R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

###Ejercicios Rstudio 1.1 a 1.9
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
set.seed(2099)
x <- rnorm(120, 5, 0.85)
y <- rbinom(120, 20, 0.8)
z <- rpois(120, 10.5)
p <- sample.int(300, 120, replace = TRUE)

  
library(purrr)
a <- rbernoulli(120, 0.75)
replace(a, c(TRUE, FALSE), c("presente","ausente")) 
##   [1] "presente" "FALSE"    "ausente"  "TRUE"     "presente" "TRUE"    
##   [7] "ausente"  "FALSE"    "presente" "FALSE"    "ausente"  "FALSE"   
##  [13] "presente" "TRUE"     "ausente"  "TRUE"     "presente" "TRUE"    
##  [19] "ausente"  "FALSE"    "presente" "TRUE"     "ausente"  "TRUE"    
##  [25] "presente" "FALSE"    "ausente"  "TRUE"     "presente" "FALSE"   
##  [31] "ausente"  "TRUE"     "presente" "FALSE"    "ausente"  "TRUE"    
##  [37] "presente" "FALSE"    "ausente"  "FALSE"    "presente" "TRUE"    
##  [43] "ausente"  "TRUE"     "presente" "TRUE"     "ausente"  "TRUE"    
##  [49] "presente" "FALSE"    "ausente"  "TRUE"     "presente" "FALSE"   
##  [55] "ausente"  "TRUE"     "presente" "FALSE"    "ausente"  "TRUE"    
##  [61] "presente" "TRUE"     "ausente"  "FALSE"    "presente" "TRUE"    
##  [67] "ausente"  "TRUE"     "presente" "TRUE"     "ausente"  "TRUE"    
##  [73] "presente" "TRUE"     "ausente"  "TRUE"     "presente" "TRUE"    
##  [79] "ausente"  "FALSE"    "presente" "TRUE"     "ausente"  "TRUE"    
##  [85] "presente" "TRUE"     "ausente"  "TRUE"     "presente" "TRUE"    
##  [91] "ausente"  "TRUE"     "presente" "TRUE"     "ausente"  "TRUE"    
##  [97] "presente" "TRUE"     "ausente"  "TRUE"     "presente" "TRUE"    
## [103] "ausente"  "TRUE"     "presente" "FALSE"    "ausente"  "TRUE"    
## [109] "presente" "TRUE"     "ausente"  "FALSE"    "presente" "TRUE"    
## [115] "ausente"  "TRUE"     "presente" "FALSE"    "ausente"  "FALSE"
S <- gl(3, 1, length(40), labels = "S", ordered = FALSE)
PA <- gl(3, 1, length(40), labels = "PA", ordered = FALSE)
MA <- gl(3, 1, length(40), labels = "MA", ordered = FALSE)
b <- c("S", "PA", "MA")



fert <-runif(120,0, 1.2)
gl(2, 1, length(40))
## [1] 1
## Levels: 1 2
fertil <- if_else(fert < 0.5,true = "FO", false = "FI", missing = NULL)


df1 <- data.frame(x, y, z, p, a, b, fertil)
colnames(df1) <- c("Biomasa", "Floresr", "Floresd", "Hojasd", "Plaga", "Estatus", "Fertilización")
df1
##      Biomasa Floresr Floresd Hojasd Plaga Estatus Fertilización
## 1   5.191382      16       1    150  TRUE       S            FO
## 2   4.682817      19      13    197 FALSE      PA            FI
## 3   5.444438      20      10    279  TRUE      MA            FI
## 4   3.525376      17      13    118  TRUE       S            FI
## 5   4.860301      17       8    277 FALSE      PA            FI
## 6   4.284344      16      19     89  TRUE      MA            FI
## 7   5.057715      16       8    253  TRUE       S            FO
## 8   6.372872      16       8     54 FALSE      PA            FO
## 9   4.814129      17       8    121  TRUE      MA            FO
## 10  5.875504      17       8     37 FALSE       S            FO
## 11  5.545751      15      12      2  TRUE      PA            FI
## 12  4.332472      16      10     57 FALSE      MA            FO
## 13  4.143265      12      11    203  TRUE       S            FO
## 14  3.942137      17       8     68  TRUE      PA            FI
## 15  4.085222      16      13     83  TRUE      MA            FO
## 16  5.135173      14      10    150  TRUE       S            FO
