age cut into intervals
age1<-cut(gss2021_ZERODraft$age,
breaks = c(0,24,39,59,79,99))
summary(gss2021_ZERODraft[, c("AllEducLevels","subgrouphis","subgroupBorn","subgroupsex","subgroupincom16","subgroupdisrspct","subgroupnotsmart","age")])
## AllEducLevels subgrouphis subgroupBorn subgroupsex subgroupincom16
## 1 : 230 0 :3544 0 : 444 Min. :0.0000 0 :1434
## 2 : 829 1 : 454 1 :3516 1st Qu.:0.0000 1 :2392
## 3 :1969 NA's: 34 NA's: 72 Median :1.0000 NA's: 206
## 4 : 938 Mean :0.5594
## NA's: 66 3rd Qu.:1.0000
## Max. :1.0000
## NA's :92
## subgroupdisrspct subgroupnotsmart age
## 0 : 554 0 : 867 Min. :18.00
## 1 :2047 1 :1735 1st Qu.:37.00
## NA's:1431 NA's:1430 Median :53.00
## Mean :52.16
## 3rd Qu.:66.00
## Max. :89.00
## NA's :333
## outcome variable
table(gss2021_ZERODraft$AllEducLevels)
##
## 1 2 3 4
## 230 829 1969 938
## predictors
table(gss2021_ZERODraft$subgrouphis)
##
## 0 1
## 3544 454
table(gss2021_ZERODraft$subgroupnotsmart)
##
## 0 1
## 867 1735
table(gss2021_ZERODraft$subgroupBorn)
##
## 0 1
## 444 3516
table(gss2021_ZERODraft$subgroupincom16)
##
## 0 1
## 1434 2392
table(gss2021_ZERODraft$subgroupdisrspct)
##
## 0 1
## 554 2047
table(gss2021_ZERODraft$subgroupsex)
##
## 0 1
## 1736 2204
#find the most common value
mcv.AllEducLevels<-factor(names(which.max(table(gss2021_ZERODraft$AllEducLevels))), levels=levels(gss2021_ZERODraft$AllEducLevels))
mcv.notsmart<-factor(names(which.max(table(gss2021_ZERODraft$subgroupnotsmart))), levels=levels(gss2021_ZERODraft$subgroupnotsmart))
mcv.his<-factor(names(which.max(table(gss2021_ZERODraft$subggrouphis))), levels=levels(gss2021_ZERODraft$subgrouphis))
## Warning: Unknown or uninitialised column: `subggrouphis`.
mcv.disrespect<-factor(names(which.max(table(gss2021_ZERODraft$subgroupdisrspct))), levels=levels(gss2021_ZERODraft$subgroupdisrspct))
mcv.born<-factor(names(which.max(table(gss2021_ZERODraft$subgroupBorn))), levels=levels(gss2021_ZERODraft$subgroupBorn))
mcv.income16<-factor(names(which.max(table(gss2021_ZERODraft$subgroupincom16))), levels=levels(gss2021_ZERODraft$subgroupincom16))
mcv.his
## factor(0)
## Levels: 0 1
mcv.disrespect
## [1] 1
## Levels: 0 1
mcv.notsmart
## [1] 1
## Levels: 0 1
mcv.income16
## [1] 1
## Levels: 0 1
mcv.born
## [1] 1
## Levels: 0 1
mcv.AllEducLevels
## [1] 3
## Levels: 1 2 3 4
#impute the cases
gss2021_ZERODraft$AllEducLevels.imp<-as.factor(ifelse(is.na(gss2021_ZERODraft$AllEducLevels)==T, mcv.AllEducLevels, gss2021_ZERODraft$AllEducLevels))
levels(gss2021_ZERODraft$AllEducLevels.imp)<-levels(gss2021_ZERODraft$AllEducLevels)
gss2021_ZERODraft$his.imp<-as.factor(ifelse(is.na(gss2021_ZERODraft$subgrouphis)==T, mcv.his, gss2021_ZERODraft$subgrouphis))
levels(gss2021_ZERODraft$his.imp)<-levels(gss2021_ZERODraft$subgrouphis)
gss2021_ZERODraft$notsmart.imp<-as.factor(ifelse(is.na(gss2021_ZERODraft$subgroupnotsmart)==T, mcv.notsmart, gss2021_ZERODraft$subgroupnotsmart))
levels(gss2021_ZERODraft$notsmart.imp)<-levels(gss2021_ZERODraft$subgroupnotsmart)
gss2021_ZERODraft$disrespect.imp<-as.factor(ifelse(is.na(gss2021_ZERODraft$subgroupdisrspct)==T, mcv.disrespect, gss2021_ZERODraft$subgroupdisrspct))
levels(gss2021_ZERODraft$disrespect.imp)<-levels(gss2021_ZERODraft$subgroupdisrspct)
gss2021_ZERODraft$born.imp<-as.factor(ifelse(is.na(gss2021_ZERODraft$subgroupBorn)==T, mcv.born, gss2021_ZERODraft$subgroupBorn))
levels(gss2021_ZERODraft$born.imp)<-levels(gss2021_ZERODraft$subgroupBorn)
gss2021_ZERODraft$income16.imp<-as.factor(ifelse(is.na(gss2021_ZERODraft$subgroupincom16)==T, mcv.income16, gss2021_ZERODraft$subgroupincom16))
levels(gss2021_ZERODraft$income16.imp)<-levels(gss2021_ZERODraft$subgroupincom16)
prop.table(table(gss2021_ZERODraft$subgroupdisrspct))
##
## 0 1
## 0.212995 0.787005
prop.table(table(gss2021_ZERODraft$disrespect.imp))
##
## 0 1
## 0.1374008 0.8625992
prop.table(table(gss2021_ZERODraft$subgroupnotsmart))
##
## 0 1
## 0.3332052 0.6667948
prop.table(table(gss2021_ZERODraft$notsmart.imp))
##
## 0 1
## 0.2150298 0.7849702
prop.table(table(gss2021_ZERODraft$subgroupincom16))
##
## 0 1
## 0.374804 0.625196
prop.table(table(gss2021_ZERODraft$income16.imp))
##
## 0 1
## 0.3556548 0.6443452
prop.table(table(gss2021_ZERODraft$subgroupBorn))
##
## 0 1
## 0.1121212 0.8878788
prop.table(table(gss2021_ZERODraft$born.imp))
##
## 0 1
## 0.110119 0.889881
prop.table(table(gss2021_ZERODraft$subgrouphis))
##
## 0 1
## 0.8864432 0.1135568
prop.table(table(gss2021_ZERODraft$his.imp))
##
## 0 1
## 0.8864432 0.1135568
prop.table(table(gss2021_ZERODraft$AllEducLevels))
##
## 1 2 3 4
## 0.05799294 0.20902673 0.49646999 0.23651034
prop.table(table(gss2021_ZERODraft$AllEducLevels.imp))
##
## 1 2 3 4
## 0.05704365 0.20560516 0.50471230 0.23263889
barplot(prop.table(table(gss2021_ZERODraft$AllEducLevels)), main="Original Data All Education Levels", ylim=c(0, .6))

