Los datos corresponden a un estudio realizado en n=10 sitios de muestreos, los cuales se visitaron en n=4 meses. En cada uno de los muestreos se realizo una cuantificacion de n=25 variables ambientales. Utilizando la variable que le corresponde segun la imagen anterior, resuelva lo que se solicita a continuacion:
datos<-("https://raw.githubusercontent.com/entomolab/bases_datos/master/base_datos01.csv")
data<-read.csv(datos,sep = ";", header = T, dec = ".")
head(data)
## ï.. sample var01 var02 var03 var04 var05 var06 var07 var08 var09 var10
## 1 Sitio01 1 50 172.2 0.05 7.3 0.40 49000 8 86.00 3.3 8
## 2 Sitio01 2 54 26.0 0.05 8.5 0.40 49000 8 77.00 2.2 10
## 3 Sitio01 3 45 304.5 0.05 8.9 0.40 490 12 70.00 5.9 15
## 4 Sitio01 4 46 68.2 0.05 8.5 0.40 3300 5 88.00 5.7 10
## 5 sitio03 1 44 81.8 0.05 9.7 1.76 490 6 7.38 3.3 8
## 6 sitio03 2 46 82.6 0.05 7.6 1.69 490 19 85.00 8.0 18
## var11 var12 var13 var14 var15 var16 var17 var18 var19 var20 var21 var22 var23
## 1 18 36 0.03 0.2 7.10 7.37 93 152 39.0 113 21.2 3.28 42
## 2 18 33 0.03 0.2 7.60 7.69 38 78 4.5 73 19.6 2.48 16
## 3 23 35 0.03 0.2 7.78 7.56 31 84 7.0 77 18.5 8.22 26
## 4 21 39 0.03 0.2 4.96 7.60 43 236 22.0 214 19.0 1,75 30
## 5 24 34 0.15 0.2 7.31 8.20 41 166 38.0 128 21.7 1.79 57
## 6 18 29 0.03 0.2 7.66 7.72 38 96 18.0 78 20.3 11.30 17
## var24 var25
## 1 5 69
## 2 4 72
## 3 5 70
## 4 6 62
## 5 5 72
## 6 6 69
str(data)