## 17  4.198869      17       8    237  TRUE      PA            FO
## 18  3.931221      13      11     32  TRUE      MA            FI
## 19  4.645347      15       7    281  TRUE       S            FI
## 20  4.364195      16       5    130 FALSE      PA            FI
## 21  4.731182      17       8     84  TRUE      MA            FO
## 22  5.872350      19      14    262  TRUE       S            FI
## 23  3.566169      17      14     78  TRUE      PA            FI
## 24  4.533903      20       9     75  TRUE      MA            FI
## 25  5.494825      14      13    241  TRUE       S            FO
## 26  3.792585      17       6    300 FALSE      PA            FO
## 27  3.479056      15       8    256  TRUE      MA            FI
## 28  6.000100      16      11     38  TRUE       S            FO
## 29  5.385418      18      10    164  TRUE      PA            FI
## 30  4.295210      18      10    199 FALSE      MA            FO
## 31  4.705739      16      12    235 FALSE       S            FO
## 32  4.967705      14       9     26  TRUE      PA            FI
## 33  4.883999      16      11    260 FALSE      MA            FI
## 34  6.685638      17       7    187 FALSE       S            FI
## 35  6.782740      18       7    224  TRUE      PA            FI
## 36  4.895407      17      11    227  TRUE      MA            FI
## 37  6.089084      14      11    222  TRUE       S            FI
## 38  4.058907      12      10     59 FALSE      PA            FI
## 39  5.309868      19      13    186  TRUE      MA            FI
## 40  4.583636      11      10      9 FALSE       S            FI
## 41  4.390665      13       6     10  TRUE      PA            FI
## 42  5.553013      16      11    105  TRUE      MA            FI
## 43  5.399750      18       7     59  TRUE       S            FI
## 44  4.387268      14      14     18  TRUE      PA            FI
## 45  5.033227      16      10     43  TRUE      MA            FO
## 46  4.550117      17      14    258  TRUE       S            FO
## 47  5.381977      14       7    158  TRUE      PA            FI
## 48  4.957284      15      11    208  TRUE      MA            FI
## 49  4.662462      15       9    119 FALSE       S            FO
## 50  5.744640      15      13    250 FALSE      PA            FO
## 51  4.572862      14       6     60 FALSE      MA            FI
## 52  6.061314      16      12    134  TRUE       S            FI
## 53  4.077621      14      13    138  TRUE      PA            FI
## 54  5.227363      16      15     38 FALSE      MA            FI
## 55  6.347073      17       7     31  TRUE       S            FI
## 56  4.453775      11       6    111  TRUE      PA            FI
## 57  4.682281      17       5      3  TRUE      MA            FO
## 58  5.176889      12      13     37 FALSE       S            FO
## 59  4.389201      17      12    114  TRUE      PA            FI
## 60  3.284646      16       5     33  TRUE      MA            FO
## 61  5.837547      19       9     61 FALSE       S            FI
## 62  4.968740      17       8    188  TRUE      PA            FO
## 63  3.903301      17      10     58  TRUE      MA            FO
## 64  6.132158      15      10    286 FALSE       S            FI
## 65  5.873990      17      12    151 FALSE      PA            FI
## 66  5.515326      14      14    191  TRUE      MA            FO
## 67  4.084581      13      13    265  TRUE       S            FI
## 68  3.723847      18      10     72  TRUE      PA            FI
## 69  5.188571      