barplot(prop.table(table(gss2021_ZERODraft$AllEducLevels.imp)), main="Imputed Data Education",ylim=c(0, .6))

barplot(prop.table(table(gss2021_ZERODraft$subgrouphis)), main="Original Data Hispanics", ylim=c(0, .6))

barplot(prop.table(table(gss2021_ZERODraft$his.imp)), main="Imputed Data Hispanics",ylim=c(0, .6))

barplot(prop.table(table(gss2021_ZERODraft$subgroupBorn)), main="Original Data Born in US", ylim=c(0, .6))

barplot(prop.table(table(gss2021_ZERODraft$born.imp)), main="Imputed Data Born in US",ylim=c(0, .6))

barplot(prop.table(table(gss2021_ZERODraft$subgroupincom16)), main="Original Data income at 16", ylim=c(0, .6))

barplot(prop.table(table(gss2021_ZERODraft$income16.imp)), main="Imputed Data income at 16",ylim=c(0, .6))

barplot(prop.table(table(gss2021_ZERODraft$subgroupdisrspct)), main="Original Data being disrespected", ylim=c(0, .6))

barplot(prop.table(table(gss2021_ZERODraft$disrespect.imp)), main="Imputed Data being disrespected",ylim=c(0, .6))

barplot(prop.table(table(gss2021_ZERODraft$subgroupnotsmart)), main="Original Data Not Smart", ylim=c(0, .6))

barplot(prop.table(table(gss2021_ZERODraft$notsmart.imp)), main="Imputed Data Not Smart",ylim=c(0, .6))

#look at the patterns of missingness
md.pattern(gss2021_ZERODraft[,c("AllEducLevels", "subgrouphis", "subgroupBorn","subgroupincom16","subgroupdisrspct", "subgroupnotsmart", "subgroupsex", "age")])

## subgrouphis AllEducLevels subgroupBorn subgroupsex subgroupincom16 age
## 2351 1 1 1 1 1 1
## 7 1 1 1 1 1 1
## 9 1 1 1 1 1 1
## 1184 1 1 1 1 1 1
## 124 1 1 1 1 1 0
## 2 1 1 1 1 1 0
## 1 1 1 1 1 1 0
## 88 1 1 1 1 1 0
## 57 1 1 1 1 0 1
## 33 1 1 1 1 0 1
## 9 1 1 1 1 0 0
## 2 1 1 1 1 0 0
## 10 1 1 1 1 0 0
## 3 1 1 1 0 1 1
## 3 1 1 1 0 1 1
## 3 1 1 1 0 1 0
## 1 1 1 1 0 1 0
## 2 1 1 1 0 0 1
## 1 1 1 1 0 0 1
## 1 1 1 1 0 0 0
## 24 1 1 1 0 0 0
## 6 1 1 0 1 1 1
## 3 1 1 0 1 1 1
## 1 1 1 0 1 1 0
## 1 1 1 0 1 0 1
## 2 1 1 0 1 0 1
## 1 1 1 0 1 0 0
## 1 1 1 0 0 1 0
## 5 1 1 0 0 0 0
## 4 1 0 1 1 1 1
## 2 1 0 1 1 1 1
## 2 1 0 1 1 1 0
## 2 1 0 1 1 1 0
## 2 1 0 1 1 0 1
## 2 1 0 1 1 0 1
## 1 1 0 1 1 0 0
## 1 1 0 0 1 1 1
## 1 1 0 0 1 0 1
## 1 1 0 0 1 0 0
## 1 1 0 0 0 1 1
## 2 1 0 0 0 0 1
## 42 1 0 0 0 0 0
## 13 0 1 1 1 1 1
## 5 0 1 1 1 1 1
## 2 0 1 1 1 1 0
## 5 0 1 1 1 1 0
## 1 0 1 1 1 0 1
## 1 0 1 1 1 0 1
## 1 0 1 1 1 0 0
## 1 0 1 0 1 1 1
## 1 0 1 0 1 1 0
## 1 0 1 0 0 0 0
## 1 0 0 1 1 0 1
## 1 0 0 1 0 0 0
## 1 0 0 0 0 0 0
## 34 66 72 92 206 333
## subgroupnotsmart subgroupdisrspct
## 2351 1 1 0
## 7 1 0 1
## 9 0 1 1
## 1184 0 0 2
## 124 1 1 1
## 2 1 0 2
## 1 0 1 2
## 88 0 0 3
## 57 1 1 1
## 33 0 0 3
## 9 1 1 2
## 2 1 0 3
## 10 0 0 4
## 3 1 1 1
## 3 0 0 3
## 3 1 1 2
## 1 0 0 4
## 2 1 1 2
## 1 0 0 4
## 1 1 1 3
## 24 0 0 5
## 6 1 1 1
## 3 0 0 3
## 1 0 1 3
## 1 1 1 2
## 2 0 0 4
## 1 0 0 5
## 1 0 0 5
## 5 0 0 6
## 4 1 1 1
## 2 0 0 3
## 2 1 1 2
## 2 0 0 4
## 2 1 1 2
## 2 0 0 4
## 1 0 0 5
## 1 1 1 2
## 1 0 0 5
## 1 1 1 4
## 1 1 1 3
## 2 1 1 4
## 42 0 0 7
## 13 1 1 1
## 5 0 0 3
## 2 1 1 2
## 5 0 0 4
## 1 1 1 2
## 1 0 0 4
## 1 1 1 3
## 1 1 1 2
## 1 0 0 5
## 1 1 1 5
## 1 1 1 3
## 1 1 0 6
## 1 0 0 8
## 1430 1431 3664
dat2<-gss2021_ZERODraft
samp2<-sample(1:dim(dat2)[1], replace = F, size = 500)
dat2$Eduknock<-dat2$AllEducLevels
dat2$Eduknock[samp2]<-NA
imp<-mice(data = dat2[,c("AllEducLevels", "subgrouphis", "subgroupBorn","subgroupincom16","subgroupdisrspct", "subgroupnotsmart", "educ", "subgroupsex", "age")], seed = 58, m = 10)
##
## iter imp variable
## 1 1 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 1 2 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 1 3 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 1 4 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 1 5 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 1 6 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 1 7 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 1 8 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 1 9 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 1 10 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 2 1 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 2 2 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 2 3 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 2 4 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 2 5 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 2 6 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 2 7 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 2 8 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 2 9 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 2 10 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 3 1 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 3 2 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 3 3 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 3 4 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 3 5 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 3 6 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 3 7 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 3 8 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 3 9 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 3 10 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 4 1 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 4 2 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 4 3 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 4 4 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 4 5 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 4 6 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 4 7 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 4 8 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 4 9 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 4 10 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 5 1 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 5 2 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 5 3 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 5 4 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 5 5 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 5 6 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 5 7 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 5 8 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 5 9 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
## 5 10 AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct subgroupnotsmart educ subgroupsex age
print(imp)
## Class: mids
## Number of multiple imputations: 10
## Imputation methods:
## AllEducLevels subgrouphis subgroupBorn subgroupincom16
## "polyreg" "logreg" "logreg" "logreg"
## subgroupdisrspct subgroupnotsmart educ subgroupsex
## "logreg" "logreg" "pmm" "pmm"
## age
## "pmm"
## PredictorMatrix:
## AllEducLevels subgrouphis subgroupBorn subgroupincom16
## AllEducLevels 0 1 1 1
## subgrouphis 1 0 1 1
## subgroupBorn 1 1 0 1
## subgroupincom16 1 1 1 0
## subgroupdisrspct 1 1 1 1
## subgroupnotsmart 1 1 1 1
## subgroupdisrspct subgroupnotsmart educ subgroupsex age
## AllEducLevels 1 1 1 1 1
## subgrouphis 1 1 1 1 1
## subgroupBorn 1 1 1 1 1
## subgroupincom16 1 1 1 1 1
## subgroupdisrspct 0 1 1 1 1
## subgroupnotsmart 1 0 1 1 1
plot(imp)