## 'data.frame': 40 obs. of 27 variables:
## $ ï.. : chr "Sitio01" "Sitio01" "Sitio01" "Sitio01" ...
## $ sample: int 1 2 3 4 1 2 3 4 1 2 ...
## $ var01 : num 50 54 45 46 44 46 36 42 70 62 ...
## $ var02 : num 172.2 26 304.5 68.2 81.8 ...
## $ var03 : num 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 ...
## $ var04 : num 7.3 8.5 8.9 8.5 9.7 7.6 6.2 8 18.5 15.7 ...
## $ var05 : num 0.4 0.4 0.4 0.4 1.76 1.69 1.4 1.22 1.72 1.58 ...
## $ var06 : num 49000 49000 490 3300 490 490 330 330 1700 4900 ...
## $ var07 : num 8 8 12 5 6 19 7 10 4 26 ...
## $ var08 : num 86 77 70 88 7.38 85 63 85 172 122 ...
## $ var09 : num 3.3 2.2 5.9 5.7 3.3 8 2.6 0.65 3.9 29 ...
## $ var10 : num 8 10 15 10 8 18 6 4 8 50 ...
## $ var11 : num 18 18 23 21 24 18 16 20 46 35 ...
## $ var12 : num 36 33 35 39 34 29 26 35 77 75 ...
## $ var13 : num 0.03 0.03 0.03 0.03 0.15 0.03 0.03 0.03 0.15 0.03 ...
## $ var14 : num 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 ...
## $ var15 : num 7.1 7.6 7.78 4.96 7.31 7.66 7.83 5.41 7.32 7.78 ...
## $ var16 : num 7.37 7.69 7.56 7.6 8.2 7.72 7.73 7.77 7.86 7.32 ...
## $ var17 : num 93 38 31 43 41 38 32 45 86 61 ...
## $ var18 : num 152 78 84 236 166 96 86 265 212 268 ...
## $ var19 : num 39 4.5 7 22 38 18 14 16 61 127 ...
## $ var20 : num 113 73 77 214 128 78 72 240 151 141 ...
## $ var21 : num 21.2 19.6 18.5 19 21.7 20.3 19.1 18.1 24.8 22.9 ...
## $ var22 : chr "3.28" "2.48" "8.22" "1,75" ...
## $ var23 : num 42 16 26 30 57 17 39 24 69 27 ...
## $ var24 : int 5 4 5 6 5 6 4 5 5 8 ...
## $ var25 : int 69 72 70 62 72 69 72 71 70 57 ...
View(data)
s1 <- subset(data, data$ï.. =="Sitio01", "var13")
s1
## var13
## 1 0.03
## 2 0.03
## 3 0.03
## 4 0.03
means1 <- mean(s1$var13)
means1
## [1] 0.03
medians1 <- median(s1$var13)
medians1
## [1] 0.03
sds1 <- sd(s1$var13)
sds1
## [1] 0
cvs1 <- ((sds1/means1)*100)
cvs1
## [1] 0
s2 <- subset(data, data$ï.. =="sitio02", "var13")
s2
## var13
## 37 0.18
## 38 0.25
## 39 0.03
## 40 0.03
means2 <- mean(s2$var13)
means2
## [1] 0.1225
medians2 <- median(s2$var13)
medians2
## [1] 0.105
sds2 <- sd(s2$var13)
sds2
## [1] 0.1105667
cvs2 <- (sds2/means1)*100
cvs2
## [1] 368.5557
s3 <- subset(data, data$ï.. =="sitio03", "var13")
s3
## var13
## 5 0.15
## 6 0.03
## 7 0.03
## 8 0.03
means3 <- mean(s3$var13)
means3
## [1] 0.06
medians3 <- median(s3$var13)
medians3
## [1] 0.03
sds3 <- sd(s3$var13)
sds3
## [1] 0.06
cvs3 <- (sds3/means1)*100
cvs3
## [1] 200
s4 <- subset(data, data$ï.. =="sitio04", "var13")
s4
## var13
## 9 0.15
## 10 0.03
## 11 0.03
## 12 0.03
means4 <- mean(s4$var13)
means4
## [1] 0.06
medians4 <- median(s4$var13)
medians4
## [1] 0.03
sds4 <- sd(s4$var13)
sds4
## [1] 0.06
cvs4 <- (sds4/means1)*100
cvs4
## [1] 200
s5 <- subset(data, data$ï.. =="sitio05", "var13")
s5
## var13
## 13 0.24
## 14 0.38
## 15 0.03
## 16 0.03
means5 <- mean(s5$var13)
means5
## [1] 0.17
medians5 <- median(s5$var13)
medians5
## [1] 0.135
sds5 <- sd(s5$var13)
sds5
## [1] 0.1714643
cvs5 <- (sds5/means1)*100
cvs5
## [1] 571.5476
s6 <- subset(data, data$ï.. =="sitio06", "var13")
s6
## var13
## 17 0.30
## 18 0.26
## 19 0.03
## 20 0.03
means6 <- mean(s6$var13)
means6
## [1] 0.155
medians6 <- median(s6$var13)
medians6
## [1] 0.145
sds6 <- sd(s6$var13)
sds6
## [1] 0.1452584
cvs6 <- (sds6/means1)*100
cvs6
## [1] 484.1946
s7 <- subset(data, data$ï.. =="sitio07", "var13")
s7
## var13
## 21 0.22
## 22 0.28
## 23 0.03
## 24 0.03
means7 <- mean(s7$var13)
means7
## [1] 0.14
medians7 <- median(s7$var13)
medians7
## [1] 0.125
sds7 <- sd(s7$var13)
sds7
## [1] 0.1293574
cvs7 <- (sds7/means1)*100
cvs7
## [1] 431.1913
s8 <- subset(data, data$ï.. =="sitio08", "var13")
s8
## var13
## 25 0.16
## 26 0.03
## 27 0.03
## 28 0.03
means8 <- mean(s8$var13)
means8
## [1] 0.0625
medians8 <- median(s8$var13)
medians8
## [1] 0.03
sds8 <- sd(s8$var13)
sds8
## [1] 0.065
cvs8 <- (sds8/means1)*100
cvs8
## [1] 216.6667
s9 <- subset(data, data$ï.. =="sitio09", "var13")
s9
## var13
## 29 0.32
## 30 0.31
## 31 0.03
## 32 0.03
means9 <- mean(s9$var13)
means9
## [1] 0.1725
medians9 <- median(s9$var13)
medians9
## [1] 0.17
sds9 <- sd(s9$var13)
sds9
## [1] 0.1645955
cvs9 <- (sds9/means1)*100
cvs9
## [1] 548.6515
s10 <- subset(data, data$ï.. =="sitio10", "var13")
s10
## var13
## 33 0.17
## 34 0.25
## 35 0.03
## 36 0.03
means10 <- mean(s10$var13)
means10
## [1] 0.12
medians10 <- median(s10$var13)
medians10
## [1] 0.1
sds10 <- sd(s10$var13)
sds10
## [1] 0.1089342
cvs10 <- (sds10/means1)*100
cvs10
## [1] 363.1141
library(fdth)
## Warning: package 'fdth' was built under R version 4.1.3
##
## Attaching package: 'fdth'
## The following objects are masked from 'package:stats':
##
## sd, var
variable13 <- fdt(data$var13, breaks = "Scott") #para tabla de frecuencia de var13
variable13
## Class limits f rf rf(%) cf cf(%)
## [0.0297,0.1182) 25 0.62 62.5 25 62.5
## [0.1182,0.2068) 5 0.12 12.5 30 75.0
## [0.2068,0.2953) 6 0.15 15.0 36 90.0
## [0.2953,0.3838) 4 0.10 10.0 40 100.0
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.1.3
sd <- sd(data$var23)
sd
## [1] 16.54489
ggplot(data, aes(x=var13, y=var23, group=ï.., color=ï..)) +
geom_pointrange(aes(ymin=var23-sd, ymax=var23+sd))