17      11    157  TRUE      MA            FI
## 70  5.086961      15       8    240  TRUE       S            FI
## 71  5.833276      16      14    133  TRUE      PA            FI
## 72  4.376451      17      13    170  TRUE      MA            FI
## 73  3.695728      17      11     66 FALSE       S            FO
## 74  4.623261      16       5    220  TRUE      PA            FI
## 75  5.533799      15      16    218 FALSE      MA            FI
## 76  3.128952      18      12    120  TRUE       S            FI
## 77  3.984496      16      14    199  TRUE      PA            FO
## 78  6.174937      15      14     81  TRUE      MA            FO
## 79  5.831186      16      11    141  TRUE       S            FO
## 80  4.584803      14       9    185 FALSE      PA            FO
## 81  4.444875      17      12    216 FALSE      MA            FI
## 82  5.384299      14       9     22  TRUE       S            FO
## 83  5.781127      16      11    169  TRUE      PA            FI
## 84  4.279655      16       8    246  TRUE      MA            FI
## 85  4.534812      17      10     24  TRUE       S            FO
## 86  4.458870      17       7    240  TRUE      PA            FO
## 87  5.413162      14      10    268  TRUE      MA            FO
## 88  4.561375      18      11    289  TRUE       S            FI
## 89  6.076244      14      12     14  TRUE      PA            FO
## 90  5.140797      16       8    225  TRUE      MA            FO
## 91  4.427752      16       4    268 FALSE       S            FO
## 92  5.902777      14       9    279  TRUE      PA            FO
## 93  5.729409      16      10    222  TRUE      MA            FO
## 94  4.563922      16       8    215  TRUE       S            FI
## 95  6.536906      15      13    212  TRUE      PA            FI
## 96  3.892238      16      13     86  TRUE      MA            FI
## 97  6.248745      16      19    239  TRUE       S            FI
## 98  6.049258      18      15    171  TRUE      PA            FI
## 99  5.151745      14       9    150 FALSE      MA            FI
## 100 4.328072      15      14    220  TRUE       S            FI
## 101 5.946870      13       7    242  TRUE      PA            FI
## 102 4.441015      17      10    129  TRUE      MA            FI
## 103 4.512727      15      13     25  TRUE       S            FI
## 104 5.241019      11      12    202  TRUE      PA            FO
## 105 5.047264      17      12    212 FALSE      MA            FI
## 106 5.032729      19      11    298 FALSE       S            FI
## 107 4.800188      15      13    264  TRUE      PA            FI
## 108 4.754542      14      10     18  TRUE      MA            FI
## 109 4.139596      17      12    199  TRUE       S            FO
## 110 5.336830      18       7     10  TRUE      PA            FO
## 111 4.410783      17      11    283  TRUE      MA            FI
## 112 5.301664      16      12    285 FALSE       S            FI
## 113 4.248514      15       4    286  TRUE      PA            FI
## 114 4.482439      16       7    291  TRUE      MA            FO
## 115 5.199317      16      10    165  TRUE       S            FO
## 116 4.960738      15      10    236  TRUE      PA            FI
## 117 4.508527      15       6    131  TRUE      MA            FI
## 118 4.821758      18      11     82 FALSE       S            FO
## 119 6.706502      20      12    129  TRUE      PA            FI
## 120 4.619753      18       9    190 FALSE      MA            FO
dim(df1)
## [1] 120   7
str(df1)