library(lattice)
## looking at education an Hispanics
stripplot(imp,educ~subgrouphis|.imp, pch=20)

## looking at education and those percieved as not smart
stripplot(imp,educ~subgroupnotsmart|.imp, pch=20)

dat.imp<-complete(imp, action = 1)
head(dat.imp, n=10)
## AllEducLevels subgrouphis subgroupBorn subgroupincom16 subgroupdisrspct
## 1 2 0 1 0 1
## 2 3 0 1 1 1
## 3 2 1 1 0 1
## 4 3 0 1 1 1
## 5 3 0 0 1 1
## 6 4 0 1 1 0
## 7 2 1 0 1 0
## 8 4 0 1 1 1
## 9 3 0 1 0 1
## 10 3 0 0 1 1
## subgroupnotsmart educ subgroupsex age
## 1 0 12 1 65
## 2 1 16 0 60
## 3 1 12 0 29
## 4 1 13 0 68
## 5 0 14 1 43
## 6 1 17 1 33
## 7 0 12 0 20
## 8 1 19 1 55
## 9 1 13 0 76
## 10 1 16 1 61
#Now, I will see the variability in the 5 different imputations for each outcom
fit.edu<-with(data=imp ,expr=lm(educ~subgrouphis+subgroupBorn+subgroupincom16+subgroupnotsmart+subgroupdisrspct+subgroupsex+age1))
fit.edu
## call :
## with.mids(data = imp, expr = lm(educ ~ subgrouphis + subgroupBorn +
## subgroupincom16 + subgroupnotsmart + subgroupdisrspct + subgroupsex +
## age1))
##
## call1 :
## mice(data = dat2[, c("AllEducLevels", "subgrouphis", "subgroupBorn",
## "subgroupincom16", "subgroupdisrspct", "subgroupnotsmart",
## "educ", "subgroupsex", "age")], m = 10, seed = 58)
##
## nmis :
## AllEducLevels subgrouphis subgroupBorn subgroupincom16
## 66 34 72 206
## subgroupdisrspct subgroupnotsmart educ subgroupsex
## 1431 1430 66 92
## age
## 333
##
## analyses :
## [[1]]
##
## Call:
## lm(formula = educ ~ subgrouphis + subgroupBorn + subgroupincom16 +
## subgroupnotsmart + subgroupdisrspct + subgroupsex + age1)
##
## Coefficients:
## (Intercept) subgrouphis1 subgroupBorn1 subgroupincom161
## 13.4206 -1.0588 -0.3297 0.7736
## subgroupnotsmart1 subgroupdisrspct1 subgroupsex age1(24,39]
## -0.1405 0.7433 -0.3713 1.1654
## age1(39,59] age1(59,79] age1(79,99]
## 1.0410 0.9987 0.9131
##
##
## [[2]]
##
## Call:
## lm(formula = educ ~ subgrouphis + subgroupBorn + subgroupincom16 +
## subgroupnotsmart + subgroupdisrspct + subgroupsex + age1)
##
## Coefficients:
## (Intercept) subgrouphis1 subgroupBorn1 subgroupincom161
## 13.53968 -1.05000 -0.32333 0.74328
## subgroupnotsmart1 subgroupdisrspct1 subgroupsex age1(24,39]
## -0.07001 0.54376 -0.38512 1.17760
## age1(39,59] age1(59,79] age1(79,99]
## 1.05963 0.99356 0.88763
##
##
## [[3]]
##
## Call:
## lm(formula = educ ~ subgrouphis + subgroupBorn + subgroupincom16 +
## subgroupnotsmart + subgroupdisrspct + subgroupsex + age1)
##
## Coefficients:
## (Intercept) subgrouphis1 subgroupBorn1 subgroupincom161
## 13.62579 -1.11141 -0.37773 0.75678
## subgroupnotsmart1 subgroupdisrspct1 subgroupsex age1(24,39]
## -0.06546 0.49962 -0.36878 1.14707
## age1(39,59] age1(59,79] age1(79,99]
## 1.04352 0.97944 0.89857
##
##
## [[4]]
##
## Call:
## lm(formula = educ ~ subgrouphis + subgroupBorn + subgroupincom16 +
## subgroupnotsmart + subgroupdisrspct + subgroupsex + age1)
##
## Coefficients:
## (Intercept) subgrouphis1 subgroupBorn1 subgroupincom161
## 13.4611252 -0.9687635 -0.3345354 0.7770422
## subgroupnotsmart1 subgroupdisrspct1 subgroupsex age1(24,39]
## -0.0005685 0.5578796 -0.3966716 1.1732223
## age1(39,59] age1(59,79] age1(79,99]
## 1.0629113 1.0083785 0.9222487
##
##
## [[5]]
##
## Call:
## lm(formula = educ ~ subgrouphis + subgroupBorn + subgroupincom16 +
## subgroupnotsmart + subgroupdisrspct + subgroupsex + age1)
##
## Coefficients:
## (Intercept) subgrouphis1 subgroupBorn1 subgroupincom161
## 13.5345362 -1.0767138 -0.3939369 0.8084543
## subgroupnotsmart1 subgroupdisrspct1 subgroupsex age1(24,39]
## 0.0009698 0.5666276 -0.3932121 1.1377787
## age1(39,59] age1(59,79] age1(79,99]
## 1.0311374 0.9876120 0.8780563
##
##
## [[6]]
##
## Call:
## lm(formula = educ ~ subgrouphis + subgroupBorn + subgroupincom16 +
## subgroupnotsmart + subgroupdisrspct + subgroupsex + age1)
##
## Coefficients:
## (Intercept) subgrouphis1 subgroupBorn1 subgroupincom161
## 13.64632 -1.09455 -0.37126 0.78098
## subgroupnotsmart1 subgroupdisrspct1 subgroupsex age1(24,39]
## 0.09033 0.33343 -0.39926 1.14452
## age1(39,59] age1(59,79] age1(79,99]
## 1.03552 0.99118 0.89918
##
##
## [[7]]
