Creating the environment

library(tidyverse)
library(tosr)
library(bibliometrix)
library(lubridate)
library(igraph)
library(tidytext)
library(wordcloud)
library(rebus)
library(ggrepel) # improve donut visualization
library(ggraph)
library(visNetwork) 
library(tidygraph)

This template is based in this paper

https://revistas.ucm.es/index.php/REVE/article/view/75566/4564456557467

For a detail explanation of how to use it, please watch this video

https://www.youtube.com/watch?v=jtKSifvNvTM

Data getting

wos_scopus_tos <- 
  tosr::tosr_load("WOS 3.txt",
                  "scopus 3.bib") 
[1] 2

Converting your wos collection into a bibliographic dataframe

Done!


Generating affiliation field tag AU_UN from C1:  Done!


Converting your scopus collection into a bibliographic dataframe

Done!


Generating affiliation field tag AU_UN from C1:  Done!


 38 duplicated documents have been removed
                 
tree_of_science <- 
  tosr::tosR("WOS 3.txt", 
             "scopus 3.bib")
[1] 2

Converting your wos collection into a bibliographic dataframe

Done!


Generating affiliation field tag AU_UN from C1:  Done!


Converting your scopus collection into a bibliographic dataframe

Done!


Generating affiliation field tag AU_UN from C1:  Done!


 38 duplicated documents have been removed
Computing TOS SAP
Computing TOS subfields
wos <- 
  bibliometrix::convert2df(c("WOS 3.txt"))  # create dataframe from wos file

Converting your wos collection into a bibliographic dataframe

Done!


Generating affiliation field tag AU_UN from C1:  Done!
scopus <- 
  bibliometrix::convert2df("scopus 3.bib", # Create dataframe from scopus file
                           dbsource = "scopus", 
                           format = "bibtex")

Converting your scopus collection into a bibliographic dataframe

Done!


Generating affiliation field tag AU_UN from C1:  Done!

Table 1. Search Criteria

table_1 <- 
  tibble(wos = length(wos$SR), # Create a dataframe with the values.
         scopus = length(scopus$SR), 
         total = length(wos_scopus_tos$df$SR))
table_1

Figure 1. Languages

main_languages <- 
  wos_scopus_tos$df |> 
  select(LA) |> 
  separate_rows(LA, sep = "; ") |> 
  count(LA, sort = TRUE) |> 
  slice(1:5)

other_languages <- 
  wos_scopus_tos$df |> 
  separate_rows(LA, sep = "; ") |> 
  select(LA) |> 
  count(LA, sort = TRUE) |> 
  slice(6:n) |> 
  summarise(n = sum(n)) |> 
  mutate(LA = "OTHERS") |> 
  select(LA, n)
Warning in 6:n :
  numerical expression has 7 elements: only the first used
languages <- 
  main_languages |> 
  bind_rows(other_languages) |> 
  mutate(percentage = n / sum(n),
         percentage = round(percentage, 
                            digits = 2) ) |> 
  rename(language = LA) |>
  select(language, percentage, count = n)

languages
df <- languages |> 
  rename(value = percentage, group = language) |>
  mutate(value = value * 100) |> 
  select(value, group)

df2 <- df %>% 
  mutate(csum = rev(cumsum(rev(value))), 
         pos = value/2 + lead(csum, 1),
         pos = if_else(is.na(pos), value/2, pos))

ggplot(df, aes(x = 2 , y = value, fill = fct_inorder(group))) +
  geom_col(width = 1, color = 1) +
  coord_polar(theta = "y") +
  geom_label_repel(data = df2,
                   aes(y = pos, label = paste0(value, "%")),
                   size = 4.5, nudge_x = 1, show.legend = FALSE) +
  theme(panel.background = element_blank(),
        axis.line = element_blank(), 
        axis.text = element_blank(),
        axis.ticks = element_blank(),
        axis.title = element_blank(),
        plot.title = element_text(hjust = 0.5, size = 18)) +
  labs(title = "Languages") +
  guides(fill = guide_legend(title = "")) +
  theme_void() +
  xlim(0.5, 2.5)

Figure 2. Scientific Production

wos_anual_production <- 
  wos |> 
  select(PY) |> 
  count(PY, sort = TRUE) |> 
  na.omit() |> 
  filter(PY >= 2000,
         PY < year(today())) |> 
  mutate(ref_type = "wos")

scopus_anual_production  <- 
  scopus |> 
  select(PY) |> 
  count(PY, sort = TRUE) |> 
  na.omit() |> 
  filter(PY >= 2000,
         PY < year(today())) |>
  mutate(ref_type = "scopus")

total_anual_production <- 
  wos_scopus_tos$df |> 
  select(PY) |> 
  count(PY, sort = TRUE) |> 
  na.omit() |> 
  filter(PY >= 2000,
         PY < year(today())) |>
  mutate(ref_type = "total")

wos_scopus_total_annual_production <- 
  wos_anual_production |> 
  bind_rows(scopus_anual_production,
            total_anual_production) 

figure_2_data <- 
  wos_scopus_total_annual_production |> 
  mutate(PY = replace_na(PY, replace = 0)) |> 
  pivot_wider(names_from = ref_type, 
              values_from = n) |> 
  arrange(desc(PY))

figure_2_data 
wos_scopus_total_annual_production |> 
  ggplot(aes(x = PY, y = n, color = ref_type)) +
  geom_line() +
  labs(title = "Annual Scientific Production", 
       x = "years",
       y = "papers") +
  theme(plot.title = element_text(hjust = 0.5)) 

Table 2. Country production

data_biblio_wos <- biblioAnalysis(wos)

wos_country <- 
  data_biblio_wos$Countries |> 
  data.frame() |> 
  mutate(database = "wos") |> 
  select(country = Tab, papers = Freq, database ) |> 
  arrange(desc(papers)) 

data_biblio_scopus <- biblioAnalysis(scopus)

scopus_country <- 
  data_biblio_scopus$Countries |> 
  data.frame() |> 
  mutate(database = "scopus") |> 
  select(country = Tab, papers = Freq, database ) |> 
  arrange(desc(papers)) 

data_biblio_total <- biblioAnalysis(wos_scopus_tos$df)

total_country <- 
  data_biblio_total$Countries |> 
  data.frame() |> 
  mutate(database = "total") |> 
  select(country = Tab, papers = Freq, database ) |> 
  arrange(desc(papers)) 

wos_scopus_total_country <- 
  wos_country |> 
  bind_rows(scopus_country, 
            total_country) |> 
  mutate(country = as.character(country)) |> 
  pivot_wider(names_from = database, 
              values_from = papers) |> 
  arrange(desc(total)) |> 
  slice(1:10) |> 
  mutate(percentage = total / (table_1 |> pull(total)),
         percentage = round(percentage, digits = 2))

wos_scopus_total_country

Table 3. Author production

wos_authors <- 
  data_biblio_wos$Authors |> 
  data.frame() |> 
  rename(authors_wos = AU, papers_wos = Freq) |> 
  arrange(desc(papers_wos)) |> 
  slice(1:20) |> 
  mutate(database_wos = "wos")


scopus_authors <- 
  data_biblio_scopus$Authors |> 
  data.frame() |> 
  rename(authors_scopus = AU, papers_scopus = Freq) |> 
  arrange(desc(papers_scopus)) |> 
  slice(1:20) |> 
  mutate(database_scopus = "scopus")

total_authors <- 
  data_biblio_total$Authors |> 
  data.frame() |> 
  rename(authors_total = AU, 
         papers_total = Freq) |> 
  arrange(desc(papers_total)) |> 
  slice(1:20) |> 
  mutate(database_total = "total")

wos_scopus_authors <- 
  wos_authors |> 
  bind_cols(scopus_authors,
            total_authors)

wos_scopus_authors

Table 4. Journal production

wos_journal <- 
  wos |> 
  select(journal = SO) |> 
  na.omit() |> 
  count(journal, sort = TRUE) |> 
  slice(1:20) |> 
  rename(publications = n) |> 
  mutate(database = "wos")

scopus_journal <- 
  scopus |> 
  select(journal = SO) |> 
  na.omit() |> 
  count(journal, sort = TRUE) |> 
  slice(1:20) |> 
  rename(publications = n) |> 
  mutate(database = "scopus")

total_journal <- 
  wos_scopus_tos$df |> 
  select(journal = SO) |> 
  na.omit() |> 
  count(journal, sort = TRUE) |> 
  slice(1:20) |> 
  rename(publications = n) |> 
  mutate(database = "total")

wos_scopus_total_journal <- 
  wos_journal |> 
  bind_rows(scopus_journal, 
            total_journal) |> 
  pivot_wider(names_from = database, 
              values_from = publications) |> 
  arrange(desc(total)) |> 
  slice(1:20) |> 
  mutate(percentage = total / table_1 |> pull(total),
         percentage = round(percentage, digits = 2))


wos_scopus_total_journal

Figure 3. Co-citation network

Author co-citation network

wos_scopus_author_metatag <- 
  metaTagExtraction(wos_scopus_tos$df, Field = "CR_AU")

wos_scopus_author_co_citation_matrix <- 
  biblioNetwork(M = wos_scopus_author_metatag, 
                analysis = "co-citation", 
                network = "authors")

aca_tbl_graph <- 
  graph_from_adjacency_matrix(wos_scopus_author_co_citation_matrix , 
                              mode = "undirected", 
                              weighted = TRUE, 
                              diag = FALSE) |> 
  as_tbl_graph(aca_igraph, directed = FALSE ) |> 
  activate(nodes) |> 
  mutate(degree = centrality_degree()) |> 
  arrange(desc(degree)) |> 
  slice(1:30)

weight_tbl <- 
  aca_tbl_graph |> 
  activate(edges) |> 
  select(weight) |> 
  as.data.frame()

threshold <- 
  quantile(weight_tbl |> 
             select(weight) |> 
             pull(), 
           probs = 0.80)

aca_tbl_graph_filtered <- 
  aca_tbl_graph |> 
  activate(edges) |> 
  filter(weight >= threshold) |> 
  activate(nodes) |> 
  mutate(components = group_components(type = "weak")) |> 
  filter(components == 1) |> 
  mutate(degree = centrality_degree(),
         community = as.factor(group_louvain()) )

aca_tbl_graph_filtered |> 
  ggraph(layout = "kk") + 
  geom_edge_link(alpha = .25, 
                 aes(width = weight)) +
  geom_node_point(aes(colour = community, 
                      size = degree)) +
  geom_node_text(aes(label = name), repel = TRUE) +
  theme_graph()


plot_net_author_co_citation
Error: object 'plot_net_author_co_citation' not found

Author Collaboration network

wos_scopus_author_collab_matrix <- 
  biblioNetwork(M = wos_scopus_tos$df, 
                analysis = "collaboration", 
                network = "authors")

plot_author_collab <- 
  networkPlot(NetMatrix = wos_scopus_author_collab_matrix, 
              weighted=T, n = 30, 
              Title = "Author Collaboration Network", 
              type = "fruchterman", 
              size=T,
              edgesize = 5,
              labelsize=0.7)


author_collab_tbl_graph <- 
  graph_from_adjacency_matrix(wos_scopus_author_collab_matrix , 
                              mode = "undirected", 
                              weighted = TRUE, 
                              diag = FALSE) |> 
  as_tbl_graph(aca_igraph, directed = FALSE ) |> 
  activate(nodes) |> 
  mutate(degree = centrality_degree()) |> 
  arrange(desc(degree)) |> 
  slice(1:30)

author_collab_tbl_graph_filtered <- 
  author_collab_tbl_graph |> 
  activate(edges) |> 
  filter(weight > 1) |> 
  activate(nodes) |> 
  mutate(components = group_components(type = "weak")) |>
  filter(components == 1) |>
  mutate(degree = centrality_degree(),
         community = as.factor(group_louvain()) )

author_collab_tbl_graph_filtered |> 
  ggraph(layout = "kk") + 
  geom_edge_link(alpha = .25, 
                 aes(width = weight)) +
  geom_node_point(aes(colour = community, 
                      size = degree)) +
  geom_node_text(aes(label = name), repel = TRUE) +
  theme_graph()