## 'data.frame':    120 obs. of  7 variables:
##  $ Biomasa      : num  5.19 4.68 5.44 3.53 4.86 ...
##  $ Floresr      : int  16 19 20 17 17 16 16 16 17 17 ...
##  $ Floresd      : int  1 13 10 13 8 19 8 8 8 8 ...
##  $ Hojasd       : int  150 197 279 118 277 89 253 54 121 37 ...
##  $ Plaga        : logi  TRUE FALSE TRUE TRUE FALSE TRUE ...
##  $ Estatus      : chr  "S" "PA" "MA" "S" ...
##  $ Fertilización: chr  "FO" "FI" "FI" "FI" ...
class(df1)
## [1] "data.frame"
names(df1)
## [1] "Biomasa"       "Floresr"       "Floresd"       "Hojasd"       
## [5] "Plaga"         "Estatus"       "Fertilización"
is.na(df1)
##        Biomasa Floresr Floresd Hojasd Plaga Estatus Fertilización
##   [1,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##   [2,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##   [3,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##   [4,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##   [5,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##   [6,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##   [7,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##   [8,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##   [9,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [10,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [11,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [12,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [13,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [14,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [15,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [16,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [17,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [18,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [19,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [20,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [21,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [22,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [23,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [24,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [25,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [26,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [27,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [28,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [29,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [30,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [31,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [32,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [33,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [34,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [35,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [36,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [37,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [38,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [39,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [40,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [41,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [42,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [43,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [44,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [45,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [46,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [47,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [48,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [49,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [50,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [51,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [52,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [53,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [54,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [55,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [56,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [57,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [58,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [59,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [60,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [61,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [62,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [63,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [64,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [65,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [66,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [67,