##
## Call:
## lm(formula = educ ~ subgrouphis + subgroupBorn + subgroupincom16 +
## subgroupnotsmart + subgroupdisrspct + subgroupsex + age1)
##
## Coefficients:
## (Intercept) subgrouphis1 subgroupBorn1 subgroupincom161
## 13.7271 -1.0583 -0.3145 0.7710
## subgroupnotsmart1 subgroupdisrspct1 subgroupsex age1(24,39]
## -0.2032 0.4627 -0.3898 1.1304
## age1(39,59] age1(59,79] age1(79,99]
## 1.0032 0.9330 0.8112
##
##
## [[8]]
##
## Call:
## lm(formula = educ ~ subgrouphis + subgroupBorn + subgroupincom16 +
## subgroupnotsmart + subgroupdisrspct + subgroupsex + age1)
##
## Coefficients:
## (Intercept) subgrouphis1 subgroupBorn1 subgroupincom161
## 13.52409 -1.01183 -0.38627 0.78161
## subgroupnotsmart1 subgroupdisrspct1 subgroupsex age1(24,39]
## -0.02582 0.57428 -0.38888 1.17556
## age1(39,59] age1(59,79] age1(79,99]
## 1.06517 0.99844 0.90446
##
##
## [[9]]
##
## Call:
## lm(formula = educ ~ subgrouphis + subgroupBorn + subgroupincom16 +
## subgroupnotsmart + subgroupdisrspct + subgroupsex + age1)
##
## Coefficients:
## (Intercept) subgrouphis1 subgroupBorn1 subgroupincom161
## 13.6504 -1.0359 -0.3119 0.7163
## subgroupnotsmart1 subgroupdisrspct1 subgroupsex age1(24,39]
## -0.2109 0.5777 -0.3812 1.1462
## age1(39,59] age1(59,79] age1(79,99]
## 1.0308 0.9535 0.8238
##
##
## [[10]]
##
## Call:
## lm(formula = educ ~ subgrouphis + subgroupBorn + subgroupincom16 +
## subgroupnotsmart + subgroupdisrspct + subgroupsex + age1)
##
## Coefficients:
## (Intercept) subgrouphis1 subgroupBorn1 subgroupincom161
## 13.58699 -1.08145 -0.34305 0.78365
## subgroupnotsmart1 subgroupdisrspct1 subgroupsex age1(24,39]
## 0.01975 0.42379 -0.38313 1.14731
## age1(39,59] age1(59,79] age1(79,99]
## 1.03658 0.98029 0.89633
with (data=imp, exp=(sd(educ)))
## call :
## with.mids(data = imp, expr = (sd(educ)))
##
## call1 :
## mice(data = dat2[, c("AllEducLevels", "subgrouphis", "subgroupBorn",
## "subgroupincom16", "subgroupdisrspct", "subgroupnotsmart",
## "educ", "subgroupsex", "age")], m = 10, seed = 58)
##
## nmis :
## AllEducLevels subgrouphis subgroupBorn subgroupincom16
## 66 34 72 206
## subgroupdisrspct subgroupnotsmart educ subgroupsex
## 1431 1430 66 92
## age
## 333
##
## analyses :
## [[1]]
## [1] 2.803917
##
## [[2]]
## [1] 2.796903
##
## [[3]]
## [1] 2.798131
##
## [[4]]
## [1] 2.807146
##
## [[5]]
## [1] 2.801157
##
## [[6]]
## [1] 2.799297
##
## [[7]]
## [1] 2.79675
##
## [[8]]
## [1] 2.80444
##
## [[9]]
## [1] 2.799908
##
## [[10]]
## [1] 2.796787
with (data=imp, exp=(prop.table(table(educ))))
## call :
## with.mids(data = imp, expr = (prop.table(table(educ))))
##
## call1 :
## mice(data = dat2[, c("AllEducLevels", "subgrouphis", "subgroupBorn",
## "subgroupincom16", "subgroupdisrspct", "subgroupnotsmart",
## "educ", "subgroupsex", "age")], m = 10, seed = 58)
##
## nmis :
## AllEducLevels subgrouphis subgroupBorn subgroupincom16
## 66 34 72 206
## subgroupdisrspct subgroupnotsmart educ subgroupsex
## 1431 1430 66 92
## age
## 333
##
## analyses :
## [[1]]
## educ
## 0 1 2 3 4 5
## 0.0022321429 0.0002480159 0.0004960317 0.0007440476 0.0002480159 0.0004960317
## 6 7 8 9 10 11
## 0.0039682540 0.0012400794 0.0064484127 0.0081845238 0.0128968254 0.0210813492
## 12 13 14 15 16 17
## 0.2093253968 0.0709325397 0.1356646825 0.0525793651 0.2363591270 0.0654761905
## 18 19 20
## 0.0877976190 0.0287698413 0.0548115079
##
## [[2]]
## educ
## 0 1 2 3 4 5
## 0.0022321429 0.0002480159 0.0004960317 0.0007440476 0.0002480159 0.0004960317
## 6 7 8 9 10 11
## 0.0037202381 0.0012400794 0.0062003968 0.0079365079 0.0131448413 0.0205853175
## 12 13 14 15 16 17
## 0.2085813492 0.0706845238 0.1371527778 0.0523313492 0.2378472222 0.0644841270
## 18 19 20
## 0.0877976190 0.0285218254 0.0553075397
##
## [[3]]
## educ
## 0 1 2 3 4 5
## 0.0022321429 0.0002480159 0.0004960317 0.0007440476 0.0002480159 0.0004960317
## 6 7 8 9 10 11
## 0.0037202381 0.0012400794 0.0064484127 0.0081845238 0.0131448413 0.0205853175
## 12 13 14 15 16 17
## 0.2095734127 0.0701884921 0.1369047619 0.0520833333 0.2366071429 0.0654761905
## 18 19 20
## 0.0885416667 0.0287698413 0.0540674603
##
## [[4]]
## educ
## 0 1 2 3 4 5
## 