Country Collaboration Network

wos_scopus_country_collab_matrix <- 
  biblioNetwork(M = wos_scopus_tos$df, 
                analysis = "collaboration", 
                network = "countries")

plot_country_collab <- 
  networkPlot(wos_scopus_country_collab_matrix, 
              weighted=T, n = 30, 
              Title = "Country Collaboration Network", 
              type = "fruchterman", 
              size=T,
              edgesize = 5,
              labelsize=0.7)

country_collab_tbl_graph <- 
  graph_from_adjacency_matrix(wos_scopus_country_collab_matrix , 
                              mode = "undirected", 
                              weighted = TRUE, 
                              diag = FALSE) |> 
  as_tbl_graph(aca_igraph, directed = FALSE ) |> 
  activate(nodes) |> 
  mutate(degree = centrality_degree()) |> 
  arrange(desc(degree)) |> 
  slice(1:30)

country_collab_tbl_graph_filtered <- 
  country_collab_tbl_graph |> 
  activate(nodes) |> 
  mutate(components = group_components(type = "weak")) |>
  filter(components == 1) |>
  mutate(degree = centrality_degree(),
         community = as.factor(group_louvain()) )

country_collab_tbl_graph_filtered |> 
  ggraph(layout = "kk") + 
  geom_edge_link(alpha = .25, 
                 aes(width = weight)) +
  geom_node_point(aes(colour = community, 
                      size = degree)) +
  geom_node_text(aes(label = name), repel = TRUE) +
  theme_graph()
Warning: ggrepel: 1 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Keyword co-occurrence network

wos_scopus_keyword_co_occurrence_matrix <- 
  biblioNetwork(M = wos_scopus_tos$df, 
                analysis = "co-occurrences", 
                network = "keywords", 
                sep = ";")

plot_net_co_occurrence <- 
  networkPlot(wos_scopus_keyword_co_occurrence_matrix, 
              weighted=T, n = 30, 
              Title = "Keyword Co-occurrence Network", 
              type = "fruchterman", 
              size=T,
              edgesize = 5,
              labelsize=0.7)

keyword_co_occurrence_tbl_graph <- 
  graph_from_adjacency_matrix(wos_scopus_keyword_co_occurrence_matrix , 
                              mode = "undirected", 
                              weighted = TRUE, 
                              diag = FALSE) |> 
  as_tbl_graph(aca_igraph, directed = FALSE ) |> 
  activate(nodes) |> 
  mutate(degree = centrality_degree()) |> 
  arrange(desc(degree)) |> 
  slice(1:30)

keyword_co_occurrence_weight_tbl <- 
  keyword_co_occurrence_tbl_graph |> 
  activate(edges) |> 
  select(weight) |> 
  as.data.frame()

threshold <- 
  quantile(keyword_co_occurrence_weight_tbl |> 
             select(weight) |> 
             pull(), 
           probs = 0.80)

keyword_co_occurrence_tbl_graph_filtered <- 
  keyword_co_occurrence_tbl_graph |> 
  activate(edges) |> 
  filter(weight >= threshold) |> 
  activate(nodes) |> 
  mutate(components = group_components(type = "weak")) |> 
  filter(components == 1) |> 
  mutate(degree = centrality_degree(),
         community = as.factor(group_louvain()) )

keyword_co_occurrence_tbl_graph_filtered |> 
  ggraph(layout = "kk") + 
  geom_edge_link(alpha = .25, 
                 aes(width = weight)) +
  geom_node_point(aes(colour = community, 
                      size = degree)) +
  geom_node_text(aes(label = name), repel = TRUE) +
  theme_graph()

Figure 4. Tree of Science

Tree of Science

tree_of_science

Clustering analysis

Finding the clusters

nodes <-  # Create a dataframe with the fullname of articles 
  tibble(name = V(wos_scopus_tos$graph)$name) |> 
  left_join(wos_scopus_tos$nodes, 
            by = c("name" = "ID_TOS"))

wos_scopus_citation_network_1 <- # Add the article names to the citation network
  wos_scopus_tos$graph |> 
  igraph::set.vertex.attribute(name = "full_name", 
                               index = V(wos_scopus_tos$graph)$name, 
                               value = nodes$CITE)

nodes_1 <- # Create a dataframe with subfields (clusters)
  tibble(name = V(wos_scopus_citation_network_1)$name,
         cluster = V(wos_scopus_citation_network_1)$subfield,
         full_name = V(wos_scopus_citation_network_1)$full_name)

nodes_2 <- # Count the number of articles per cluster
  nodes_1 |> 
  count(cluster, sort = TRUE) |> 
  mutate(cluster_1 = row_number()) |> 
  select(cluster, cluster_1)

nodes_3 <- 
  nodes_1 |> 
  left_join(nodes_2) |> 
  rename(subfield = cluster_1) |> 
  select(name, full_name, subfield)
Joining, by = "cluster"
edge_list <- 
  get.edgelist(wos_scopus_citation_network_1) |> 
  data.frame() |> 
  rename(Source = X1, Target = X2)

wos_scopus_citation_network <- 
  graph.data.frame(d = edge_list, 
                   directed = TRUE, 
                   vertices = nodes_3)

wos_scopus_citation_network |> 
  summary()
IGRAPH 0883fff DN-- 950 1910 -- 
+ attr: name (v/c), full_name (v/c), subfield (v/n)

Choosing clusters

We proposed the tipping point option to choose the number of clusters. See this paper:

https://www.nature.com/articles/s41598-021-85041-8

clusters <- 
  tibble(cluster = V(wos_scopus_citation_network)$subfield) |> 
  count(cluster, sort = TRUE)

clusters |> 
  ggplot(aes(x = reorder(cluster, n), y = n)) +
  geom_point() 

Removing not chosen clusters

wos_scopus_citation_network_clusters <- 
  wos_scopus_citation_network |> 
  delete.vertices(which(V(wos_scopus_citation_network)$subfield != 1 & # filter clusters 
                          V(wos_scopus_citation_network)$subfield != 2 &
                          V(wos_scopus_citation_network)$subfield != 3  &
                          V(wos_scopus_citation_network)$subfield != 4))

wos_scopus_citation_network_clusters |> 
  summary()
IGRAPH 380716c DN-- 506 937 -- 
+ attr: name (v/c), full_name (v/c), subfield (v/n)

Cluster 1

pal <- brewer.pal(8,"Dark2")

nodes_full_data <- 
  tibble(name = V(wos_scopus_citation_network)$name,
         cluster = V(wos_scopus_citation_network)$subfield,
         full_name = V(wos_scopus_citation_network)$full_name)

cluster_1 <- 
  wos_scopus_citation_network |> 
  delete.vertices(which(V(wos_scopus_citation_network)$subfield != 1))

cluster_1_page_rank <- 
  cluster_1 |> 
  set.vertex.attribute(name = "page_rank", 
                       value = page_rank(cluster_1)$vector)

cluster_1_df <- 
  tibble(name = V(cluster_1_page_rank)$name,
         full_name = V(cluster_1_page_rank)$full_name,
         page_rank = V(cluster_1_page_rank)$page_rank,
         cluster = V(cluster_1_page_rank)$subfield,)

nodes_full_data |> 
  filter(cluster == 1) |> 
  select(full_name) |> 
  mutate(full_name = str_extract(full_name, SPC %R%  # Regular expressions 
                                   one_or_more(WRD) %R% 
                                   SPC %R% 
                                   one_or_more(or(WRD, ANY_CHAR))),
         full_name = str_remove(full_name, OPEN_PAREN %R% 
                                  repeated(DGT, 4) %R% 
                                  CLOSE_PAREN %R%
                                  one_or_more(or(WRD,ANY_CHAR))),
         full_name = str_trim(full_name))  |> 
  unnest_tokens(output = word, input = full_name) |> # Tokenization
  anti_join(stop_words) |>  # Removing stop words
  filter(word != "doi",
         !str_detect(word, "[0-9]")) |>  # WoS data
  filter(word == str_remove(word, pattern = "citation"),
         word == str_remove(word, pattern = "research"),  # Words removed
         word == str_remove(word, pattern = "pshychology"), 
         word == str_remove(word, pattern = "science"),
         word == str_remove(word, pattern = "sport"),
         word == str_remove(word, pattern = "wine"),
         word == str_remove(word, pattern = "jmkg"),
         word == str_remove(word, pattern = "international"),
         word == str_remove(word, pattern = "sci"),
         word == str_remove(word, pattern = "journal"),
         word == str_remove(word, pattern = "analysis"),
         word == str_remove(word, pattern = "res")) |>
  count(word, sort = TRUE) |> 
  with(wordcloud(word, 
                 n, 
                 random.order = FALSE, 
                 max.words = 50, 
                 colors=pal))
Joining, by = "word"
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  retailing could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  consumption could not be fit on page. It will not be plotted.

Cluster 2

cluster_2 <- 
  wos_scopus_citation_network |> 
  delete.vertices(which(V(wos_scopus_citation_network)$subfield != 2))

cluster_2_page_rank <- 
  cluster_2 |> 
  set.vertex.attribute(name = "page_rank", 
                       value = page_rank(cluster_2)$vector)

cluster_2_df <- 
  tibble(name = V(cluster_2_page_rank)$name,
         full_name = V(cluster_2_page_rank)$full_name,
         page_rank = V(cluster_2_page_rank)$page_rank,
         cluster = V(cluster_2_page_rank)$subfield,)

nodes_full_data |> 
  filter(cluster == 2) |> 
  select(full_name) |> 
  mutate(full_name = str_extract(full_name, SPC %R%  # Regular expressions 
                                   one_or_more(WRD) %R% 
                                   SPC %R% 
                                   one_or_more(or(WRD, ANY_CHAR))),
         full_name = str_remove(full_name, OPEN_PAREN %R% 
                                  repeated(DGT, 4) %R% 
                                  CLOSE_PAREN %R%
                                  one_or_more(or(WRD,ANY_CHAR))),
         full_name = str_trim(full_name))  |> 
  unnest_tokens(output = word, input = full_name) |> 
  anti_join(stop_words) |>
  filter(word != "doi",
         !str_detect(word, "[0-9]")) |>  # WoS data
  filter(word == str_remove(word, pattern = "citation"),
         word == str_remove(word, pattern = "research"), 
         word == str_remove(word, pattern = "analysis"), 
         word == str_remove(word, pattern = "science"),
         word == str_remove(word, pattern = "scientometric"),
         word == str_remove(word, pattern = "res")) |>
  count(word, sort = TRUE) |> 
  with(wordcloud(word, 
                 n, 
                 random.order = FALSE, 
                 max.words = 50, 
                 colors=pal))
Joining, by = "word"
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  experience could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  management could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  consumer could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  j.tourman could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  consumption could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  experiences could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  service could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  social could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  study could not be fit on page. It will not be plotted.

Cluster 3


cluster_3 <- 
  wos_scopus_citation_network |> 
  delete.vertices(which(V(wos_scopus_citation_network)$subfield != 3))

cluster_3_page_rank <- 
  cluster_3 |> 
  set.vertex.attribute(name = "page_rank", 
                       value = page_rank(cluster_3)$vector)

cluster_3_df <- 
  tibble(name = V(cluster_3_page_rank)$name,
         full_name = V(cluster_3_page_rank)$full_name,
         page_rank = V(cluster_3_page_rank)$page_rank,
         cluster = V(cluster_3_page_rank)$subfield,)

nodes_full_data |> 
  filter(cluster == 3) |> 
  select(full_name) |> 
  mutate(full_name = str_extract(full_name, SPC %R%  # Regular expressions 
                                   one_or_more(WRD) %R% 
                                   SPC %R% 
                                   one_or_more(or(WRD, ANY_CHAR))),
         full_name = str_remove(full_name, OPEN_PAREN %R% 
                                  repeated(DGT, 4) %R% 
                                  CLOSE_PAREN %R%
                                  one_or_more(or(WRD,ANY_CHAR))),
         full_name = str_trim(full_name))  |> 
  unnest_tokens(output = word, input = full_name) |> 
  anti_join(stop_words) |>
  filter(word != "doi",
         !str_detect(word, "[0-9]")) |>  # WoS data 
  filter(word == str_remove(word, pattern = "citation"),
         word == str_remove(word, pattern = "research"), 
         word == str_remove(word, pattern = "analysis"), 
         word == str_remove(word, pattern = "science"),
         word == str_remove(word, pattern = "scientometric"),
         word == str_remove(word, pattern = "vulnerability")) |>
  count(word, sort = TRUE) |> 
  with(wordcloud(word, 
                 n, 
                 random.order = FALSE, 
                 max.words = 50, 
                 colors=pal))
Joining, by = "word"
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  consumption could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  brand could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  perceived could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  business could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  service could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  education could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  information could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  theory could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  tourism could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  consumers could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  learning could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  relationship could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  review could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  services could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  university could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  behavior could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  imagery could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  quality could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  students could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  study could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  behaviour could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  economy could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  equation could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  experiences could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  generation could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  hospitality could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  intentions could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  international could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  investigation could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  management could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  models could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  perceptions could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  personal could not be fit on page. It will not be plotted.