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [68,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [69,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [70,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [71,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [72,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [73,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [74,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [75,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [76,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [77,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [78,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [79,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [80,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [81,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [82,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [83,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [84,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [85,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [86,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [87,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [88,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [89,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [90,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [91,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [92,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [93,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [94,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [95,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [96,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [97,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [98,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##  [99,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
## [100,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
## [101,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
## [102,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
## [103,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
## [104,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
## [105,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
## [106,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
## [107,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
## [108,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
## [109,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
## [110,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
## [111,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
## [112,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
## [113,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
## [114,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
## [115,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
## [116,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
## [117,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
## [118,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
## [119,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
## [120,]   FALSE   FALSE   FALSE  FALSE FALSE   FALSE         FALSE
##Ejercicio Rstudio 1.10
tib.c <- df1[c(1:120),c(1:5)]
tib.c
##      Biomasa Floresr Floresd Hojasd Plaga
## 1   5.191382      16       1    150  TRUE
## 2   4.682817      19      13    197 FALSE
## 3   5.444438      20      10    279  TRUE
## 4   3.525376      17      13    118  TRUE
## 5   4.860301      17       8    277 FALSE
## 6   4.284344      16      19     89  TRUE
## 7   5.057715      16       8    253  TRUE
## 8   6.372872      16       8     54 FALSE
## 9   4.814129      17       8    121  TRUE
## 10  5.875504      17       8     37 FALSE
## 11  5.545751      15      12      2  TRUE
## 12  4.332472      16      10     57 FALSE
## 13  4.143265      12      11    203  TRUE
## 14  3.942137      17       8     68  TRUE
## 15  4.085222      16      13     83  TRUE
## 16  5.135173      14      10    150  TRUE
## 17  4.198869      17       8    237  TRUE
## 18  3.931221      13      11     32  TRUE
## 19  4.645347      15       7    281  TRUE
## 20  4.364195      16       5    130 FALSE
## 21  4.731182      17       8     84  TRUE
## 22  5.872350      19      14    262  TRUE
## 23  3.566169      17      14     78  TRUE
## 24  4.533903      20       9     75  TRUE
## 25  5.494825      14      13    241  TRUE
## 26  3.792585      17       6    300 FALSE
## 27  3.479056      15       8    256  TRUE
## 28  6.000100      