0.0022321429 0.0002480159 0.0004960317 0.0009920635 0.0002480159 0.0004960317
## 6 7 8 9 10 11
## 0.0037202381 0.0014880952 0.0062003968 0.0081845238 0.0131448413 0.0208333333
## 12 13 14 15 16 17
## 0.2093253968 0.0694444444 0.1359126984 0.0523313492 0.2375992063 0.0652281746
## 18 19 20
## 0.0885416667 0.0287698413 0.0545634921
##
## [[5]]
## educ
## 0 1 2 3 4 5
## 0.0022321429 0.0002480159 0.0004960317 0.0007440476 0.0002480159 0.0004960317
## 6 7 8 9 10 11
## 0.0039682540 0.0012400794 0.0062003968 0.0079365079 0.0131448413 0.0208333333
## 12 13 14 15 16 17
## 0.2090773810 0.0694444444 0.1366567460 0.0523313492 0.2375992063 0.0644841270
## 18 19 20
## 0.0892857143 0.0285218254 0.0548115079
##
## [[6]]
## educ
## 0 1 2 3 4 5
## 0.0022321429 0.0002480159 0.0004960317 0.0007440476 0.0002480159 0.0004960317
## 6 7 8 9 10 11
## 0.0037202381 0.0012400794 0.0062003968 0.0081845238 0.0128968254 0.0210813492
## 12 13 14 15 16 17
## 0.2088293651 0.0711805556 0.1366567460 0.0523313492 0.2353670635 0.0654761905
## 18 19 20
## 0.0890376984 0.0285218254 0.0548115079
##
## [[7]]
## educ
## 0 1 2 3 4 5
## 0.0022321429 0.0002480159 0.0004960317 0.0007440476 0.0002480159 0.0004960317
## 6 7 8 9 10 11
## 0.0037202381 0.0012400794 0.0064484127 0.0079365079 0.0133928571 0.0205853175
## 12 13 14 15 16 17
## 0.2083333333 0.0699404762 0.1376488095 0.0523313492 0.2375992063 0.0652281746
## 18 19 20
## 0.0882936508 0.0280257937 0.0548115079
##
## [[8]]
## educ
## 0 1 2 3 4 5
## 0.0024801587 0.0002480159 0.0004960317 0.0007440476 0.0002480159 0.0004960317
## 6 7 8 9 10 11
## 0.0037202381 0.0012400794 0.0062003968 0.0079365079 0.0128968254 0.0210813492
## 12 13 14 15 16 17
## 0.2083333333 0.0696924603 0.1371527778 0.0518353175 0.2378472222 0.0657242063
## 18 19 20
## 0.0887896825 0.0282738095 0.0545634921
##
## [[9]]
## educ
## 0 1 2 3 4 5
## 0.0022321429 0.0002480159 0.0004960317 0.0007440476 0.0002480159 0.0004960317
## 6 7 8 9 10 11
## 0.0039682540 0.0012400794 0.0064484127 0.0079365079 0.0131448413 0.0208333333
## 12 13 14 15 16 17
## 0.2090773810 0.0699404762 0.1361607143 0.0515873016 0.2378472222 0.0659722222
## 18 19 20
## 0.0890376984 0.0282738095 0.0540674603
##
## [[10]]
## educ
## 0 1 2 3 4 5
## 0.0022321429 0.0002480159 0.0004960317 0.0007440476 0.0002480159 0.0004960317
## 6 7 8 9 10 11
## 0.0037202381 0.0012400794 0.0064484127 0.0079365079 0.0131448413 0.0208333333
## 12 13 14 15 16 17
## 0.2073412698 0.0706845238 0.1366567460 0.0525793651 0.2366071429 0.0667162698
## 18 19 20
## 0.0885416667 0.0287698413 0.0543154762
with (data=imp, exp=(prop.table(table(subgrouphis))))
## call :
## with.mids(data = imp, expr = (prop.table(table(subgrouphis))))
##
## call1 :
## mice(data = dat2[, c("AllEducLevels", "subgrouphis", "subgroupBorn",
## "subgroupincom16", "subgroupdisrspct", "subgroupnotsmart",
## "educ", "subgroupsex", "age")], m = 10, seed = 58)
##
## nmis :
## AllEducLevels subgrouphis subgroupBorn subgroupincom16
## 66 34 72 206
## subgroupdisrspct subgroupnotsmart educ subgroupsex
## 1431 1430 66 92
## age
## 333
##
## analyses :
## [[1]]
## subgrouphis
## 0 1
## 0.8856647 0.1143353
##
## [[2]]
## subgrouphis
## 0 1
## 0.8856647 0.1143353
##
## [[3]]
## subgrouphis
## 0 1
## 0.8864087 0.1135913
##
## [[4]]
## subgrouphis
## 0 1
## 0.8861607 0.1138393
##
## [[5]]
## subgrouphis
## 0 1
## 0.8851687 0.1148313
##
## [[6]]
## subgrouphis
## 0 1
## 0.8861607 0.1138393
##
## [[7]]
## subgrouphis
## 0 1
## 0.8861607 0.1138393
##
## [[8]]
## subgrouphis
## 0 1
## 0.8856647 0.1143353
##
## [[9]]
## subgrouphis
## 0 1
## 0.8861607 0.1138393
##
## [[10]]
## subgrouphis
## 0 1
## 0.8854167 0.1145833
with (data=imp, exp=(prop.table(table(subgroupBorn))))