Cluster 4


cluster_4 <- 
  wos_scopus_citation_network |> 
  delete.vertices(which(V(wos_scopus_citation_network)$subfield != 4))

cluster_4_page_rank <- 
  cluster_4 |> 
  set.vertex.attribute(name = "page_rank", 
                       value = page_rank(cluster_4)$vector)

cluster_4_df <- 
  tibble(name = V(cluster_4_page_rank)$name,
         full_name = V(cluster_4_page_rank)$full_name,
         page_rank = V(cluster_4_page_rank)$page_rank,
         cluster = V(cluster_4_page_rank)$subfield,)

nodes_full_data |> 
  filter(cluster == 4) |> 
  select(full_name) |> 
  mutate(full_name = str_extract(full_name, SPC %R%  # Regular expressions 
                                   one_or_more(WRD) %R% 
                                   SPC %R% 
                                   one_or_more(or(WRD, ANY_CHAR))),
         full_name = str_remove(full_name, OPEN_PAREN %R% 
                                  repeated(DGT, 4) %R% 
                                  CLOSE_PAREN %R%
                                  one_or_more(or(WRD,ANY_CHAR))),
         full_name = str_trim(full_name))  |> 
  unnest_tokens(output = word, input = full_name) |> 
  anti_join(stop_words) |> 
  filter(word != "doi",
         !str_detect(word, "[0-9]")) |>  # WoS data
  filter(word == str_remove(word, pattern = "citation"),
         word == str_remove(word, pattern = "research"), 
         word == str_remove(word, pattern = "analysis"), 
         word == str_remove(word, pattern = "science"),
         word == str_remove(word, pattern = "scientometric"),
         word == str_remove(word, pattern = "vulnerability")) |>
  count(word, sort = TRUE) |> 
  with(wordcloud(word, 
                 n, 
                 random.order = FALSE, 
                 max.words = 50, 
                 colors=pal))
Joining, by = "word"

Exporting files


write_csv(wos_scopus_tos$df, "wos_scopus_tos.csv") # Exporting all data merged

write_csv(table_1, "table_1.csv") # Exporting table 1
write_csv(wos_scopus_total_country, "table_2_.csv")  # Exporting table 2
write_csv(wos_scopus_authors, "table_3.csv") # Exporting table 3
write_csv(wos_scopus_total_journal, "table_4.csv") # Exporting table 4


write_csv(languages, "figure_1.csv") # Exporting data figure 1 
write_csv(figure_2_data, "figure_2.csv") # Exporting data figure 2

write.graph(wos_scopus_citation_network, "citation_network_full.graphml", "graphml") # Exporting graph
write.graph(wos_scopus_citation_network_clusters, 
            "wos_scopus_citation_network_clusters.graphml", 
            "graphml")

aca_graphml_nodes <- 
  aca_tbl_graph_filtered |> 
  activate(nodes) |> 
  as_tibble() |> 
  rename(author = name) |> 
  rownames_to_column("name")

aca_graphml_edges <- 
  aca_tbl_graph_filtered |> 
  activate(edges) |> 
  as_tibble() 

aca_graphml <- 
  graph_from_data_frame(d = aca_graphml_edges, 
                        directed = FALSE, 
                        vertices = aca_graphml_nodes)

write_graph(aca_graphml, "aca_graph.graphml", "graphml") # Export author co-citation graph

author_collab_graphml_nodes <- 
  author_collab_tbl_graph_filtered |> 
  activate(nodes) |> 
  as_tibble() |> 
  rename(author = name) |> 
  rownames_to_column("name")

author_collab_graphml_edges <- 
  author_collab_tbl_graph_filtered |> 
  activate(edges) |> 
  as_tibble() 

author_collab_graphml <- 
  graph_from_data_frame(d = author_collab_graphml_edges, 
                        directed = FALSE, 
                        vertices = author_collab_graphml_nodes)

write_graph(author_collab_graphml, "author_collab_graphml.graphml", "graphml") # Export author co-citation graph

country_collab_graphml_nodes <- 
  country_collab_tbl_graph_filtered |> 
  activate(nodes) |> 
  as_tibble() |> 
  rename(author = name) |> 
  rownames_to_column("name")

country_collab_graphml_edges <- 
  country_collab_tbl_graph_filtered |> 
  activate(edges) |> 
  as_tibble() 

country_collab_graphml <- 
  graph_from_data_frame(d = country_collab_graphml_edges, 
                        directed = FALSE, 
                        vertices = country_collab_graphml_nodes)

write_graph(country_collab_graphml, "country_collab_graphml.graphml", "graphml") # Export author co-citation graph

write.csv(tree_of_science, "tree_of_science.csv") # Exporting Tree of Science

write.csv(cluster_1_df, "cluster_1.csv") # Exporting cluster 1
write.csv(cluster_2_df, "cluster_2.csv") # Exporting cluster 2
write.csv(cluster_3_df, "cluster_3.csv") # Exporting cluster 3
write.csv(cluster_4_df, "cluster_4.csv") # Exporting cluster 4