16      11     38  TRUE
## 29  5.385418      18      10    164  TRUE
## 30  4.295210      18      10    199 FALSE
## 31  4.705739      16      12    235 FALSE
## 32  4.967705      14       9     26  TRUE
## 33  4.883999      16      11    260 FALSE
## 34  6.685638      17       7    187 FALSE
## 35  6.782740      18       7    224  TRUE
## 36  4.895407      17      11    227  TRUE
## 37  6.089084      14      11    222  TRUE
## 38  4.058907      12      10     59 FALSE
## 39  5.309868      19      13    186  TRUE
## 40  4.583636      11      10      9 FALSE
## 41  4.390665      13       6     10  TRUE
## 42  5.553013      16      11    105  TRUE
## 43  5.399750      18       7     59  TRUE
## 44  4.387268      14      14     18  TRUE
## 45  5.033227      16      10     43  TRUE
## 46  4.550117      17      14    258  TRUE
## 47  5.381977      14       7    158  TRUE
## 48  4.957284      15      11    208  TRUE
## 49  4.662462      15       9    119 FALSE
## 50  5.744640      15      13    250 FALSE
## 51  4.572862      14       6     60 FALSE
## 52  6.061314      16      12    134  TRUE
## 53  4.077621      14      13    138  TRUE
## 54  5.227363      16      15     38 FALSE
## 55  6.347073      17       7     31  TRUE
## 56  4.453775      11       6    111  TRUE
## 57  4.682281      17       5      3  TRUE
## 58  5.176889      12      13     37 FALSE
## 59  4.389201      17      12    114  TRUE
## 60  3.284646      16       5     33  TRUE
## 61  5.837547      19       9     61 FALSE
## 62  4.968740      17       8    188  TRUE
## 63  3.903301      17      10     58  TRUE
## 64  6.132158      15      10    286 FALSE
## 65  5.873990      17      12    151 FALSE
## 66  5.515326      14      14    191  TRUE
## 67  4.084581      13      13    265  TRUE
## 68  3.723847      18      10     72  TRUE
## 69  5.188571      17      11    157  TRUE
## 70  5.086961      15       8    240  TRUE
## 71  5.833276      16      14    133  TRUE
## 72  4.376451      17      13    170  TRUE
## 73  3.695728      17      11     66 FALSE
## 74  4.623261      16       5    220  TRUE
## 75  5.533799      15      16    218 FALSE
## 76  3.128952      18      12    120  TRUE
## 77  3.984496      16      14    199  TRUE
## 78  6.174937      15      14     81  TRUE
## 79  5.831186      16      11    141  TRUE
## 80  4.584803      14       9    185 FALSE
## 81  4.444875      17      12    216 FALSE
## 82  5.384299      14       9     22  TRUE
## 83  5.781127      16      11    169  TRUE
## 84  4.279655      16       8    246  TRUE
## 85  4.534812      17      10     24  TRUE
## 86  4.458870      17       7    240  TRUE
## 87  5.413162      14      10    268  TRUE
## 88  4.561375      18      11    289  TRUE
## 89  6.076244      14      12     14  TRUE
## 90  5.140797      16       8    225  TRUE
## 91  4.427752      16       4    268 FALSE
## 92  5.902777      14       9    279  TRUE
## 93  5.729409      16      10    222  TRUE
## 94  4.563922      16       8    215  TRUE
## 95  6.536906      15      13    212  TRUE
## 96  3.892238      16      13     86  TRUE
## 97  6.248745      16      19    239  TRUE
## 98  6.049258      18      15    171  TRUE
## 99  5.151745      14       9    150 FALSE
## 100 4.328072      15      14    220  TRUE
## 101 5.946870      13       7    242  TRUE
## 102 4.441015      17      10    129  TRUE
## 103 4.512727      15      13     25  TRUE
## 104 5.241019      11      12    202  TRUE
## 105 5.047264      17      12    212 FALSE
## 106 5.032729      19      11    298 FALSE
## 107 4.800188      15      13    264  TRUE
## 108 4.754542      14      10     18  TRUE
## 109 4.139596      17      12    199  TRUE
## 110 5.336830      18       7     10  TRUE
## 111 4.410783      17      11    283  TRUE
## 112 5.301664      16      12    285 FALSE
## 113 4.248514      15       4    286  TRUE
## 114 4.482439      16       7    291  TRUE
## 115 5.199317      16      10    165  TRUE
## 116 4.960738      15      10    236  TRUE
## 117 4.508527      15       6    131  TRUE
## 118 4.821758      18      11     82 FALSE
## 119 6.706502      20      12    129  TRUE
## 120 4.619753      18       9    190 FALSE
library(naniar)
tib.i <- replace_with_na(tib.c, replace= list("Biomasa"=c(-5.191382), "Floresd"=c(-82)))
is.na(tib.i)
