list.files()
## [1] "~$Data Rapi.xlsx"       "Data Final.xlsx"        "Data Rapi.xlsx"        
## [4] "Kode-R-Regresi.html"    "Kode-R-Regresi.Rmd"     "Kode R Regresi.nb.html"
## [7] "Kode R Regresi.Rmd"
library(readxl)
dat <- read_excel("Data Rapi.xlsx")

dat <- as.data.frame(dat)

dat

#Multiple Linear Regression: T Test, F Test, R-Square

regress <- lm(lnY ~ X1 + X2 + X3 + X4 + X5, data = dat)
    
 summary(regress)
## 
## Call:
## lm(formula = lnY ~ X1 + X2 + X3 + X4 + X5, data = dat)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3699 -0.7610 -0.1102  0.8262  3.3689 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2.422e+00  7.105e-01  -3.409 0.000759 ***
## X1          -4.588e-02  5.585e-02  -0.821 0.412143    
## X2           1.667e-05  3.613e-05   0.461 0.644935    
## X3           3.628e-05  1.290e-04   0.281 0.778753    
## X4           1.467e+00  8.143e-01   1.802 0.072770 .  
## X5           4.230e+00  1.487e+00   2.845 0.004799 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.399 on 253 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.05405,    Adjusted R-squared:  0.03535 
## F-statistic: 2.891 on 5 and 253 DF,  p-value: 0.01475

#Normality Test with Kolmogorov-Smirnov

residual <- regress$residuals

KS_asymp <- ks.test(residual,"pnorm", mean(residual), sd(residual), exact = FALSE)
## Warning in ks.test(residual, "pnorm", mean(residual), sd(residual), exact =
## FALSE): ties should not be present for the Kolmogorov-Smirnov test
KS_asymp
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  residual
## D = 0.067862, p-value = 0.1839
## alternative hypothesis: two-sided

#Normality Test with Q-Qplot

qqnorm(residual, pch = 1, frame = FALSE)
qqline(residual, col = "steelblue", lwd = 2)

#Multicolinearity Test with VIF

library(car)
## Loading required package: carData
car::vif(regress)
##       X1       X2       X3       X4       X5 
## 1.353265 1.027379 1.019133 1.053864 1.364893

#Auto-Correlation Test with Durbin-Watson test

car::durbinWatsonTest(regress)
##  lag Autocorrelation D-W Statistic p-value
##    1     0.004544272      1.978166   0.826
##  Alternative hypothesis: rho != 0

#Heteroskedasticity Test with Goldfeld-Quandt test

library(lmtest)
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
gqtest(regress)
## 
##  Goldfeld-Quandt test
## 
## data:  regress
## GQ = 1.0783, df1 = 124, df2 = 123, p-value = 0.3381
## alternative hypothesis: variance increases from segment 1 to 2

#Moderating Test

regress <- lm(lnY ~ X1 + X2 + X3 + X4 + X5 + X1Z + X2Z + X3Z + X4Z + X5Z + Z, data = dat)
    
 summary(regress)
## 
## Call:
## lm(formula = lnY ~ X1 + X2 + X3 + X4 + X5 + X1Z + X2Z + X3Z + 
##     X4Z + X5Z + Z, data = dat)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8989 -0.7130 -0.1170  0.7116  3.4648 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -4.165e+00  8.181e-01  -5.091 7.06e-07 ***
## X1          -1.303e-01  6.192e-02  -2.105 0.036327 *  
## X2          -9.513e-06  2.003e-04  -0.047 0.962158    
## X3          -2.560e-05  4.687e-04  -0.055 0.956479    
## X4           1.466e+00  8.778e-01   1.670 0.096179 .  
## X5           8.124e+00  1.738e+00   4.675 4.84e-06 ***
## X1Z          1.321e+00  8.780e-01   1.504 0.133745    
## X2Z         -1.095e-04  1.494e-03  -0.073 0.941625    
## X3Z          5.481e-04  3.822e-03   0.143 0.886078    
## X4Z          5.836e-01  1.192e+01   0.049 0.960989    
## X5Z         -8.525e+01  2.608e+01  -3.269 0.001233 ** 
## Z            3.989e+01  1.158e+01   3.445 0.000671 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.342 on 247 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.1504, Adjusted R-squared:  0.1126 
## F-statistic: 3.975 on 11 and 247 DF,  p-value: 2.434e-05

https://rpubs.com/thongkeclub/766507

https://rpubs.com/dsciencelabs/econometrics8