write.csv(nodes_full_data, "nodes_full_data.csv") # Exporting all nodes
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCmVkaXRvcl9vcHRpb25zOiAKICBjaHVua19vdXRwdXRfdHlwZTogaW5saW5lCi0tLQoKIyBDcmVhdGluZyB0aGUgZW52aXJvbm1lbnQKCmBgYHtyfQpsaWJyYXJ5KHRpZHl2ZXJzZSkKbGlicmFyeSh0b3NyKQpsaWJyYXJ5KGJpYmxpb21ldHJpeCkKbGlicmFyeShsdWJyaWRhdGUpCmxpYnJhcnkoaWdyYXBoKQpsaWJyYXJ5KHRpZHl0ZXh0KQpsaWJyYXJ5KHdvcmRjbG91ZCkKbGlicmFyeShyZWJ1cykKbGlicmFyeShnZ3JlcGVsKSAjIGltcHJvdmUgZG9udXQgdmlzdWFsaXphdGlvbgpsaWJyYXJ5KGdncmFwaCkKbGlicmFyeSh2aXNOZXR3b3JrKSAKbGlicmFyeSh0aWR5Z3JhcGgpCmBgYAoKVGhpcyB0ZW1wbGF0ZSBpcyBiYXNlZCBpbiB0aGlzIHBhcGVyCgpodHRwczovL3JldmlzdGFzLnVjbS5lcy9pbmRleC5waHAvUkVWRS9hcnRpY2xlL3ZpZXcvNzU1NjYvNDU2NDQ1NjU1NzQ2NwoKRm9yIGEgZGV0YWlsIGV4cGxhbmF0aW9uIG9mIGhvdyB0byB1c2UgaXQsIHBsZWFzZSB3YXRjaCB0aGlzIHZpZGVvIAoKaHR0cHM6Ly93d3cueW91dHViZS5jb20vd2F0Y2g/dj1qdEtTaWZ2TnZUTQoKIyBEYXRhIGdldHRpbmcKCmBgYHtyfQp3b3Nfc2NvcHVzX3RvcyA8LSAKICB0b3NyOjp0b3NyX2xvYWQoIldPUyAzLnR4dCIsCiAgICAgICAgICAgICAgICAgICJzY29wdXMgMy5iaWIiKSAKICAgICAgICAgICAgICAgICAKdHJlZV9vZl9zY2llbmNlIDwtIAogIHRvc3I6OnRvc1IoIldPUyAzLnR4dCIsIAogICAgICAgICAgICAgInNjb3B1cyAzLmJpYiIpCgp3b3MgPC0gCiAgYmlibGlvbWV0cml4Ojpjb252ZXJ0MmRmKGMoIldPUyAzLnR4dCIpKSAgIyBjcmVhdGUgZGF0YWZyYW1lIGZyb20gd29zIGZpbGUKCnNjb3B1cyA8LSAKICBiaWJsaW9tZXRyaXg6OmNvbnZlcnQyZGYoInNjb3B1cyAzLmJpYiIsICMgQ3JlYXRlIGRhdGFmcmFtZSBmcm9tIHNjb3B1cyBmaWxlCiAgICAgICAgICAgICAgICAgICAgICAgICAgIGRic291cmNlID0gInNjb3B1cyIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICBmb3JtYXQgPSAiYmlidGV4IikKYGBgCgojIyBUYWJsZSAxLiBTZWFyY2ggQ3JpdGVyaWEKCmBgYHtyfQp0YWJsZV8xIDwtIAogIHRpYmJsZSh3b3MgPSBsZW5ndGgod29zJFNSKSwgIyBDcmVhdGUgYSBkYXRhZnJhbWUgd2l0aCB0aGUgdmFsdWVzLgogICAgICAgICBzY29wdXMgPSBsZW5ndGgoc2NvcHVzJFNSKSwgCiAgICAgICAgIHRvdGFsID0gbGVuZ3RoKHdvc19zY29wdXNfdG9zJGRmJFNSKSkKdGFibGVfMQpgYGAKCiMjIEZpZ3VyZSAxLiBMYW5ndWFnZXMKCmBgYHtyfQptYWluX2xhbmd1YWdlcyA8LSAKICB3b3Nfc2NvcHVzX3RvcyRkZiB8PiAKICBzZWxlY3QoTEEpIHw+IAogIHNlcGFyYXRlX3Jvd3MoTEEsIHNlcCA9ICI7ICIpIHw+IAogIGNvdW50KExBLCBzb3J0ID0gVFJVRSkgfD4gCiAgc2xpY2UoMTo1KQoKb3RoZXJfbGFuZ3VhZ2VzIDwtIAogIHdvc19zY29wdXNfdG9zJGRmIHw+IAogIHNlcGFyYXRlX3Jvd3MoTEEsIHNlcCA9ICI7ICIpIHw+IAogIHNlbGVjdChMQSkgfD4gCiAgY291bnQoTEEsIHNvcnQgPSBUUlVFKSB8PiAKICBzbGljZSg2Om4pIHw+IAogIHN1bW1hcmlzZShuID0gc3VtKG4pKSB8PiAKICBtdXRhdGUoTEEgPSAiT1RIRVJTIikgfD4gCiAgc2VsZWN0KExBLCBuKQoKbGFuZ3VhZ2VzIDwtIAogIG1haW5fbGFuZ3VhZ2VzIHw+IAogIGJpbmRfcm93cyhvdGhlcl9sYW5ndWFnZXMpIHw+IAogIG11dGF0ZShwZXJjZW50YWdlID0gbiAvIHN1bShuKSwKICAgICAgICAgcGVyY2VudGFnZSA9IHJvdW5kKHBlcmNlbnRhZ2UsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgZGlnaXRzID0gMikgKSB8PiAKICByZW5hbWUobGFuZ3VhZ2UgPSBMQSkgfD4KICBzZWxlY3QobGFuZ3VhZ2UsIHBlcmNlbnRhZ2UsIGNvdW50ID0gbikKCmxhbmd1YWdlcwpgYGAKCgpgYGB7cn0KZGYgPC0gbGFuZ3VhZ2VzIHw+IAogIHJlbmFtZSh2YWx1ZSA9IHBlcmNlbnRhZ2UsIGdyb3VwID0gbGFuZ3VhZ2UpIHw+CiAgbXV0YXRlKHZhbHVlID0gdmFsdWUgKiAxMDApIHw+IAogIHNlbGVjdCh2YWx1ZSwgZ3JvdXApCgpkZjIgPC0gZGYgJT4lIAogIG11dGF0ZShjc3VtID0gcmV2KGN1bXN1bShyZXYodmFsdWUpKSksIAogICAgICAgICBwb3MgPSB2YWx1ZS8yICsgbGVhZChjc3VtLCAxKSwKICAgICAgICAgcG9zID0gaWZfZWxzZShpcy5uYShwb3MpLCB2YWx1ZS8yLCBwb3MpKQoKZ2dwbG90KGRmLCBhZXMoeCA9IDIgLCB5ID0gdmFsdWUsIGZpbGwgPSBmY3RfaW5vcmRlcihncm91cCkpKSArCiAgZ2VvbV9jb2wod2lkdGggPSAxLCBjb2xvciA9IDEpICsKICBjb29yZF9wb2xhcih0aGV0YSA9ICJ5IikgKwogIGdlb21fbGFiZWxfcmVwZWwoZGF0YSA9IGRmMiwKICAgICAgICAgICAgICAgICAgIGFlcyh5ID0gcG9zLCBsYWJlbCA9IHBhc3RlMCh2YWx1ZSwgIiUiKSksCiAgICAgICAgICAgICAgICAgICBzaXplID0gNC41LCBudWRnZV94ID0gMSwgc2hvdy5sZWdlbmQgPSBGQUxTRSkgKwogIHRoZW1lKHBhbmVsLmJhY2tncm91bmQgPSBlbGVtZW50X2JsYW5rKCksCiAgICAgICAgYXhpcy5saW5lID0gZWxlbWVudF9ibGFuaygpLCAKICAgICAgICBheGlzLnRleHQgPSBlbGVtZW50X2JsYW5rKCksCiAgICAgICAgYXhpcy50aWNrcyA9IGVsZW1lbnRfYmxhbmsoKSwKICAgICAgICBheGlzLnRpdGxlID0gZWxlbWVudF9ibGFuaygpLAogICAgICAgIHBsb3QudGl0bGUgPSBlbGVtZW50X3RleHQoaGp1c3QgPSAwLjUsIHNpemUgPSAxOCkpICsKICBsYWJzKHRpdGxlID0gIkxhbmd1YWdlcyIpICsKICBndWlkZXMoZmlsbCA9IGd1aWRlX2xlZ2VuZCh0aXRsZSA9ICIiKSkgKwogIHRoZW1lX3ZvaWQoKSArCiAgeGxpbSgwLjUsIDIuNSkKYGBgCgojIyBGaWd1cmUgMi4gU2NpZW50aWZpYyBQcm9kdWN0aW9uCgpgYGB7cn0Kd29zX2FudWFsX3Byb2R1Y3Rpb24gPC0gCiAgd29zIHw+IAogIHNlbGVjdChQWSkgfD4gCiAgY291bnQoUFksIHNvcnQgPSBUUlVFKSB8PiAKICBuYS5vbWl0KCkgfD4gCiAgZmlsdGVyKFBZID49IDIwMDAsCiAgICAgICAgIFBZIDwgeWVhcih0b2RheSgpKSkgfD4gCiAgbXV0YXRlKHJlZl90eXBlID0gIndvcyIpCgpzY29wdXNfYW51YWxfcHJvZHVjdGlvbiAgPC0gCiAgc2NvcHVzIHw+IAogIHNlbGVjdChQWSkgfD4gCiAgY291bnQoUFksIHNvcnQgPSBUUlVFKSB8PiAKICBuYS5vbWl0KCkgfD4gCiAgZmlsdGVyKFBZID49IDIwMDAsCiAgICAgICAgIFBZIDwgeWVhcih0b2RheSgpKSkgfD4KICBtdXRhdGUocmVmX3R5cGUgPSAic2NvcHVzIikKCnRvdGFsX2FudWFsX3Byb2R1Y3Rpb24gPC0gCiAgd29zX3Njb3B1c190b3MkZGYgfD4gCiAgc2VsZWN0KFBZKSB8PiAKICBjb3VudChQWSwgc29ydCA9IFRSVUUpIHw+IAogIG5hLm9taXQoKSB8PiAKICBmaWx0ZXIoUFkgPj0gMjAwMCwKICAgICAgICAgUFkgPCB5ZWFyKHRvZGF5KCkpKSB8PgogIG11dGF0ZShyZWZfdHlwZSA9ICJ0b3RhbCIpCgp3b3Nfc2NvcHVzX3RvdGFsX2FubnVhbF9wcm9kdWN0aW9uIDwtIAogIHdvc19hbnVhbF9wcm9kdWN0aW9uIHw+IAogIGJpbmRfcm93cyhzY29wdXNfYW51YWxfcHJvZHVjdGlvbiwKICAgICAgICAgICAgdG90YWxfYW51YWxfcHJvZHVjdGlvbikgCgpmaWd1cmVfMl9kYXRhIDwtIAogIHdvc19zY29wdXNfdG90YWxfYW5udWFsX3Byb2R1Y3Rpb24gfD4gCiAgbXV0YXRlKFBZID0gcmVwbGFjZV9uYShQWSwgcmVwbGFjZSA9IDApKSB8PiAKICBwaXZvdF93aWRlcihuYW1lc19mcm9tID0gcmVmX3R5cGUsIAogICAgICAgICAgICAgIHZhbHVlc19mcm9tID0gbikgfD4gCiAgYXJyYW5nZShkZXNjKFBZKSkKCmZpZ3VyZV8yX2RhdGEgCmBgYAoKYGBge3J9Cndvc19zY29wdXNfdG90YWxfYW5udWFsX3Byb2R1Y3Rpb24gfD4gCiAgZ2dwbG90KGFlcyh4ID0gUFksIHkgPSBuLCBjb2xvciA9IHJlZl90eXBlKSkgKwogIGdlb21fbGluZSgpICsKICBsYWJzKHRpdGxlID0gIkFubnVhbCBTY2llbnRpZmljIFByb2R1Y3Rpb24iLCAKICAgICAgIHggPSAieWVhcnMiLAogICAgICAgeSA9ICJwYXBlcnMiKSArCiAgdGhlbWUocGxvdC50aXRsZSA9IGVsZW1lbnRfdGV4dChoanVzdCA9IDAuNSkpIApgYGAKCiMjIFRhYmxlIDIuIENvdW50cnkgcHJvZHVjdGlvbgoKYGBge3J9CmRhdGFfYmlibGlvX3dvcyA8LSBiaWJsaW9BbmFseXNpcyh3b3MpCgp3b3NfY291bnRyeSA8LSAKICBkYXRhX2JpYmxpb193b3MkQ291bnRyaWVzIHw+IAogIGRhdGEuZnJhbWUoKSB8PiAKICBtdXRhdGUoZGF0YWJhc2UgPSAid29zIikgfD4gCiAgc2VsZWN0KGNvdW50cnkgPSBUYWIsIHBhcGVycyA9IEZyZXEsIGRhdGFiYXNlICkgfD4gCiAgYXJyYW5nZShkZXNjKHBhcGVycykpIAoKZGF0YV9iaWJsaW9fc2NvcHVzIDwtIGJpYmxpb0FuYWx5c2lzKHNjb3B1cykKCnNjb3B1c19jb3VudHJ5IDwtIAogIGRhdGFfYmlibGlvX3Njb3B1cyRDb3VudHJpZXMgfD4gCiAgZGF0YS5mcmFtZSgpIHw+IAogIG11dGF0ZShkYXRhYmFzZSA9ICJzY29wdXMiKSB8PiAKICBzZWxlY3QoY291bnRyeSA9IFRhYiwgcGFwZXJzID0gRnJlcSwgZGF0YWJhc2UgKSB8PiAKICBhcnJhbmdlKGRlc2MocGFwZXJzKSkgCgpkYXRhX2JpYmxpb190b3RhbCA8LSBiaWJsaW9BbmFseXNpcyh3b3Nfc2NvcHVzX3RvcyRkZikKCnRvdGFsX2NvdW50cnkgPC0gCiAgZGF0YV9iaWJsaW9fdG90YWwkQ291bnRyaWVzIHw+IAogIGRhdGEuZnJhbWUoKSB8PiAKICBtdXRhdGUoZGF0YWJhc2UgPSAidG90YWwiKSB8PiAKICBzZWxlY3QoY291bnRyeSA9IFRhYiwgcGFwZXJzID0gRnJlcSwgZGF0YWJhc2UgKSB8PiAKICBhcnJhbmdlKGRlc2MocGFwZXJzKSkgCgp3b3Nfc2NvcHVzX3RvdGFsX2NvdW50cnkgPC0gCiAgd29zX2NvdW50cnkgfD4gCiAgYmluZF9yb3dzKHNjb3B1c19jb3VudHJ5LCAKICAgICAgICAgICAgdG90YWxfY291bnRyeSkgfD4gCiAgbXV0YXRlKGNvdW50cnkgPSBhcy5jaGFyYWN0ZXIoY291bnRyeSkpIHw+IAogIHBpdm90X3dpZGVyKG5hbWVzX2Zyb20gPSBkYXRhYmFzZSwgCiAgICAgICAgICAgICAgdmFsdWVzX2Zyb20gPSBwYXBlcnMpIHw+IAogIGFycmFuZ2UoZGVzYyh0b3RhbCkpIHw+IAogIHNsaWNlKDE6MTApIHw+IAogIG11dGF0ZShwZXJjZW50YWdlID0gdG90YWwgLyAodGFibGVfMSB8PiBwdWxsKHRvdGFsKSksCiAgICAgICAgIHBlcmNlbnRhZ2UgPSByb3VuZChwZXJjZW50YWdlLCBkaWdpdHMgPSAyKSkKCndvc19zY29wdXNfdG90YWxfY291bnRyeQpgYGAKCiMjIFRhYmxlIDMuIEF1dGhvciBwcm9kdWN0aW9uCgpgYGB7cn0Kd29zX2F1dGhvcnMgPC