##     Biomasa Floresr Floresd Hojasd Plaga
## 1     FALSE   FALSE   FALSE  FALSE FALSE
## 2     FALSE   FALSE   FALSE  FALSE FALSE
## 3     FALSE   FALSE   FALSE  FALSE FALSE
## 4     FALSE   FALSE   FALSE  FALSE FALSE
## 5     FALSE   FALSE   FALSE  FALSE FALSE
## 6     FALSE   FALSE   FALSE  FALSE FALSE
## 7     FALSE   FALSE   FALSE  FALSE FALSE
## 8     FALSE   FALSE   FALSE  FALSE FALSE
## 9     FALSE   FALSE   FALSE  FALSE FALSE
## 10    FALSE   FALSE   FALSE  FALSE FALSE
## 11    FALSE   FALSE   FALSE  FALSE FALSE
## 12    FALSE   FALSE   FALSE  FALSE FALSE
## 13    FALSE   FALSE   FALSE  FALSE FALSE
## 14    FALSE   FALSE   FALSE  FALSE FALSE
## 15    FALSE   FALSE   FALSE  FALSE FALSE
## 16    FALSE   FALSE   FALSE  FALSE FALSE
## 17    FALSE   FALSE   FALSE  FALSE FALSE
## 18    FALSE   FALSE   FALSE  FALSE FALSE
## 19    FALSE   FALSE   FALSE  FALSE FALSE
## 20    FALSE   FALSE   FALSE  FALSE FALSE
## 21    FALSE   FALSE   FALSE  FALSE FALSE
## 22    FALSE   FALSE   FALSE  FALSE FALSE
## 23    FALSE   FALSE   FALSE  FALSE FALSE
## 24    FALSE   FALSE   FALSE  FALSE FALSE
## 25    FALSE   FALSE   FALSE  FALSE FALSE
## 26    FALSE   FALSE   FALSE  FALSE FALSE
## 27    FALSE   FALSE   FALSE  FALSE FALSE
## 28    FALSE   FALSE   FALSE  FALSE FALSE
## 29    FALSE   FALSE   FALSE  FALSE FALSE
## 30    FALSE   FALSE   FALSE  FALSE FALSE
## 31    FALSE   FALSE   FALSE  FALSE FALSE
## 32    FALSE   FALSE   FALSE  FALSE FALSE
## 33    FALSE   FALSE   FALSE  FALSE FALSE
## 34    FALSE   FALSE   FALSE  FALSE FALSE
## 35    FALSE   FALSE   FALSE  FALSE FALSE
## 36    FALSE   FALSE   FALSE  FALSE FALSE
## 37    FALSE   FALSE   FALSE  FALSE FALSE
## 38    FALSE   FALSE   FALSE  FALSE FALSE
## 39    FALSE   FALSE   FALSE  FALSE FALSE
## 40    FALSE   FALSE   FALSE  FALSE FALSE
## 41    FALSE   FALSE   FALSE  FALSE FALSE
## 42    FALSE   FALSE   FALSE  FALSE FALSE
## 43    FALSE   FALSE   FALSE  FALSE FALSE
## 44    FALSE   FALSE   FALSE  FALSE FALSE
## 45    FALSE   FALSE   FALSE  FALSE FALSE
## 46    FALSE   FALSE   FALSE  FALSE FALSE
## 47    FALSE   FALSE   FALSE  FALSE FALSE
## 48    FALSE   FALSE   FALSE  FALSE FALSE
## 49    FALSE   FALSE   FALSE  FALSE FALSE
## 50    FALSE   FALSE   FALSE  FALSE FALSE
## 51    FALSE   FALSE   FALSE  FALSE FALSE
## 52    FALSE   FALSE   FALSE  FALSE FALSE
## 53    FALSE   FALSE   FALSE  FALSE FALSE
## 54    FALSE   FALSE   FALSE  FALSE FALSE
## 55    FALSE   FALSE   FALSE  FALSE FALSE
## 56    FALSE   FALSE   FALSE  FALSE FALSE
## 57    FALSE   FALSE   FALSE  FALSE FALSE
## 58    FALSE   FALSE   FALSE  FALSE FALSE
## 59    FALSE   FALSE   FALSE  FALSE FALSE
## 60    FALSE   FALSE   FALSE  FALSE FALSE
## 61    FALSE   FALSE   FALSE  FALSE FALSE
## 62    FALSE   FALSE   FALSE  FALSE FALSE
## 63    FALSE   FALSE   FALSE  FALSE FALSE
## 64    FALSE   FALSE   FALSE  FALSE FALSE
## 65    FALSE   FALSE   FALSE  FALSE FALSE
## 66    FALSE   FALSE   FALSE  FALSE FALSE
## 67    FALSE   FALSE   FALSE  FALSE FALSE
## 68    FALSE   FALSE   FALSE  FALSE FALSE
## 69    FALSE   FALSE   FALSE  FALSE FALSE
## 70    FALSE   FALSE   FALSE  FALSE FALSE
## 71    FALSE   FALSE   FALSE  FALSE FALSE
## 72    FALSE   FALSE   FALSE  FALSE FALSE
## 73    FALSE   FALSE   FALSE  FALSE FALSE
## 74    FALSE   FALSE   FALSE  FALSE FALSE
## 75    FALSE   FALSE   FALSE  FALSE FALSE
## 76    FALSE   FALSE   FALSE  FALSE FALSE
## 77    FALSE   FALSE   FALSE  FALSE FALSE
## 78    FALSE   FALSE   FALSE  FALSE FALSE
## 79    FALSE   FALSE   FALSE  FALSE FALSE
## 80    FALSE   FALSE   FALSE  FALSE FALSE
## 81    FALSE   FALSE   FALSE  FALSE FALSE
## 82    FALSE   FALSE   FALSE  FALSE FALSE
## 83    FALSE   FALSE   FALSE  FALSE FALSE
## 84    FALSE   FALSE   FALSE  FALSE FALSE
## 85    FALSE   FALSE   FALSE  FALSE FALSE
## 86    FALSE   FALSE   FALSE  FALSE FALSE
## 87    FALSE   FALSE   FALSE  FALSE FALSE
## 88    FALSE   FALSE   FALSE  FALSE FALSE
## 89    FALSE   FALSE   FALSE  FALSE FALSE
## 90    FALSE   FALSE   FALSE  FALSE FALSE
## 91    FALSE   FALSE   FALSE  FALSE FALSE
## 92    FALSE   FALSE   FALSE  FALSE FALSE
## 93    FALSE   FALSE   FALSE  FALSE FALSE
## 94    FALSE   FALSE   FALSE  FALSE FALSE
## 95    FALSE   FALSE   FALSE  FALSE FALSE
## 96    FALSE   FALSE   FALSE  FALSE FALSE
## 97    FALSE   FALSE   FALSE  FALSE FALSE
## 98    FALSE   FALSE   FALSE  FALSE FALSE
## 99    FALSE   FALSE   FALSE  FALSE FALSE
## 100   FALSE   FALSE   FALSE  FALSE FALSE
## 101   FALSE   FALSE   FALSE  FALSE FALSE
## 102   FALSE   FALSE   FALSE  FALSE FALSE
## 103   FALSE   FALSE   FALSE  FALSE FALSE
## 104   FALSE   FALSE   FALSE  FALSE FALSE
## 105   FALSE   FALSE   FALSE  FALSE FALSE
## 106   FALSE   FALSE   FALSE  FALSE FALSE
## 107   FALSE   FALSE   FALSE  FALSE FALSE
## 108   FALSE   FALSE   FALSE  FALSE FALSE
## 109   FALSE   FALSE   FALSE  FALSE FALSE
## 110   FALSE   FALSE   FALSE  FALSE FALSE
## 111   FALSE   FALSE   FALSE  FALSE FALSE
## 112   FALSE   FALSE   FALSE  FALSE FALSE
## 113   FALSE   FALSE   FALSE  FALSE FALSE
## 114   FALSE   FALSE   FALSE  FALSE FALSE
## 115   FALSE   FALSE   FALSE  FALSE FALSE
## 116   FALSE   FALSE   FALSE  FALSE FALSE
## 117   FALSE   FALSE   FALSE  FALSE FALSE
## 118   FALSE   FALSE   FALSE  FALSE FALSE
## 119   FALSE   FALSE   FALSE  FALSE FALSE
## 120   FALSE   FALSE   FALSE  FALSE FALSE
tib.i