## call :
## with.mids(data = imp, expr = (prop.table(table(subgroupBorn))))
##
## call1 :
## mice(data = dat2[, c("AllEducLevels", "subgrouphis", "subgroupBorn",
## "subgroupincom16", "subgroupdisrspct", "subgroupnotsmart",
## "educ", "subgroupsex", "age")], m = 10, seed = 58)
##
## nmis :
## AllEducLevels subgrouphis subgroupBorn subgroupincom16
## 66 34 72 206
## subgroupdisrspct subgroupnotsmart educ subgroupsex
## 1431 1430 66 92
## age
## 333
##
## analyses :
## [[1]]
## subgroupBorn
## 0 1
## 0.1135913 0.8864087
##
## [[2]]
## subgroupBorn
## 0 1
## 0.1116071 0.8883929
##
## [[3]]
## subgroupBorn
## 0 1
## 0.1133433 0.8866567
##
## [[4]]
## subgroupBorn
## 0 1
## 0.1128472 0.8871528
##
## [[5]]
## subgroupBorn
## 0 1
## 0.1121032 0.8878968
##
## [[6]]
## subgroupBorn
## 0 1
## 0.1121032 0.8878968
##
## [[7]]
## subgroupBorn
## 0 1
## 0.1128472 0.8871528
##
## [[8]]
## subgroupBorn
## 0 1
## 0.1121032 0.8878968
##
## [[9]]
## subgroupBorn
## 0 1
## 0.1140873 0.8859127
##
## [[10]]
## subgroupBorn
## 0 1
## 0.1138393 0.8861607
with (data=imp, exp=(prop.table(table(subgroupnotsmart))))
## call :
## with.mids(data = imp, expr = (prop.table(table(subgroupnotsmart))))
##
## call1 :
## mice(data = dat2[, c("AllEducLevels", "subgrouphis", "subgroupBorn",
## "subgroupincom16", "subgroupdisrspct", "subgroupnotsmart",
## "educ", "subgroupsex", "age")], m = 10, seed = 58)
##
## nmis :
## AllEducLevels subgrouphis subgroupBorn subgroupincom16
## 66 34 72 206
## subgroupdisrspct subgroupnotsmart educ subgroupsex
## 1431 1430 66 92
## age
## 333
##
## analyses :
## [[1]]
## subgroupnotsmart
## 0 1
## 0.3402778 0.6597222
##
## [[2]]
## subgroupnotsmart
## 0 1
## 0.3377976 0.6622024
##
## [[3]]
## subgroupnotsmart
## 0 1
## 0.3377976 0.6622024
##
## [[4]]
## subgroupnotsmart
## 0 1
## 0.3301091 0.6698909
##
## [[5]]
## subgroupnotsmart
## 0 1
## 0.3412698 0.6587302
##
## [[6]]
## subgroupnotsmart
## 0 1
## 0.3353175 0.6646825
##
## [[7]]
## subgroupnotsmart
## 0 1
## 0.3375496 0.6624504
##
## [[8]]
## subgroupnotsmart
## 0 1
## 0.3382937 0.6617063
##
## [[9]]
## subgroupnotsmart
## 0 1
## 0.3355655 0.6644345
##
## [[10]]
## subgroupnotsmart
## 0 1
## 0.3380456 0.6619544
with (data=imp, exp=(prop.table(table(subgroupdisrspct))))
## call :
## with.mids(data = imp, expr = (prop.table(table(subgroupdisrspct))))
##
## call1 :
## mice(data = dat2[, c("AllEducLevels", "subgrouphis", "subgroupBorn",
## "subgroupincom16", "subgroupdisrspct", "subgroupnotsmart",
## "educ", "subgroupsex", "age")], m = 10, seed = 58)
##
## nmis :
## AllEducLevels subgrouphis subgroupBorn subgroupincom16
## 66 34 72 206
## subgroupdisrspct subgroupnotsmart educ subgroupsex
## 1431 1430 66 92
## age
## 333
##
## analyses :
## [[1]]
## subgroupdisrspct
## 0 1
## 0.218998 0.781002
##
## [[2]]
## subgroupdisrspct
## 0 1
## 0.2127976 0.7872024
##
## [[3]]
## subgroupdisrspct
## 0 1
## 0.2157738 0.7842262
##
## [[4]]
## subgroupdisrspct
## 0 1
## 0.2162698 0.7837302
##
## [[5]]
## subgroupdisrspct
## 0 1
## 0.2256944 0.7743056
##
## [[6]]
## subgroupdisrspct
## 0 1
## 0.2137897 0.7862103
##
## [[7]]
## subgroupdisrspct
## 0 1
## 0.2127976 0.7872024
##
## [[8]]
## subgroupdisrspct
## 0 1
## 0.2212302 0.7787698
##
## [[9]]
## subgroupdisrspct
## 0 1
## 0.2234623 0.7765377
##
## [[10]]
## subgroupdisrspct
## 0 1
## 0.2145337 0.7854663
with (data=imp, exp=(prop.table(table(subgroupsex))))
## call :
## with.mids(data = imp, expr = (prop.table(table(subgroupsex))))
##
## call1 :
## mice(data = dat2[, c("AllEducLevels", "subgrouphis", "subgroupBorn",
## "subgroupincom16", "subgroupdisrspct", "subgroupnotsmart",
## "educ", "subgroupsex", "age")], m = 10, seed = 58)
##
## nmis :
## AllEducLevels subgrouphis subgroupBorn subgroupincom16
## 66 34 72 206
## subgroupdisrspct subgroupnotsmart educ subgroupsex
## 1431 1430 66 92
## age
## 333
##
## analyses :
## [[1]]
## subgroupsex
## 0 1
## 0.4397321 0.5602679
##
## [[2]]
## subgroupsex
## 0 1
## 0.4409722 0.5590278
##
## [[3]]
## subgroupsex
## 0 1
## 0.4419643 0.5580357
##
## [[4]]
## subgroupsex
## 0 1
## 0.4392361 0.5607639
##
## [[5]]
## subgroupsex
## 0 1
## 0.4427083 0.5572917
##
## [[6]]
## subgroupsex
## 0 1
## 0.4404762 0.5595238
##
## [[7]]
## subgroupsex
## 0 1
## 0.437004 0.562996
##
## [[8]]
## subgroupsex
## 0 1
## 0.4392361 0.5607639
##
## [[9]]
## subgroupsex
## 0 1
## 0.4404762 0.5595238
##
## [[10]]
## subgroupsex
## 0 1
## 0.4409722 0.5590278
with (data=imp, exp=(prop.table(table(age1))))