0gCiAgZGF0YV9iaWJsaW9fd29zJEF1dGhvcnMgfD4gCiAgZGF0YS5mcmFtZSgpIHw+IAogIHJlbmFtZShhdXRob3JzX3dvcyA9IEFVLCBwYXBlcnNfd29zID0gRnJlcSkgfD4gCiAgYXJyYW5nZShkZXNjKHBhcGVyc193b3MpKSB8PiAKICBzbGljZSgxOjIwKSB8PiAKICBtdXRhdGUoZGF0YWJhc2Vfd29zID0gIndvcyIpCgoKc2NvcHVzX2F1dGhvcnMgPC0gCiAgZGF0YV9iaWJsaW9fc2NvcHVzJEF1dGhvcnMgfD4gCiAgZGF0YS5mcmFtZSgpIHw+IAogIHJlbmFtZShhdXRob3JzX3Njb3B1cyA9IEFVLCBwYXBlcnNfc2NvcHVzID0gRnJlcSkgfD4gCiAgYXJyYW5nZShkZXNjKHBhcGVyc19zY29wdXMpKSB8PiAKICBzbGljZSgxOjIwKSB8PiAKICBtdXRhdGUoZGF0YWJhc2Vfc2NvcHVzID0gInNjb3B1cyIpCgp0b3RhbF9hdXRob3JzIDwtIAogIGRhdGFfYmlibGlvX3RvdGFsJEF1dGhvcnMgfD4gCiAgZGF0YS5mcmFtZSgpIHw+IAogIHJlbmFtZShhdXRob3JzX3RvdGFsID0gQVUsIAogICAgICAgICBwYXBlcnNfdG90YWwgPSBGcmVxKSB8PiAKICBhcnJhbmdlKGRlc2MocGFwZXJzX3RvdGFsKSkgfD4gCiAgc2xpY2UoMToyMCkgfD4gCiAgbXV0YXRlKGRhdGFiYXNlX3RvdGFsID0gInRvdGFsIikKCndvc19zY29wdXNfYXV0aG9ycyA8LSAKICB3b3NfYXV0aG9ycyB8PiAKICBiaW5kX2NvbHMoc2NvcHVzX2F1dGhvcnMsCiAgICAgICAgICAgIHRvdGFsX2F1dGhvcnMpCgp3b3Nfc2NvcHVzX2F1dGhvcnMKYGBgCgojIyBUYWJsZSA0LiBKb3VybmFsIHByb2R1Y3Rpb24KCmBgYHtyfQp3b3Nfam91cm5hbCA8LSAKICB3b3MgfD4gCiAgc2VsZWN0KGpvdXJuYWwgPSBTTykgfD4gCiAgbmEub21pdCgpIHw+IAogIGNvdW50KGpvdXJuYWwsIHNvcnQgPSBUUlVFKSB8PiAKICBzbGljZSgxOjIwKSB8PiAKICByZW5hbWUocHVibGljYXRpb25zID0gbikgfD4gCiAgbXV0YXRlKGRhdGFiYXNlID0gIndvcyIpCgpzY29wdXNfam91cm5hbCA8LSAKICBzY29wdXMgfD4gCiAgc2VsZWN0KGpvdXJuYWwgPSBTTykgfD4gCiAgbmEub21pdCgpIHw+IAogIGNvdW50KGpvdXJuYWwsIHNvcnQgPSBUUlVFKSB8PiAKICBzbGljZSgxOjIwKSB8PiAKICByZW5hbWUocHVibGljYXRpb25zID0gbikgfD4gCiAgbXV0YXRlKGRhdGFiYXNlID0gInNjb3B1cyIpCgp0b3RhbF9qb3VybmFsIDwtIAogIHdvc19zY29wdXNfdG9zJGRmIHw+IAogIHNlbGVjdChqb3VybmFsID0gU08pIHw+IAogIG5hLm9taXQoKSB8PiAKICBjb3VudChqb3VybmFsLCBzb3J0ID0gVFJVRSkgfD4gCiAgc2xpY2UoMToyMCkgfD4gCiAgcmVuYW1lKHB1YmxpY2F0aW9ucyA9IG4pIHw+IAogIG11dGF0ZShkYXRhYmFzZSA9ICJ0b3RhbCIpCgp3b3Nfc2NvcHVzX3RvdGFsX2pvdXJuYWwgPC0gCiAgd29zX2pvdXJuYWwgfD4gCiAgYmluZF9yb3dzKHNjb3B1c19qb3VybmFsLCAKICAgICAgICAgICAgdG90YWxfam91cm5hbCkgfD4gCiAgcGl2b3Rfd2lkZXIobmFtZXNfZnJvbSA9IGRhdGFiYXNlLCAKICAgICAgICAgICAgICB2YWx1ZXNfZnJvbSA9IHB1YmxpY2F0aW9ucykgfD4gCiAgYXJyYW5nZShkZXNjKHRvdGFsKSkgfD4gCiAgc2xpY2UoMToyMCkgfD4gCiAgbXV0YXRlKHBlcmNlbnRhZ2UgPSB0b3RhbCAvIHRhYmxlXzEgfD4gcHVsbCh0b3RhbCksCiAgICAgICAgIHBlcmNlbnRhZ2UgPSByb3VuZChwZXJjZW50YWdlLCBkaWdpdHMgPSAyKSkKCgp3b3Nfc2NvcHVzX3RvdGFsX2pvdXJuYWwKYGBgCgojIyBGaWd1cmUgMy4gQ28tY2l0YXRpb24gbmV0d29yawoKIyMjIEF1dGhvciBjby1jaXRhdGlvbiBuZXR3b3JrCgpgYGB7cn0Kd29zX3Njb3B1c19hdXRob3JfbWV0YXRhZyA8LSAKICBtZXRhVGFnRXh0cmFjdGlvbih3b3Nfc2NvcHVzX3RvcyRkZiwgRmllbGQgPSAiQ1JfQVUiKQoKd29zX3Njb3B1c19hdXRob3JfY29fY2l0YXRpb25fbWF0cml4IDwtIAogIGJpYmxpb05ldHdvcmsoTSA9IHdvc19zY29wdXNfYXV0aG9yX21ldGF0YWcsIAogICAgICAgICAgICAgICAgYW5hbHlzaXMgPSAiY28tY2l0YXRpb24iLCAKICAgICAgICAgICAgICAgIG5ldHdvcmsgPSAiYXV0aG9ycyIpCgphY2FfdGJsX2dyYXBoIDwtIAogIGdyYXBoX2Zyb21fYWRqYWNlbmN5X21hdHJpeCh3b3Nfc2NvcHVzX2F1dGhvcl9jb19jaXRhdGlvbl9tYXRyaXggLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbW9kZSA9ICJ1bmRpcmVjdGVkIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHdlaWdodGVkID0gVFJVRSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRpYWcgPSBGQUxTRSkgfD4gCiAgYXNfdGJsX2dyYXBoKGFjYV9pZ3JhcGgsIGRpcmVjdGVkID0gRkFMU0UgKSB8PiAKICBhY3RpdmF0ZShub2RlcykgfD4gCiAgbXV0YXRlKGRlZ3JlZSA9IGNlbnRyYWxpdHlfZGVncmVlKCkpIHw+IAogIGFycmFuZ2UoZGVzYyhkZWdyZWUpKSB8PiAKICBzbGljZSgxOjMwKQoKd2VpZ2h0X3RibCA8LSAKICBhY2FfdGJsX2dyYXBoIHw+IAogIGFjdGl2YXRlKGVkZ2VzKSB8PiAKICBzZWxlY3Qod2VpZ2h0KSB8PiAKICBhcy5kYXRhLmZyYW1lKCkKCnRocmVzaG9sZCA8LSAKICBxdWFudGlsZSh3ZWlnaHRfdGJsIHw+IAogICAgICAgICAgICAgc2VsZWN0KHdlaWdodCkgfD4gCiAgICAgICAgICAgICBwdWxsKCksIAogICAgICAgICAgIHByb2JzID0gMC44MCkKCmFjYV90YmxfZ3JhcGhfZmlsdGVyZWQgPC0gCiAgYWNhX3RibF9ncmFwaCB8PiAKICBhY3RpdmF0ZShlZGdlcykgfD4gCiAgZmlsdGVyKHdlaWdodCA+PSB0aHJlc2hvbGQpIHw+IAogIGFjdGl2YXRlKG5vZGVzKSB8PiAKICBtdXRhdGUoY29tcG9uZW50cyA9IGdyb3VwX2NvbXBvbmVudHModHlwZSA9ICJ3ZWFrIikpIHw+IAogIGZpbHRlcihjb21wb25lbnRzID09IDEpIHw+IAogIG11dGF0ZShkZWdyZWUgPSBjZW50cmFsaXR5X2RlZ3JlZSgpLAogICAgICAgICBjb21tdW5pdHkgPSBhcy5mYWN0b3IoZ3JvdXBfbG91dmFpbigpKSApCgphY2FfdGJsX2dyYXBoX2ZpbHRlcmVkIHw+IAogIGdncmFwaChsYXlvdXQgPSAia2siKSArIAogIGdlb21fZWRnZV9saW5rKGFscGhhID0gLjI1LCAKICAgICAgICAgICAgICAgICBhZXMod2lkdGggPSB3ZWlnaHQpKSArCiAgZ2VvbV9ub2RlX3BvaW50KGFlcyhjb2xvdXIgPSBjb21tdW5pdHksIAogICAgICAgICAgICAgICAgICAgICAgc2l6ZSA9IGRlZ3JlZSkpICsKICBnZW9tX25vZGVfdGV4dChhZXMobGFiZWwgPSBuYW1lKSwgcmVwZWwgPSBUUlVFKSArCiAgdGhlbWVfZ3JhcGgoKQoKcGxvdF9uZXRfYXV0aG9yX2NvX2NpdGF0aW9uCiAgbmV0d29ya1Bsb3Qod29zX3Njb3B1c19hdXRob3JfY29fY2l0YXRpb25fbWF0cml4LAogICAgICAgICAgICAgIHdlaWdodGVkID0gVCwKICAgICAgICAgICAgICBuPTMwLFRpdGxlPSJBdXRob3IgQ28tY2l0YXRpb24gTmV0d29yayIsCiAgICAgICAgICAgICAgdHlwZT0iZnJ1Y2h0ZXJtYW4iLCAKICAgICAgICAgICAgICBzaXplPVQsIAogICAgICAgICAgICAgIGVkZ2VzaXplPTUsCiAgICAgICAgICAgICAgbGFiZWxzaXplPTAuNykKYGBgCgojIyMgQXV0aG9yIENvbGxhYm9yYXRpb24gbmV0d29yawoKYGBge3J9Cndvc19zY29wdXNfYXV0aG9yX2NvbGxhYl9tYXRyaXggPC0gCiAgYmlibGlvTmV0d29yayhNID0gd29zX3Njb3B1c190b3MkZGYsIAogICAgICAgICAgICAgICAgYW5hbHlzaXMgPSAiY29sbGFib3JhdGlvbiIsIAogICAgICAgICAgICAgICAgbmV0d29yayA9ICJhdXRob3JzIikKCnBsb3RfYXV0aG9yX2NvbGxhYiA8LSAKICBuZXR3b3JrUGxvdChOZXRNYXRyaXggPSB3b3Nfc2NvcHVzX2F1dGhvcl9jb2xsYWJfbWF0cml4LCAKICAgICAgICAgICAgICB3ZWlnaHRlZD1ULCBuID0gMzAsIAogICAgICAgICAgICAgIFRpdGxlID0gIkF1dGhvciBDb2xsYWJvcmF0aW9uIE5ldHdvcmsiLCAKICAgICAgICAgICAgICB0eXBlID0gImZydWNodGVybWFuIiwgCiAgICAgICAgICAgICAgc2l6ZT1ULAogICAgICAgICAgICAgIGVkZ2VzaXplID0gNSwKICAgICAgICAgICAgICBsYWJlbHNpemU9MC43KQoKYXV0aG9yX2NvbGxhYl90YmxfZ3JhcGggPC0gCiAgZ3JhcGhfZnJvbV9hZGphY2VuY3lfbWF0cml4KHdvc19zY29wdXNfYXV0aG9yX2NvbGxhYl9tYXRyaXggLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbW9kZSA9ICJ1bmRpcmVjdGVkIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHdlaWdodGVkID0gVFJVRSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRpYWcgPSBGQUxTRSkgfD4gCiAgYXNfdGJsX2dyYXBoKGFjYV9pZ3JhcGgsIGRpcmVjdGVkID0gRkFMU0UgKSB8PiAKICBhY3RpdmF0ZShub2RlcykgfD4gCiAgbXV0YXRlKGRlZ3JlZSA9IGNlbnRyYWxpdHlfZGVncmVlKCkpIHw+IAogIGFycmFuZ2UoZGVzYyhkZWdyZWUpKSB8PiAKICBzbGljZSgxOjMwKQoKYXV0aG9yX2NvbGxhYl90YmxfZ3JhcGhfZmlsdGVyZWQgPC0gCiAgYXV0aG9yX2NvbGxhYl90YmxfZ3JhcGggfD4gCiAgYWN0aXZhdGUoZWRnZXMpIHw+IAogIGZpbHRlcih3ZWlnaHQgPiAxKSB8PiAKICBhY3RpdmF0ZShub2RlcykgfD4gCiAgbXV0YXRlKGNvbXBvbmVudHMgPSBncm91cF9jb21wb25lbnRzKHR5cGUgPSAid2VhayIpKSB8PgogIGZpbHRlcihjb21wb25lbnRzID09IDEpIHw+CiAgbXV0YXRlKGRlZ3JlZSA9IGNlbnRyYWxpdHlfZGVncmVlKCksCiAgICAgICAgIGNvbW11bml0eSA9IGFzLmZhY3Rvcihncm91cF9sb3V2YWluKCkpICkKCmF1dGhvcl9jb2xsYWJfdGJsX2dyYXBoX2ZpbHRlcmVkIHw+IAogIGdncmFwaChsYXlvdXQgPSAia2siKSArIAogIGdlb21fZWRnZV9saW5rKGFscGhhID0gLjI1LCAKICAgICAgICAgICAgICAgICBhZXMod2lkdGggPSB3ZWlnaHQpKSArCiAgZ2VvbV9ub2RlX3BvaW50KGFlcyhjb2xvdXIgPSBjb21tdW5pdHksIAogICAgICAgICAgICAgICAgICAgICAgc2l6ZSA9IGRlZ3JlZSkpICsKICBnZW9tX25vZGVfdGV4dChhZXMobGFiZWwgPSBuYW1lKSwgcmVwZWwgPSBUUlVFKSArCiAgdGhlbWVfZ3JhcGgoKQpgYGAKCiMjIyBDb3VudHJ5IENvbGxhYm9yYXRpb24gTmV0d29yawoKYGBge3J9Cndvc19zY29wdXNfY291bnRyeV9jb2xsYWJfbWF0cml4IDwtIAogIGJpYmxpb05ldHdvcmsoTSA9IHdvc19zY29wdXNfdG9zJGRmLCAKICAgICAgICAgICAgICAgIGFuYWx5c2lzID0gImNvbGxhYm9yYXRpb24iLCAKICAgICAgICAgICAgICAgIG5ldHdvcmsgPSAiY291bnRyaWVzIikKCnBsb3RfY291bnRyeV9jb2xsYWIgPC0gCiAgbmV0d29ya1Bsb3Qod29zX3Njb3B1c19jb3VudHJ5X2NvbGxhYl9tYXRyaXgsIAogICAgICAgICAgICAgIHdlaWdodGVkPVQsIG4gPSAzMCwgCiAgICAgICAgICAgICAgVGl