buses <- read.csv2("C:/Users/Adriana Valencia/Downloads/buses.csv")

Actividad 4 Muestreo.

Primera etapa.
conglomerados<-sample(unique(buses$Operador), size = 12)
conglomerados
##  [1] "GRAN AMÉRICAS FONTIBÓN S.A.S."     "ESTE ES MI BUS TINTAL ZONA FRANCA"
##  [3] "SOMOS BOGOTÁ USME"                 "SI18 NORTE "                      
##  [5] "BMO SUR"                           "E-SOMOS ALIMENTACIÓN  S.A.S. "    
##  [7] "SI18 CALLE 80"                     "CONSORCIO EXPRESS USAQUEN"        
##  [9] "CONSORCIO EXPRESS SAN CRISTOBAL"   "MASIVO CAPITAL SUBA ORIENTAL"     
## [11] "MASIVO CAPITAL KENNEDY"            "SUMA"
muestra_cong<-buses[buses$Operador %in% conglomerados,]
Ope_1<-subset(muestra_cong, muestra_cong[,9] ==  conglomerados[1])
Ope_2<-subset(muestra_cong, muestra_cong[,9] ==  conglomerados[2])
Ope_3<-subset(muestra_cong, muestra_cong[,9] ==  conglomerados[3])
Ope_4<-subset(muestra_cong, muestra_cong[,9] ==  conglomerados[4])
Ope_5<-subset(muestra_cong, muestra_cong[,9] ==  conglomerados[5])
Ope_6<-subset(muestra_cong, muestra_cong[,9] ==  conglomerados[6])
Ope_7<-subset(muestra_cong, muestra_cong[,9] ==  conglomerados[7])
Ope_8<-subset(muestra_cong, muestra_cong[,9] ==  conglomerados[8])
Ope_9<-subset(muestra_cong, muestra_cong[,9] ==  conglomerados[9])
Ope_10<-subset(muestra_cong, muestra_cong[,9] ==  conglomerados[10])
Ope_11<-subset(muestra_cong, muestra_cong[,9] ==  conglomerados[11])
Ope_12<-subset(muestra_cong, muestra_cong[,9] ==  conglomerados[12])
Segunda etapa.
cong_1<-sample(1:nrow(Ope_1), 12)
muest_cong_1<-Ope_1[cong_1,]
cong_1
##  [1]  30   5 108  94   4  80  90  91  42 107  78  62
cong_2<-sample(1:nrow(Ope_2), 12)
muest_cong_2<-Ope_2[cong_2,]
cong_2
##  [1]  93  36 150  38  10 115  78  71  43  83  35   9
cong_3<-sample(1:nrow(Ope_3), 12)
muest_cong_3<-Ope_3[cong_3,]
cong_3
##  [1] 242 133 140  20 135 214  22  15 239 200  94 134
cong_4<-sample(1:nrow(Ope_4), 12)
muest_cong_4<-Ope_4[cong_4,]
cong_4
##  [1] 214  49 191 113 109 114 169 168  38   2 151  41
cong_5<-sample(1:nrow(Ope_5), 12)
muest_cong_5<-Ope_5[cong_5,]
cong_5
##  [1] 176 337 229 398   8 421 261 197 235 297 406 227
cong_6<-sample(1:nrow(Ope_6), 12)
muest_cong_6<-Ope_6[cong_6,]
cong_6
##  [1]  53  61  52 119 106 118  83  51  34 127 131  54
cong_7<-sample(1:nrow(Ope_7), 12)
muest_cong_7<-Ope_7[cong_7,]
cong_7
##  [1]  49  81  75   3  79  63  66 105  52  32  62  20
cong_8<-sample(1:nrow(Ope_8), 12)
muest_cong_8<-Ope_8[cong_8,]
cong_8
##  [1]  760  815  270  600 1198 1334  668  351    4   43  791  821
cong_9<-sample(1:nrow(Ope_9), 12)
muest_cong_9<-Ope_9[cong_9,]
cong_9
##  [1] 531 227 344 641  52 175 675 708 797 602 360 538
cong_10<-sample(1:nrow(Ope_10), 12)
muest_cong_10<-Ope_10[cong_10,]
cong_10
##  [1] 217  43  54 123 137 262 129 149 117  37 235 173
cong_11<-sample(1:nrow(Ope_11), 12)
muest_cong_11<-Ope_11[cong_11,]
cong_11
##  [1] 523 331 251 626 569  76 154  68 864 134 245 616
cong_12<-sample(1:nrow(Ope_12), 12)
muest_cong_12<-Ope_12[cong_12,]
cong_12
##  [1] 174 545 685 142 520 573 422 649 718 125 566 456
Promedios de calificación.
Cal1<-unlist(muest_cong_1[,13])
Yi1<-mean(Cal1)
Yi1
## [1] 9.009167
Cal2<-unlist(muest_cong_2[,13])
Yi2<-mean(Cal2)
Yi2
## [1] 6.155833
Cal3<-unlist(muest_cong_3[,13])
Yi3<-mean(Cal3)
Yi3
## [1] 8.695833
Cal4<-unlist(muest_cong_4[,13])
Yi4<-mean(Cal4)
Yi4
## [1] 8.345833
Cal5<-unlist(muest_cong_5[,13])
Yi5<-mean(Cal5)
Yi5
## [1] 8.29
Cal6<-unlist(muest_cong_6[,13])
Yi6<-mean(Cal6)
Yi6
## [1] 8.806667
Cal7<-unlist(muest_cong_7[,13])
Yi7<-mean(Cal7)
Yi7
## [1] 8.698333
Cal8<-unlist(muest_cong_8[,13])
Yi8<-mean(Cal8)
Yi8
## [1] 5.810833
Cal9<-unlist(muest_cong_9[,13])
Yi9<-mean(Cal9)
Yi9
## [1] 5.516667
Cal10<-unlist(muest_cong_10[,13])
Yi10<-mean(Cal10)
Yi10
## [1] 5.784167
Cal11<-unlist(muest_cong_11[,13])
Yi11<-mean(Cal11)
Yi11
## [1] 6.843333
Cal12<-unlist(muest_cong_12[,13])
Yi12<-mean(Cal12)
Yi12
## [1] 6.965

Estimación del promedio poblacional de la variable calificación.

Sum<-(Yi1*nrow(Ope_1))+(Yi2*nrow(Ope_2))+(Yi3*nrow(Ope_3))+(Yi4*nrow(Ope_4))+(Yi5*nrow(Ope_5))+(Yi6*nrow(Ope_6))+(Yi7*nrow(Ope_7))+(Yi8*nrow(Ope_8))+(Yi9*nrow(Ope_9))+(Yi10*nrow(Ope_10))+(Yi11*nrow(Ope_11))+(Yi12*nrow(Ope_12))

Sum
## [1] 38647.91
Sum_Mi<-nrow(Ope_1)+nrow(Ope_2)+nrow(Ope_3)+nrow(Ope_4)+nrow(Ope_5)+nrow(Ope_6)+nrow(Ope_7)+nrow(Ope_8)+nrow(Ope_9)+nrow(Ope_10)+nrow(Ope_11)+nrow(Ope_12)

Sum_Mi
## [1] 5752

Resultado

EPM<-Sum/Sum_Mi
EPM
## [1] 6.719039