## call :
## with.mids(data = imp, expr = (prop.table(table(age1))))
##
## call1 :
## mice(data = dat2[, c("AllEducLevels", "subgrouphis", "subgroupBorn",
## "subgroupincom16", "subgroupdisrspct", "subgroupnotsmart",
## "educ", "subgroupsex", "age")], m = 10, seed = 58)
##
## nmis :
## AllEducLevels subgrouphis subgroupBorn subgroupincom16
## 66 34 72 206
## subgroupdisrspct subgroupnotsmart educ subgroupsex
## 1431 1430 66 92
## age
## 333
##
## analyses :
## [[1]]
## age1
## (0,24] (24,39] (39,59] (59,79] (79,99]
## 0.04298459 0.24195729 0.33495539 0.33062990 0.04947283
##
## [[2]]
## age1
## (0,24] (24,39] (39,59] (59,79] (79,99]
## 0.04298459 0.24195729 0.33495539 0.33062990 0.04947283
##
## [[3]]
## age1
## (0,24] (24,39] (39,59] (59,79] (79,99]
## 0.04298459 0.24195729 0.33495539 0.33062990 0.04947283
##
## [[4]]
## age1
## (0,24] (24,39] (39,59] (59,79] (79,99]
## 0.04298459 0.24195729 0.33495539 0.33062990 0.04947283
##
## [[5]]
## age1
## (0,24] (24,39] (39,59] (59,79] (79,99]
## 0.04298459 0.24195729 0.33495539 0.33062990 0.04947283
##
## [[6]]
## age1
## (0,24] (24,39] (39,59] (59,79] (79,99]
## 0.04298459 0.24195729 0.33495539 0.33062990 0.04947283
##
## [[7]]
## age1
## (0,24] (24,39] (39,59] (59,79] (79,99]
## 0.04298459 0.24195729 0.33495539 0.33062990 0.04947283
##
## [[8]]
## age1
## (0,24] (24,39] (39,59] (59,79] (79,99]
## 0.04298459 0.24195729 0.33495539 0.33062990 0.04947283
##
## [[9]]
## age1
## (0,24] (24,39] (39,59] (59,79] (79,99]
## 0.04298459 0.24195729 0.33495539 0.33062990 0.04947283
##
## [[10]]
## age1
## (0,24] (24,39] (39,59] (59,79] (79,99]
## 0.04298459 0.24195729 0.33495539 0.33062990 0.04947283
est.p<-pool(fit.edu)
print(est.p)
## Class: mipo m = 10
## term m estimate ubar b t dfcom
## 1 (Intercept) 10 13.57166878 0.083605936 0.0087553597 0.093236832 3688
## 2 subgrouphis1 10 -1.05477171 0.022429196 0.0017371266 0.024340035 3688
## 3 subgroupBorn1 10 -0.34861735 0.022777981 0.0009525136 0.023825746 3688
## 4 subgroupincom161 10 0.76926041 0.008765909 0.0006395576 0.009469422 3688
## 5 subgroupnotsmart1 10 -0.06054336 0.012434372 0.0096957467 0.023099693 3688
## 6 subgroupdisrspct1 10 0.52830315 0.015897699 0.0119292211 0.029019842 3688
## 7 subgroupsex 10 -0.38572955 0.008257486 0.0001010958 0.008368692 3688
## 8 age1(24,39] 10 1.15451568 0.055843122 0.0002867405 0.056158536 3688
## 9 age1(39,59] 10 1.04093811 0.054193538 0.0003444165 0.054572396 3688
## 10 age1(59,79] 10 0.98240349 0.055038457 0.0005243987 0.055615296 3688
## 11 age1(79,99] 10 0.88345362 0.090757465 0.0013657507 0.092259791 3688
## df riv lambda fmi
## 1 672.00355 0.115193922 0.103294969 0.105951859
## 2 1021.23240 0.085194283 0.078506019 0.080305403
## 3 2005.39781 0.045999025 0.043976165 0.044928191
## 4 1103.33299 0.080255609 0.074293165 0.075966634
## 5 41.33929 0.857728979 0.461708349 0.485988920
## 6 43.07822 0.825411463 0.452178306 0.475956207
## 7 3394.77812 0.013467219 0.013288263 0.013869061
## 8 3618.80867 0.005648225 0.005616502 0.006165611
## 9 3590.04121 0.006990836 0.006942304 0.007495071
## 10 3495.36615 0.010480645 0.010371941 0.010937707
## 11 3276.00964 0.016553192 0.016283646 0.016883654
summary(est.p)
## term estimate std.error statistic df p.value
## 1 (Intercept) 13.57166878 0.30534707 44.4466976 672.00355 0.000000e+00
## 2 subgrouphis1 -1.05477171 0.15601293 -6.7607966 1021.23240 2.304579e-11
## 3 subgroupBorn1 -0.34861735 0.15435591 -2.2585294 2005.39781 2.401971e-02
## 4 subgroupincom161 0.76926041 0.09731096 7.9051779 1103.33299 6.439294e-15
## 5 subgroupnotsmart1 -0.06054336 0.15198583 -0.3983487 41.33929 6.924232e-01
## 6 subgroupdisrspct1 0.52830315 0.17035211 3.1012422 43.07822 3.393776e-03
## 7 subgroupsex -0.38572955 0.09148055 -4.2165196 3394.77812 2.545754e-05
## 8 age1(24,39] 1.15451568 0.23697792 4.8718280 3618.80867 1.153093e-06
## 9 age1(39,59] 1.04093811 0.23360735 4.4559304 3590.04121 8.607925e-06
## 10 age1(59,79] 0.98240349 0.23582895 4.1657458 3495.36615 3.178412e-05
## 11 age1(79,99] 0.88345362 0.30374297 2.9085566 3276.00964 3.655439e-03
lam<-data.frame(lam=est.p$pooled$lambda, param=row.names(est.p$pooled))
ggplot(data=lam,aes(x=param, y=lam))+geom_col()+theme(axis.text.x = element_text(angle = 45, hjust = 1))