0bGUgPSAiQ291bnRyeSBDb2xsYWJvcmF0aW9uIE5ldHdvcmsiLCAKICAgICAgICAgICAgICB0eXBlID0gImZydWNodGVybWFuIiwgCiAgICAgICAgICAgICAgc2l6ZT1ULAogICAgICAgICAgICAgIGVkZ2VzaXplID0gNSwKICAgICAgICAgICAgICBsYWJlbHNpemU9MC43KQoKY291bnRyeV9jb2xsYWJfdGJsX2dyYXBoIDwtIAogIGdyYXBoX2Zyb21fYWRqYWNlbmN5X21hdHJpeCh3b3Nfc2NvcHVzX2NvdW50cnlfY29sbGFiX21hdHJpeCAsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlID0gInVuZGlyZWN0ZWQiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgd2VpZ2h0ZWQgPSBUUlVFLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZGlhZyA9IEZBTFNFKSB8PiAKICBhc190YmxfZ3JhcGgoYWNhX2lncmFwaCwgZGlyZWN0ZWQgPSBGQUxTRSApIHw+IAogIGFjdGl2YXRlKG5vZGVzKSB8PiAKICBtdXRhdGUoZGVncmVlID0gY2VudHJhbGl0eV9kZWdyZWUoKSkgfD4gCiAgYXJyYW5nZShkZXNjKGRlZ3JlZSkpIHw+IAogIHNsaWNlKDE6MzApCgpjb3VudHJ5X2NvbGxhYl90YmxfZ3JhcGhfZmlsdGVyZWQgPC0gCiAgY291bnRyeV9jb2xsYWJfdGJsX2dyYXBoIHw+IAogIGFjdGl2YXRlKG5vZGVzKSB8PiAKICBtdXRhdGUoY29tcG9uZW50cyA9IGdyb3VwX2NvbXBvbmVudHModHlwZSA9ICJ3ZWFrIikpIHw+CiAgZmlsdGVyKGNvbXBvbmVudHMgPT0gMSkgfD4KICBtdXRhdGUoZGVncmVlID0gY2VudHJhbGl0eV9kZWdyZWUoKSwKICAgICAgICAgY29tbXVuaXR5ID0gYXMuZmFjdG9yKGdyb3VwX2xvdXZhaW4oKSkgKQoKY291bnRyeV9jb2xsYWJfdGJsX2dyYXBoX2ZpbHRlcmVkIHw+IAogIGdncmFwaChsYXlvdXQgPSAia2siKSArIAogIGdlb21fZWRnZV9saW5rKGFscGhhID0gLjI1LCAKICAgICAgICAgICAgICAgICBhZXMod2lkdGggPSB3ZWlnaHQpKSArCiAgZ2VvbV9ub2RlX3BvaW50KGFlcyhjb2xvdXIgPSBjb21tdW5pdHksIAogICAgICAgICAgICAgICAgICAgICAgc2l6ZSA9IGRlZ3JlZSkpICsKICBnZW9tX25vZGVfdGV4dChhZXMobGFiZWwgPSBuYW1lKSwgcmVwZWwgPSBUUlVFKSArCiAgdGhlbWVfZ3JhcGgoKQpgYGAKCiMjIyBLZXl3b3JkIGNvLW9jY3VycmVuY2UgbmV0d29yawoKYGBge3J9Cndvc19zY29wdXNfa2V5d29yZF9jb19vY2N1cnJlbmNlX21hdHJpeCA8LSAKICBiaWJsaW9OZXR3b3JrKE0gPSB3b3Nfc2NvcHVzX3RvcyRkZiwgCiAgICAgICAgICAgICAgICBhbmFseXNpcyA9ICJjby1vY2N1cnJlbmNlcyIsIAogICAgICAgICAgICAgICAgbmV0d29yayA9ICJrZXl3b3JkcyIsIAogICAgICAgICAgICAgICAgc2VwID0gIjsiKQoKcGxvdF9uZXRfY29fb2NjdXJyZW5jZSA8LSAKICBuZXR3b3JrUGxvdCh3b3Nfc2NvcHVzX2tleXdvcmRfY29fb2NjdXJyZW5jZV9tYXRyaXgsIAogICAgICAgICAgICAgIHdlaWdodGVkPVQsIG4gPSAzMCwgCiAgICAgICAgICAgICAgVGl0bGUgPSAiS2V5d29yZCBDby1vY2N1cnJlbmNlIE5ldHdvcmsiLCAKICAgICAgICAgICAgICB0eXBlID0gImZydWNodGVybWFuIiwgCiAgICAgICAgICAgICAgc2l6ZT1ULAogICAgICAgICAgICAgIGVkZ2VzaXplID0gNSwKICAgICAgICAgICAgICBsYWJlbHNpemU9MC43KQoKa2V5d29yZF9jb19vY2N1cnJlbmNlX3RibF9ncmFwaCA8LSAKICBncmFwaF9mcm9tX2FkamFjZW5jeV9tYXRyaXgod29zX3Njb3B1c19rZXl3b3JkX2NvX29jY3VycmVuY2VfbWF0cml4ICwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1vZGUgPSAidW5kaXJlY3RlZCIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICB3ZWlnaHRlZCA9IFRSVUUsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkaWFnID0gRkFMU0UpIHw+IAogIGFzX3RibF9ncmFwaChhY2FfaWdyYXBoLCBkaXJlY3RlZCA9IEZBTFNFICkgfD4gCiAgYWN0aXZhdGUobm9kZXMpIHw+IAogIG11dGF0ZShkZWdyZWUgPSBjZW50cmFsaXR5X2RlZ3JlZSgpKSB8PiAKICBhcnJhbmdlKGRlc2MoZGVncmVlKSkgfD4gCiAgc2xpY2UoMTozMCkKCmtleXdvcmRfY29fb2NjdXJyZW5jZV93ZWlnaHRfdGJsIDwtIAogIGtleXdvcmRfY29fb2NjdXJyZW5jZV90YmxfZ3JhcGggfD4gCiAgYWN0aXZhdGUoZWRnZXMpIHw+IAogIHNlbGVjdCh3ZWlnaHQpIHw+IAogIGFzLmRhdGEuZnJhbWUoKQoKdGhyZXNob2xkIDwtIAogIHF1YW50aWxlKGtleXdvcmRfY29fb2NjdXJyZW5jZV93ZWlnaHRfdGJsIHw+IAogICAgICAgICAgICAgc2VsZWN0KHdlaWdodCkgfD4gCiAgICAgICAgICAgICBwdWxsKCksIAogICAgICAgICAgIHByb2JzID0gMC44MCkKCmtleXdvcmRfY29fb2NjdXJyZW5jZV90YmxfZ3JhcGhfZmlsdGVyZWQgPC0gCiAga2V5d29yZF9jb19vY2N1cnJlbmNlX3RibF9ncmFwaCB8PiAKICBhY3RpdmF0ZShlZGdlcykgfD4gCiAgZmlsdGVyKHdlaWdodCA+PSB0aHJlc2hvbGQpIHw+IAogIGFjdGl2YXRlKG5vZGVzKSB8PiAKICBtdXRhdGUoY29tcG9uZW50cyA9IGdyb3VwX2NvbXBvbmVudHModHlwZSA9ICJ3ZWFrIikpIHw+IAogIGZpbHRlcihjb21wb25lbnRzID09IDEpIHw+IAogIG11dGF0ZShkZWdyZWUgPSBjZW50cmFsaXR5X2RlZ3JlZSgpLAogICAgICAgICBjb21tdW5pdHkgPSBhcy5mYWN0b3IoZ3JvdXBfbG91dmFpbigpKSApCgprZXl3b3JkX2NvX29jY3VycmVuY2VfdGJsX2dyYXBoX2ZpbHRlcmVkIHw+IAogIGdncmFwaChsYXlvdXQgPSAia2siKSArIAogIGdlb21fZWRnZV9saW5rKGFscGhhID0gLjI1LCAKICAgICAgICAgICAgICAgICBhZXMod2lkdGggPSB3ZWlnaHQpKSArCiAgZ2VvbV9ub2RlX3BvaW50KGFlcyhjb2xvdXIgPSBjb21tdW5pdHksIAogICAgICAgICAgICAgICAgICAgICAgc2l6ZSA9IGRlZ3JlZSkpICsKICBnZW9tX25vZGVfdGV4dChhZXMobGFiZWwgPSBuYW1lKSwgcmVwZWwgPSBUUlVFKSArCiAgdGhlbWVfZ3JhcGgoKQpgYGAKCiMjIEZpZ3VyZSA0LiBUcmVlIG9mIFNjaWVuY2UKCiMjIyBUcmVlIG9mIFNjaWVuY2UKCmBgYHtyfQp0cmVlX29mX3NjaWVuY2UKYGBgCgojIyMgQ2x1c3RlcmluZyBhbmFseXNpcwoKRmluZGluZyB0aGUgY2x1c3RlcnMKCmBgYHtyfQpub2RlcyA8LSAgIyBDcmVhdGUgYSBkYXRhZnJhbWUgd2l0aCB0aGUgZnVsbG5hbWUgb2YgYXJ0aWNsZXMgCiAgdGliYmxlKG5hbWUgPSBWKHdvc19zY29wdXNfdG9zJGdyYXBoKSRuYW1lKSB8PiAKICBsZWZ0X2pvaW4od29zX3Njb3B1c190b3Mkbm9kZXMsIAogICAgICAgICAgICBieSA9IGMoIm5hbWUiID0gIklEX1RPUyIpKQoKd29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrXzEgPC0gIyBBZGQgdGhlIGFydGljbGUgbmFtZXMgdG8gdGhlIGNpdGF0aW9uIG5ldHdvcmsKICB3b3Nfc2NvcHVzX3RvcyRncmFwaCB8PiAKICBpZ3JhcGg6OnNldC52ZXJ0ZXguYXR0cmlidXRlKG5hbWUgPSAiZnVsbF9uYW1lIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBpbmRleCA9IFYod29zX3Njb3B1c190b3MkZ3JhcGgpJG5hbWUsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWUgPSBub2RlcyRDSVRFKQoKbm9kZXNfMSA8LSAjIENyZWF0ZSBhIGRhdGFmcmFtZSB3aXRoIHN1YmZpZWxkcyAoY2x1c3RlcnMpCiAgdGliYmxlKG5hbWUgPSBWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29ya18xKSRuYW1lLAogICAgICAgICBjbHVzdGVyID0gVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmtfMSkkc3ViZmllbGQsCiAgICAgICAgIGZ1bGxfbmFtZSA9IFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrXzEpJGZ1bGxfbmFtZSkKCm5vZGVzXzIgPC0gIyBDb3VudCB0aGUgbnVtYmVyIG9mIGFydGljbGVzIHBlciBjbHVzdGVyCiAgbm9kZXNfMSB8PiAKICBjb3VudChjbHVzdGVyLCBzb3J0ID0gVFJVRSkgfD4gCiAgbXV0YXRlKGNsdXN0ZXJfMSA9IHJvd19udW1iZXIoKSkgfD4gCiAgc2VsZWN0KGNsdXN0ZXIsIGNsdXN0ZXJfMSkKCm5vZGVzXzMgPC0gCiAgbm9kZXNfMSB8PiAKICBsZWZ0X2pvaW4obm9kZXNfMikgfD4gCiAgcmVuYW1lKHN1YmZpZWxkID0gY2x1c3Rlcl8xKSB8PiAKICBzZWxlY3QobmFtZSwgZnVsbF9uYW1lLCBzdWJmaWVsZCkKCmVkZ2VfbGlzdCA8LSAKICBnZXQuZWRnZWxpc3Qod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrXzEpIHw+IAogIGRhdGEuZnJhbWUoKSB8PiAKICByZW5hbWUoU291cmNlID0gWDEsIFRhcmdldCA9IFgyKQoKd29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrIDwtIAogIGdyYXBoLmRhdGEuZnJhbWUoZCA9IGVkZ2VfbGlzdCwgCiAgICAgICAgICAgICAgICAgICBkaXJlY3RlZCA9IFRSVUUsIAogICAgICAgICAgICAgICAgICAgdmVydGljZXMgPSBub2Rlc18zKQoKd29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrIHw+IAogIHN1bW1hcnkoKQpgYGAKCkNob29zaW5nIGNsdXN0ZXJzCgpXZSBwcm9wb3NlZCB0aGUgdGlwcGluZyBwb2ludCBvcHRpb24gdG8gY2hvb3NlIHRoZSBudW1iZXIgb2YgY2x1c3RlcnMuIFNlZSB0aGlzIHBhcGVyOgoKaHR0cHM6Ly93d3cubmF0dXJlLmNvbS9hcnRpY2xlcy9zNDE1OTgtMDIxLTg1MDQxLTgKCmBgYHtyfQpjbHVzdGVycyA8LSAKICB0aWJibGUoY2x1c3RlciA9IFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrKSRzdWJmaWVsZCkgfD4gCiAgY291bnQoY2x1c3Rlciwgc29ydCA9IFRSVUUpCgpjbHVzdGVycyB8PiAKICBnZ3Bsb3QoYWVzKHggPSByZW9yZGVyKGNsdXN0ZXIsIG4pLCB5ID0gbikpICsKICBnZW9tX3BvaW50KCkgCmBgYAoKUmVtb3Zpbmcgbm90IGNob3NlbiBjbHVzdGVycwoKYGBge3J9Cndvc19zY29wdXNfY2l0YXRpb25fbmV0d29ya19jbHVzdGVycyA8LSAKICB3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmsgfD4gCiAgZGVsZXRlLnZlcnRpY2VzKHdoaWNoKFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrKSRzdWJmaWVsZCAhPSAxICYgIyBmaWx0ZXIgY2x1c3RlcnMgCiAgICAgICAgICAgICAgICAgICAgICAgICAgVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkICE9IDIgJgogICAgICAgICAgICAgICAgICAgICAgICAgIFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrKSRzdWJmaWVsZCAhPSAzICAmCiAgICAgICAgICAgICAgICAgICAgICAgICAgVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkICE9IDQpKQoKd29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrX2NsdXN0ZXJzIHw+IAogIHN1bW1hcnkoKQpgYGAKCiMjIyBDbHVzdGVyIDEKCmBgYHtyfQpwYWwgPC0gYnJld2VyLnBhbCg4LCJEYXJrMiIpCgpub2Rlc19mdWxsX2RhdGEgPC0gCiAgdGliYmxlKG5hbWUgPSBWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yaykkbmFtZSwKICAgICAgICAgY2x1c3RlciA9IFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrKSRzdWJmaWVsZCwKICAgICAgICAgZnVsbF9uYW1lID0gVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJGZ1bGxfbmFtZSkKCmNsdXN0ZXJfMSA8LSAKICB3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmsgfD4gCiAgZGVsZXRlLnZlcnRpY2VzKHdoaWNoKFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrKSRzdWJmaWVsZCAhPSAxKSkKCmNsdXN0ZXJfMV9wYWdlX3JhbmsgPC0gCiAgY2x1c3Rlcl8xIHw+IAogIHNldC52ZXJ0ZXguYXR0cmlidXRlKG5hbWUgPSAicGFnZV9yYW5rIiwgCiAgICAgICAgICAgICAgICAgICAgICAgdmFsdWUgPSBwYWdlX3JhbmsoY2x1c3Rlcl8xKSR2ZWN0b3IpCgpjbHVzdGVyXzFfZGYgPC0gCiAgdGliYmxlKG5hbWUgPSBWKGNsdXN0ZXJfMV9wYWdlX3JhbmspJG5hbWUsCiAgICAgICAgIGZ1bGxfbmFtZSA9IFYoY2x1c3Rlcl8xX3BhZ2VfcmFuaykkZnVsbF9uYW1lLAogICAgICAgICBwYWdlX3JhbmsgPSBWKGNsdXN0ZXJfMV9wYWdlX3JhbmspJHBhZ2VfcmFuaywKICAgICAgICAgY2x1c3RlciA9IFYoY2x1c3Rlcl8xX3BhZ2VfcmFuaykkc3ViZmllbGQsKQoKbm9kZXNfZnVsbF9kYXRhIHw+IAogIGZpbHRlcihjbHVzdGVyID09IDEpIHw+IAogIHNlbGVjdChmdWxsX25hbWUpIHw+IAogIG11dGF0ZShmdWxsX25hbWUgPSBzdHJfZXh0cmFjdChmdWxsX25hbWUsIFNQQyAlUiUgICMgUmVndWxhciBleHByZXNzaW9ucyAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmVfb3JfbW9yZShXUkQpICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBTUEMgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKG9yKFdSRCwgQU5ZX0NIQVIpKSksCiAgICAgICAgIGZ1bGxfbmFtZSA9IHN0cl9yZW1vdmUoZnVsbF9uYW1lLCBPUEVOX1BBUkVOICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJlcGVhdGVkKERHVCwgNCkgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQ0xPU0VfUEFSRU4gJVIlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmVfb3JfbW9yZShvcihXUkQsQU5ZX0NIQVIpKSksCiAgICAgICAgIGZ1bGxfbmFtZSA9IHN0cl90cmltKGZ1bGxfbmFtZSkpICB8PiAKICB1bm5lc3RfdG9rZW5zKG91dHB1dCA9IHdvcmQsIGlucHV0ID0gZnVsbF9uYW1lKSB8PiAjIFRva2VuaXphdGlvbgogIGFudGlfam9pbihzdG9wX3dvcmRzKSB8PiAgIyBSZW1vdmluZyBzdG9wIHdvcmRzCiAgZmlsdGVyKHdvcmQgIT0gImRvaSIsCiAgICAgICAgICFzdHJfZGV0ZWN0KHdvcmQsICJbMC05XSIpKSB8PiAgIyBXb1MgZGF0YQogIGZpbHRlcih3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJjaXRhdGlvbiIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJyZXNlYXJjaCIpLCAgIyBXb3JkcyByZW1vdmVkCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInBzaHljaG9sb2d5IiksIAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJzY2llbmNlIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInNwb3J0IiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gIndpbmUiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAiam1rZyIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJpbnRlcm5hdGlvbmFsIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInNjaSIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJqb3VybmFsIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImFuYWx5c2lzIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInJlcyIpKSB8PgogIGNvdW50KHdvcmQsIHNvcnQgPSBUUlVFKSB8PiAKICB3aXRoKHdvcmRjbG91ZCh3b3JkLCAKICAgICAgICAgICAgICAgICBuLCAKICAgICAgICAgICAgICAgICByYW5kb20ub3JkZXIgPSBGQUxTRSwgCiAgICAgICAgICAgICAgICAgbWF4LndvcmRzID0gNTAsIAogICAgICAgICAgICAgICAgIGNvbG9ycz1wYWwpKQpgYGAKCiMjIyBDbHVzdGVyIDIKCmBgYHtyfQpjbHVzdGVyXzIgPC0gCiAgd29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrIHw+IAogIGRlbGV0ZS52ZXJ0aWNlcyh3aGljaChWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yaykkc3ViZmllbGQgIT0gMikpCgpjbHVzdGVyXzJfcGFnZV9yYW5rIDwtIAogIGNsdXN0ZXJfMiB8PiAKICBzZXQudmVydGV4LmF0dHJpYnV0ZShuYW1lID0gInBhZ2VfcmFuayIsIAogICAgICAgICAgICAgICAgICAgICAgIHZhbHVlID0gcGFnZV9yYW5rKGNsdXN0ZXJfMikkdmVjdG9yKQoKY2x1c3Rlcl8yX2RmIDwtIAogIHRpYmJsZShuYW1lID0gVihjbHVzdGVyXzJfcGFnZV9yYW5rKSRuYW1lLAogICAgICAgICBmdWxsX25hbWUgPSBWKGNsdXN0ZXJfMl9wYWdlX3JhbmspJGZ1bGxfbmFtZSwKICAgICAgICAgcGFnZV9yYW5rID0gVihjbHVzdGVyXzJfcGFnZV9yYW5rKSRwYWdlX3JhbmssCiAgICAgICAgIGNsdXN0ZXIgPSBWKGNsdXN0ZXJfMl9wYWdlX3JhbmspJHN1YmZpZWxkLCkKCm5vZGVzX2Z1bGxfZGF0YSB8PiAKICBmaWx0ZXIoY2x1c3RlciA9PSAyKSB8PiAKICBzZWxlY3QoZnVsbF9uYW1lKSB8PiAKICBtdXRhdGUoZnVsbF9uYW1lID0gc3RyX2V4dHJhY3QoZnVsbF9uYW1lLCBTUEMgJVIlICAjIFJlZ3VsYXIgZXhwcmVzc2lvbnMgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb25lX29yX21vcmUoV1JEKSAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgU1BDICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmVfb3JfbW9yZShvcihXUkQsIEFOWV9DSEFSKSkpLAogICAgICAgICBmdWxsX25hbWUgPSBzdHJfcmVtb3ZlKGZ1bGxfbmFtZSwgT1BFTl9QQVJFTiAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICByZXBlYXRlZChER1QsIDQpICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIENMT1NFX1BBUkVOICVSJQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb25lX29yX21vcmUob3IoV1JELEFOWV9DSEFSKSkpLAogICAgICAgICBmdWxsX25hbWUgPSBzdHJfdHJpbShmdWxsX25hbWUpKSAgfD4gCiAgdW5uZXN0X3Rva2VucyhvdXRwdXQgPSB3b3JkLCBpbnB1dCA9IGZ1bGxfbmFtZSkgfD4gCiAgYW50aV9qb2luKHN0b3Bfd29yZHMpIHw+CiAgZmlsdGVyKHdvcmQgIT0gImRvaSIsCiAgICAgICAgICFzdHJfZGV0ZWN0KHdvcmQsICJbMC05XSIpKSB8PiAgIyBXb1MgZGF0YQogIGZpbHRlcih3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJjaXRhdGlvbiIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJyZXNlYXJjaCIpLCAKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAiYW5hbHlzaXMiKSwgCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInNjaWVuY2UiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAic2NpZW50b21ldHJpYyIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJyZXMiKSkgfD4KICBjb3VudCh3b3JkLCBzb3J0ID0gVFJVRSkgfD4gCiAgd2l0aCh3b3JkY2xvdWQod29yZCwgCiAgICAgICAgICAgICAgICAgbiwgCiAgICAgICAgICAgICAgICAgcmFuZG9tLm9yZGVyID0gRkFMU0UsIAogICAgICAgICAgICAgICAgIG1heC53b3JkcyA9IDUwLCAKICAgICAgICAgICAgICAgICBjb2xvcnM9cGFsKSkKYGBgCgojIyMgQ2x1c3RlciAzCgpgYGB7cn0KCmNsdXN0ZXJfMyA8LSAKICB3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmsgfD4gCiAgZGVsZXRlLnZlcnRpY2VzKHdoaWNoKFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrKSRzdWJmaWVsZCAhPSAzKSkKCmNsdXN0ZXJfM19wYWdlX3JhbmsgPC0gCiAgY2x1c3Rlcl8zIHw+IAogIHNldC52ZXJ0ZXguYXR0cmlidXRlKG5hbWUgPSAicGFnZV9yYW5rIiwgCiAgICAgICAgICAgICAgICAgICAgICAgdmFsdWUgPSBwYWdlX3JhbmsoY2x1c3Rlcl8zKSR2ZWN0b3IpCgpjbHVzdGVyXzNfZGYgPC0gCiAgdGliYmxlKG5hbWUgPSBWKGNsdXN0ZXJfM19wYWdlX3JhbmspJG5hbWUsCiAgICAgICAgIGZ1bGxfbmFtZSA9IFYoY2x1c3Rlcl8zX3BhZ2VfcmFuaykkZnVsbF9uYW1lLAogICAgICAgICBwYWdlX3JhbmsgPSBWKGNsdXN0ZXJfM19wYWdlX3JhbmspJHBhZ2VfcmFuaywKICAgICAgICAgY2x1c3RlciA9IFYoY2x1c3Rlcl8zX3BhZ2VfcmFuaykkc3ViZmllbGQsKQoKbm9kZXNfZnVsbF9kYXRhIHw+IAogIGZpbHRlcihjbHVzdGVyID09IDMpIHw+IAogIHNlbGVjdChmdWxsX25hbWUpIHw+IAogIG11dGF0ZShmdWxsX25hbWUgPSBzdHJfZXh0cmFjdChmdWxsX25hbWUsIFNQQyAlUiUgICMgUmVndWxhciBleHByZXNzaW9ucyAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmVfb3JfbW9yZShXUkQpICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBTUEMgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKG9yKFdSRCwgQU5ZX0NIQVIpKSksCiAgICAgICAgIGZ1bGxfbmFtZSA9IHN0cl9yZW1vdmUoZnVsbF9uYW1lLCBPUEVOX1BBUkVOICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJlcGVhdGVkKERHVCwgNCkgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQ0xPU0VfUEFSRU4gJVIlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmVfb3JfbW9yZShvcihXUkQsQU5ZX0NIQVIpKSksCiAgICAgICAgIGZ1bGxfbmFtZSA9IHN0cl90cmltKGZ1bGxfbmFtZSkpICB8PiAKICB1bm5lc3RfdG9rZW5zKG91dHB1dCA9IHdvcmQsIGlucHV0ID0gZnVsbF9uYW1lKSB8PiAKICBhbnRpX2pvaW4oc3RvcF93b3JkcykgfD4KICBmaWx0ZXIod29yZCAhPSAiZG9pIiwKICAgICAgICAgIXN0cl9kZXRlY3Qod29yZCwgIlswLTldIikpIHw+ICAjIFdvUyBkYXRhIAogIGZpbHRlcih3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJjaXRhdGlvbiIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJyZXNlYXJjaCIpLCAKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAiYW5hbHlzaXMiKSwgCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInNjaWVuY2UiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAic2NpZW50b21ldHJpYyIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJ2dWxuZXJhYmlsaXR5IikpIHw+CiAgY291bnQod29yZCwgc29ydCA9IFRSVUUpIHw+IAogIHdpdGgod29yZGNsb3VkKHdvcmQsIAogICAgICAgICAgICAgICAgIG4sIAogICAgICAgICAgICAgICAgIHJhbmRvbS5vcmRlciA9IEZBTFNFLCAKICAgICAgICAgICAgICAgICBtYXgud29yZHMgPSA1MCwgCiAgICAgICAgICAgICAgICAgY29sb3JzPXBhbCkpCmBgYAojIyMgQ2x1c3RlciA0CgpgYGB7cn0KCmNsdXN0ZXJfNCA8LSAKICB3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmsgfD4gCiAgZGVsZXRlLnZlcnRpY2VzKHdoaWNoKFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrKSRzdWJmaWVsZCAhPSA0KSkKCmNsdXN0ZXJfNF9wYWdlX3JhbmsgPC0gCiAgY2x1c3Rlcl80IHw+IAogIHNldC52ZXJ0ZXguYXR0cmlidXRlKG5hbWUgPSAicGFnZV9yYW5rIiwgCiAgICAgICAgICAgICAgICAgICAgICAgdmFsdWUgPSBwYWdlX3JhbmsoY2x1c3Rlcl80KSR2ZWN0b3IpCgpjbHVzdGVyXzRfZGYgPC0gCiAgdGliYmxlKG5hbWUgPSBWKGNsdXN0ZXJfNF9wYWdlX3JhbmspJG5hbWUsCiAgICAgICAgIGZ1bGxfbmFtZSA9IFYoY2x1c3Rlcl80X3BhZ2VfcmFuaykkZnVsbF9uYW1lLAogICAgICAgICBwYWdlX3JhbmsgPSBWKGNsdXN0ZXJfNF9wYWdlX3JhbmspJHBhZ2VfcmFuaywKICAgICAgICAgY2x1c3RlciA9IFYoY2x1c3Rlcl80X3BhZ2VfcmFuaykkc3ViZmllbGQsKQoKbm9kZXNfZnVsbF9kYXRhIHw+IAogIGZpbHRlcihjbHVzdGVyID09IDQpIHw+IAogIHNlbGVjdChmdWxsX25hbWUpIHw+IAogIG11dGF0ZShmdWxsX25hbWUgPSBzdHJfZXh0cmFjdChmdWxsX25hbWUsIFNQQyAlUiUgICMgUmVndWxhciBleHByZXNzaW9ucyAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmVfb3JfbW9yZShXUkQpICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBTUEMgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKG9yKFdSRCwgQU5ZX0NIQVIpKSksCiAgICAgICAgIGZ1bGxfbmFtZSA9IHN0cl9yZW1vdmUoZnVsbF9uYW1lLCBPUEVOX1BBUkVOICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJlcGVhdGVkKERHVCwgNCkgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQ0xPU0VfUEFSRU4gJVIlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmVfb3JfbW9yZShvcihXUkQsQU5ZX0NIQVIpKSksCiAgICAgICAgIGZ1bGxfbmFtZSA9IHN0cl90cmltKGZ1bGxfbmFtZSkpICB8PiAKICB1bm5lc3RfdG9rZW5zKG91dHB1dCA9IHdvcmQsIGlucHV0ID0gZnVsbF9uYW1lKSB8PiAKICBhbnRpX2pvaW4oc3RvcF93b3JkcykgfD4gCiAgZmlsdGVyKHdvcmQgIT0gImRvaSIsCiAgICAgICAgICFzdHJfZGV0ZWN0KHdvcmQsICJbMC05XSIpKSB8PiAgIyBXb1MgZGF0YQogIGZpbHRlcih3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJjaXRhdGlvbiIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJyZXNlYXJjaCIpLCAKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAiYW5hbHlzaXMiKSwgCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInNjaWVuY2UiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAic2NpZW50b21ldHJpYyIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJ2dWxuZXJhYmlsaXR5IikpIHw+CiAgY291bnQod29yZCwgc29ydCA9IFRSVUUpIHw+IAogIHdpdGgod29yZGNsb3VkKHdvcmQsIAogICAgICAgICAgICAgICAgIG4sIAogICAgICAgICAgICAgICAgIHJhbmRvbS5vcmRlciA9IEZBTFNFLCAKICAgICAgICAgICAgICAgICBtYXgud29yZHMgPSA1MCwgCiAgICAgICAgICAgICAgICAgY29sb3JzPXBhbCkpCmBgYAoKIyBFeHBvcnRpbmcgZmlsZXMKCmBgYHtyfQoKd3JpdGVfY3N2KHdvc19zY29wdXNfdG9zJGRmLCAid29zX3Njb3B1c190b3MuY3N2IikgIyBFeHBvcnRpbmcgYWxsIGRhdGEgbWVyZ2VkCgp3cml0ZV9jc3YodGFibGVfMSwgInRhYmxlXzEuY3N2IikgIyBFeHBvcnRpbmcgdGFibGUgMQp3cml0ZV9jc3Yod29zX3Njb3B1c190b3RhbF9jb3VudHJ5LCAidGFibGVfMl8uY3N2IikgICMgRXhwb3J0aW5nIHRhYmxlIDIKd3JpdGVfY3N2KHdvc19zY29wdXNfYXV0aG9ycywgInRhYmxlXzMuY3N2IikgIyBFeHBvcnRpbmcgdGFibGUgMwp3cml0ZV9jc3Yod29zX3Njb3B1c190b3RhbF9qb3VybmFsLCAidGFibGVfNC5jc3YiKSAjIEV4cG9ydGluZyB0YWJsZSA0CgoKd3JpdGVfY3N2KGxhbmd1YWdlcywgImZpZ3VyZV8xLmNzdiIpICMgRXhwb3J0aW5nIGRhdGEgZmlndXJlIDEgCndyaXRlX2NzdihmaWd1cmVfMl9kYXRhLCAiZmlndXJlXzIuY3N2IikgIyBFeHBvcnRpbmcgZGF0YSBmaWd1cmUgMgoKd3JpdGUuZ3JhcGgod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrLCAiY2l0YXRpb25fbmV0d29ya19mdWxsLmdyYXBobWwiLCAiZ3JhcGhtbCIpICMgRXhwb3J0aW5nIGdyYXBoCndyaXRlLmdyYXBoKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29ya19jbHVzdGVycywgCiAgICAgICAgICAgICJ3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmtfY2x1c3RlcnMuZ3JhcGhtbCIsIAogICAgICAgICAgICAiZ3JhcGhtbCIpCgphY2FfZ3JhcGhtbF9ub2RlcyA8LSAKICBhY2FfdGJsX2dyYXBoX2ZpbHRlcmVkIHw+IAogIGFjdGl2YXRlKG5vZGVzKSB8PiAKICBhc190aWJibGUoKSB8PiAKICByZW5hbWUoYXV0aG9yID0gbmFtZSkgfD4gCiAgcm93bmFtZXNfdG9fY29sdW1uKCJuYW1lIikKCmFjYV9ncmFwaG1sX2VkZ2VzIDwtIAogIGFjYV90YmxfZ3JhcGhfZmlsdGVyZWQgfD4gCiAgYWN0aXZhdGUoZWRnZXMpIHw+IAogIGFzX3RpYmJsZSgpIAoKYWNhX2dyYXBobWwgPC0gCiAgZ3JhcGhfZnJvbV9kYXRhX2ZyYW1lKGQgPSBhY2FfZ3JhcGhtbF9lZGdlcywgCiAgICAgICAgICAgICAgICAgICAgICAgIGRpcmVjdGVkID0gRkFMU0UsIAogICAgICAgICAgICAgICAgICAgICAgICB2ZXJ0aWNlcyA9IGFjYV9ncmFwaG1sX25vZGVzKQoKd3JpdGVfZ3JhcGgoYWNhX2dyYXBobWwsICJhY2FfZ3JhcGguZ3JhcGhtbCIsICJncmFwaG1sIikgIyBFeHBvcnQgYXV0aG9yIGNvLWNpdGF0aW9uIGdyYXBoCgphdXRob3JfY29sbGFiX2dyYXBobWxfbm9kZXMgPC0gCiAgYXV0aG9yX2NvbGxhYl90YmxfZ3JhcGhfZmlsdGVyZWQgfD4gCiAgYWN0aXZhdGUobm9kZXMpIHw+IAogIGFzX3RpYmJsZSgpIHw+IAogIHJlbmFtZShhdXRob3IgPSBuYW1lKSB8PiAKICByb3duYW1lc190b19jb2x1bW4oIm5hbWUiKQoKYXV0aG9yX2NvbGxhYl9ncmFwaG1sX2VkZ2VzIDwtIAogIGF1dGhvcl9jb2xsYWJfdGJsX2dyYXBoX2ZpbHRlcmVkIHw+IAogIGFjdGl2YXRlKGVkZ2VzKSB8PiAKICBhc190aWJibGUoKSAKCmF1dGhvcl9jb2xsYWJfZ3JhcGhtbCA8LSAKICBncmFwaF9mcm9tX2RhdGFfZnJhbWUoZCA9IGF1dGhvcl9jb2xsYWJfZ3JhcGhtbF9lZGdlcywgCiAgICAgICAgICAgICAgICAgICAgICAgIGRpcmVjdGVkID0gRkFMU0UsIAogICAgICAgICAgICAgICAgICAgICAgICB2ZXJ0aWNlcyA9IGF1dGhvcl9jb2xsYWJfZ3JhcGhtbF9ub2RlcykKCndyaXRlX2dyYXBoKGF1dGhvcl9jb2xsYWJfZ3JhcGhtbCwgImF1dGhvcl9jb2xsYWJfZ3JhcGhtbC5ncmFwaG1sIiwgImdyYXBobWwiKSAjIEV4cG9ydCBhdXRob3IgY28tY2l0YXRpb24gZ3JhcGgKCmNvdW50cnlfY29sbGFiX2dyYXBobWxfbm9kZXMgPC0gCiAgY291bnRyeV9jb2xsYWJfdGJsX2dyYXBoX2ZpbHRlcmVkIHw+IAogIGFjdGl2YXRlKG5vZGVzKSB8PiAKICBhc190aWJibGUoKSB8PiAKICByZW5hbWUoYXV0aG9yID0gbmFtZSkgfD4gCiAgcm93bmFtZXNfdG9fY29sdW1uKCJuYW1lIikKCmNvdW50cnlfY29sbGFiX2dyYXBobWxfZWRnZXMgPC0gCiAgY291bnRyeV9jb2xsYWJfdGJsX2dyYXBoX2ZpbHRlcmVkIHw+IAogIGFjdGl2YXRlKGVkZ2VzKSB8PiAKICBhc190aWJibGUoKSAKCmNvdW50cnlfY29sbGFiX2dyYXBobWwgPC0gCiAgZ3JhcGhfZnJvbV9kYXRhX2ZyYW1lKGQgPSBjb3VudHJ5X2NvbGxhYl9ncmFwaG1sX2VkZ2VzLCAKICAgICAgICAgICAgICAgICAgICAgICAgZGlyZWN0ZWQgPSBGQUxTRSwgCiAgICAgICAgICAgICAgICAgICAgICAgIHZlcnRpY2VzID0gY291bnRyeV9jb2xsYWJfZ3JhcGhtbF9ub2RlcykKCndyaXRlX2dyYXBoKGNvdW50cnlfY29sbGFiX2dyYXBobWwsICJjb3VudHJ5X2NvbGxhYl9ncmFwaG1sLmdyYXBobWwiLCAiZ3JhcGhtbCIpICMgRXhwb3J0IGF1dGhvciBjby1jaXRhdGlvbiBncmFwaAoKd3JpdGUuY3N2KHRyZWVfb2Zfc2NpZW5jZSwgInRyZWVfb2Zfc2NpZW5jZS5jc3YiKSAjIEV4cG9ydGluZyBUcmVlIG9mIFNjaWVuY2UKCndyaXRlLmNzdihjbHVzdGVyXzFfZGYsICJjbHVzdGVyXzEuY3N2IikgIyBFeHBvcnRpbmcgY2x1c3RlciAxCndyaXRlLmNzdihjbHVzdGVyXzJfZGYsICJjbHVzdGVyXzIuY3N2IikgIyBFeHBvcnRpbmcgY2x1c3RlciAyCndyaXRlLmNzdihjbHVzdGVyXzNfZGYsICJjbHVzdGVyXzMuY3N2IikgIyBFeHBvcnRpbmcgY2x1c3RlciAzCndyaXRlLmNzdihjbHVzdGVyXzRfZGYsICJjbHVzdGVyXzQuY3N2IikgIyBFeHBvcnRpbmcgY2x1c3RlciA0Cgp3cml0ZS5jc3Yobm9kZXNfZnVsbF9kYXRhLCAibm9kZXNfZnVsbF9kYXRhLmNzdiIpICMgRXhwb3J0aW5nIGFsbCBub2RlcwpgYGAKCg==