during COVID-19 pandemic among senior high school students?

aggregate(combine[, 2:3], list(combine$student), quantile, c(0.6,0.8))

aggregate(LC[, 9:10], list(LC$SHS), quantile, c(0.2,0.4))
##   Group.1 1. Feeling nervous, anxious, or on edge.20%
## 1     jhs                                         0.0
## 2     SHS                                         0.0
##   1. Feeling nervous, anxious, or on edge.40%
## 1                                         0.8
## 2                                         1.0
##   2. Not being able to stop or control worrying.20%
## 1                                               0.0
## 2                                               0.2
##   2. Not being able to stop or control worrying.40%
## 1                                               1.0
## 2                                               1.0

Summary of Anxiety Level

AnxietyLevel= Numeric$`Anxiety Level Equivalent`
AnxietyLevel.freq = table(AnxietyLevel)
AnxietyLevel.relfreq = AnxietyLevel.freq 
AnxietyLevel.freq
## AnxietyLevel
##     Mild anxiety  Minimal anxiety Moderate anxiety   Severe anxiety 
##               42               27               17               14
AnxietyLevel.relfreq = AnxietyLevel.freq / nrow(Numeric)
cbind(AnxietyLevel.relfreq)
##                  AnxietyLevel.relfreq
## Mild anxiety                     0.42
## Minimal anxiety                  0.27
## Moderate anxiety                 0.17
## Severe anxiety                   0.14
prop.table(table(AnxietyLevel))
## AnxietyLevel
##     Mild anxiety  Minimal anxiety Moderate anxiety   Severe anxiety 
##             0.42             0.27             0.17             0.14

##2. Is there a significant relationship between senior high school students’ level of anxiety and its demographic profile?

library(dplyr)
RecodeData<- LC %>%
      mutate(GenderCode = ifelse(Gender == "Female",0,1))%>%
      mutate(SocialSupportCode= ifelse(SocialSupport == "Others", 0,1))%>%
      mutate(IncomeRecode = ifelse(Income == "Below Php 5,000.00",0,1))%>%
      mutate(Livingcontionfinal = ifelse(Livingconditionrecode == "Away from Parents", 0,1))
RecodeData
## # A tibble: 100 x 34
##    Timestamp           `I have read, understood ~` `Name (Optiona~`   Age Gender
##    <dttm>              <chr>                       <lgl>            <dbl> <chr> 
##  1 2021-05-12 17:41:46 Agree                       NA                  18 Female
##  2 2021-05-18 07:57:59 Agree                       NA                  17 Female
##  3 2021-05-18 08:19:13 Agree                       NA                  18 Female
##  4 2021-05-18 08:22:07 Agree                       NA                  16 Female
##  5 2021-05-18 08:37:43 Agree                       NA                  17 Female
##  6 2021-05-18 08:48:36 Agree                       NA                  18 Female
##  7 2021-05-18 08:54:00 Agree                       NA                  19 Female
##  8 2021-05-18 08:56:50 Agree                       NA                  17 Female
##  9 2021-05-18 08:57:40 Agree                       NA                  17 Female
## 10 2021-05-18 08:58:19 Agree                       NA                  18 Female
## # ... with 90 more rows, and 29 more variables: `Social support` <chr>,
## #   `Living condition1` <chr>, `Family income per month` <chr>,
## #   `1. Feeling nervous, anxious, or on edge` <dbl>,
## #   `2. Not being able to stop or control worrying` <dbl>,
## #   `3. Worrying too much about different things` <dbl>,
## #   `4. Trouble relaxing` <dbl>,
## #   `5. Being so restless that it is hard to sit still` <dbl>, ...

Age and Anxiety

cor.test(RecodeData$Age, RecodeData$`Anxiety Level`, method="spearman")
## Warning in cor.test.default(RecodeData$Age, RecodeData$`Anxiety Level`, : Cannot
## compute exact p-value with ties
## 
##  Spearman's rank correlation rho
## 
## data:  RecodeData$Age and RecodeData$`Anxiety Level`
## S = 171698, p-value = 0.5432
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##         rho 
## -0.06183221

Gender and Anxiety

mylogit<-glm(RecodeData$GenderCode~RecodeData$`Anxiety Level`,family="binomial")
summary(mylogit)
## 
## Call:
## glm(formula = RecodeData$GenderCode ~ RecodeData$`Anxiety Level`, 
##     family = "binomial")
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4306  -1.0593  -0.7607   1.1723   1.8313  
## 
## Coefficients:
##                            Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                 0.57798    0.39132   1.477   0.1397  
## RecodeData$`Anxiety Level` -0.10778    0.04498  -2.396   0.0166 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 137.19  on 99  degrees of freedom
## Residual deviance: 130.90  on 98  degrees of freedom
## AIC: 134.9
## 
## Number of Fisher Scoring iterations: 4

Social Supportand Anxiety

mylogit<-glm(RecodeData$SocialSupportCode~RecodeData$`Anxiety Level`, family="binomial")
summary(mylogit)
## 
## Call:
## glm(formula = RecodeData$SocialSupportCode ~ RecodeData$`Anxiety Level`, 
##     family = "binomial")
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5994   0.2571   0.2732   0.2990   0.3687  
## 
## Coefficients:
##                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                 3.58971    1.02603   3.499 0.000468 ***
## RecodeData$`Anxiety Level` -0.04921    0.09949  -0.495 0.620847    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 33.589  on 99  degrees of freedom
## Residual deviance: 33.349  on 98  degrees of freedom
## AIC: 37.349
## 
## Number of Fisher Scoring iterations: 6

Living Condition and Anxiety

mylogit<-glm(RecodeData$Livingcontionfinal~RecodeData$`Anxiety Level`, family="binomial")
summary(mylogit)
## 
## Call:
## glm(formula = RecodeData$Livingcontionfinal ~ RecodeData$`Anxiety Level`, 
##     family = "binomial")
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2172   0.4203   0.4288   0.4403   0.4672  
## 
## Coefficients:
##                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                 2.42400    0.66510   3.645 0.000268 ***
## RecodeData$`Anxiety Level` -0.01390    0.07004  -0.198 0.842669    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 60.508  on 99  degrees of freedom
## Residual deviance: 60.468  on 98  degrees of freedom
## AIC: 64.468
## 
## Number of Fisher Scoring iterations: 5

Family Income and Anxiety

mylogit<-glm(RecodeData$IncomeRecode~RecodeData$`Anxiety Level`, family="binomial")
summary(mylogit)
## 
## Call:
## glm(formula = RecodeData$IncomeRecode ~ RecodeData$`Anxiety Level`, 
##     family = "binomial")
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4154  -1.1881   0.9934   1.1232   1.2516  
## 
## Coefficients:
##                            Estimate Std. Error z value Pr(>|z|)
## (Intercept)                -0.17287    0.37658  -0.459    0.646
## RecodeData$`Anxiety Level`  0.03773    0.04120   0.916    0.360
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 138.27  on 99  degrees of freedom
## Residual deviance: 137.42  on 98  degrees of freedom
## AIC: 141.42
## 
## Number of Fisher Scoring iterations: 4