library(dplyr)
bnmgss<-gss2021_ZERODraft%>%
select(educ, subgrouphis, subgroupBorn, subgroupincom16, subgroupnotsmart, subgroupdisrspct, subgroupsex, age)%>%
filter(complete.cases(.))%>%
as.data.frame()
summary(lm(educ~subgrouphis+subgroupBorn+subgroupincom16+subgroupnotsmart+subgroupdisrspct+subgroupsex+age, bnmgss))
##
## Call:
## lm(formula = educ ~ subgrouphis + subgroupBorn + subgroupincom16 +
## subgroupnotsmart + subgroupdisrspct + subgroupsex + age,
## data = bnmgss)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.6688 -2.1415 0.4042 1.6836 6.8092
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.945258 0.305248 48.961 < 2e-16 ***
## subgrouphis1 -1.132534 0.196673 -5.758 9.60e-09 ***
## subgroupBorn1 -0.422627 0.195618 -2.160 0.0308 *
## subgroupincom161 0.806355 0.116508 6.921 5.77e-12 ***
## subgroupnotsmart1 -0.098224 0.139085 -0.706 0.4801
## subgroupdisrspct1 0.416147 0.158708 2.622 0.0088 **
## subgroupsex -0.221005 0.112479 -1.965 0.0495 *
## age -0.003931 0.003403 -1.155 0.2482
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.697 on 2343 degrees of freedom
## Multiple R-squared: 0.04089, Adjusted R-squared: 0.03803
## F-statistic: 14.27 on 7 and 2343 DF, p-value: < 2.2e-16
fit1<-lm(educ~subgrouphis+subgroupBorn+subgroupincom16+subgroupnotsmart+subgroupdisrspct+subgroupsex+age, data=gss2021_ZERODraft)
summary(fit1)
##
## Call:
## lm(formula = educ ~ subgrouphis + subgroupBorn + subgroupincom16 +
## subgroupnotsmart + subgroupdisrspct + subgroupsex + age,
## data = gss2021_ZERODraft)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.6688 -2.1415 0.4042 1.6836 6.8092
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.945258 0.305248 48.961 < 2e-16 ***
## subgrouphis1 -1.132534 0.196673 -5.758 9.60e-09 ***
## subgroupBorn1 -0.422627 0.195618 -2.160 0.0308 *
## subgroupincom161 0.806355 0.116508 6.921 5.77e-12 ***
## subgroupnotsmart1 -0.098224 0.139085 -0.706 0.4801
## subgroupdisrspct1 0.416147 0.158708 2.622 0.0088 **
## subgroupsex -0.221005 0.112479 -1.965 0.0495 *
## age -0.003931 0.003403 -1.155 0.2482
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.697 on 2343 degrees of freedom
## (1681 observations deleted due to missingness)
## Multiple R-squared: 0.04089, Adjusted R-squared: 0.03803
## F-statistic: 14.27 on 7 and 2343 DF, p-value: < 2.2e-16
fit.imp<-lm(educ~subgrouphis+subgroupBorn+subgroupincom16+subgroupnotsmart+subgroupdisrspct+subgroupsex+age, data=dat.imp)
summary(fit.imp)
##
## Call:
## lm(formula = educ ~ subgrouphis + subgroupBorn + subgroupincom16 +
## subgroupnotsmart + subgroupdisrspct + subgroupsex + age,
## data = dat.imp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -15.626 -2.124 0.356 1.691 7.151
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.5522055 0.2284391 63.703 < 2e-16 ***
## subgrouphis1 -1.2174737 0.1426718 -8.533 < 2e-16 ***
## subgroupBorn1 -0.4893178 0.1411732 -3.466 0.000534 ***
## subgroupincom161 0.7993754 0.0898499 8.897 < 2e-16 ***
## subgroupnotsmart1 -0.1176638 0.1067295 -1.102 0.270333
## subgroupdisrspct1 0.7392800 0.1206792 6.126 9.88e-10 ***
## subgroupsex -0.3218888 0.0870016 -3.700 0.000219 ***
## age -0.0005952 0.0026225 -0.227 0.820463
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.731 on 4024 degrees of freedom
## Multiple R-squared: 0.05275, Adjusted R-squared: 0.0511
## F-statistic: 32.01 on 7 and 4024 DF, p-value: < 2.2e-16