##      Biomasa Floresr Floresd Hojasd Plaga
## 1   5.191382      16       1    150  TRUE
## 2   4.682817      19      13    197 FALSE
## 3   5.444438      20      10    279  TRUE
## 4   3.525376      17      13    118  TRUE
## 5   4.860301      17       8    277 FALSE
## 6   4.284344      16      19     89  TRUE
## 7   5.057715      16       8    253  TRUE
## 8   6.372872      16       8     54 FALSE
## 9   4.814129      17       8    121  TRUE
## 10  5.875504      17       8     37 FALSE
## 11  5.545751      15      12      2  TRUE
## 12  4.332472      16      10     57 FALSE
## 13  4.143265      12      11    203  TRUE
## 14  3.942137      17       8     68  TRUE
## 15  4.085222      16      13     83  TRUE
## 16  5.135173      14      10    150  TRUE
## 17  4.198869      17       8    237  TRUE
## 18  3.931221      13      11     32  TRUE
## 19  4.645347      15       7    281  TRUE
## 20  4.364195      16       5    130 FALSE
## 21  4.731182      17       8     84  TRUE
## 22  5.872350      19      14    262  TRUE
## 23  3.566169      17      14     78  TRUE
## 24  4.533903      20       9     75  TRUE
## 25  5.494825      14      13    241  TRUE
## 26  3.792585      17       6    300 FALSE
## 27  3.479056      15       8    256  TRUE
## 28  6.000100      16      11     38  TRUE
## 29  5.385418      18      10    164  TRUE
## 30  4.295210      18      10    199 FALSE
## 31  4.705739      16      12    235 FALSE
## 32  4.967705      14       9     26  TRUE
## 33  4.883999      16      11    260 FALSE
## 34  6.685638      17       7    187 FALSE
## 35  6.782740      18       7    224  TRUE
## 36  4.895407      17      11    227  TRUE
## 37  6.089084      14      11    222  TRUE
## 38  4.058907      12      10     59 FALSE
## 39  5.309868      19      13    186  TRUE
## 40  4.583636      11      10      9 FALSE
## 41  4.390665      13       6     10  TRUE
## 42  5.553013      16      11    105  TRUE
## 43  5.399750      18       7     59  TRUE
## 44  4.387268      14      14     18  TRUE
## 45  5.033227      16      10     43  TRUE
## 46  4.550117      17      14    258  TRUE
## 47  5.381977      14       7    158  TRUE
## 48  4.957284      15      11    208  TRUE
## 49  4.662462      15       9    119 FALSE
## 50  5.744640      15      13    250 FALSE
## 51  4.572862      14       6     60 FALSE
## 52  6.061314      16      12    134  TRUE
## 53  4.077621      14      13    138  TRUE
## 54  5.227363      16      15     38 FALSE
## 55  6.347073      17       7     31  TRUE
## 56  4.453775      11       6    111  TRUE
## 57  4.682281      17       5      3  TRUE
## 58  5.176889      12      13     37 FALSE
## 59  4.389201      17      12    114  TRUE
## 60  3.284646      16       5     33  TRUE
## 61  5.837547      19       9     61 FALSE
## 62  4.968740      17       8    188  TRUE
## 63  3.903301      17      10     58  TRUE
## 64  6.132158      15      10    286 FALSE
## 65  5.873990      17      12    151 FALSE
## 66  5.515326      14      14    191  TRUE
## 67  4.084581      13      13    265  TRUE
## 68  3.723847      18      10     72  TRUE
## 69  5.188571      17      11    157  TRUE
## 70  5.086961      15       8    240  TRUE
## 71  5.833276      16      14    133  TRUE
## 72  4.376451      17      13    170  TRUE
## 73  3.695728      17      11     66 FALSE
## 74  4.623261      16       5    220  TRUE
## 75  5.533799      15      16    218 FALSE
## 76  3.128952      18      12    120  TRUE
## 77  3.984496      16      14    199  TRUE
## 78  6.174937      15      14     81  TRUE
## 79  5.831186      16      11    141  TRUE
## 80  4.584803      14       9    185 FALSE
## 81  4.444875      17      12    216 FALSE
## 82  5.384299      14       9     22  TRUE
## 83  5.781127      16      11    169  TRUE
## 84  4.279655      16       8    246  TRUE
## 85  4.534812      17      10     24  TRUE
## 86  4.458870      17       7    240  TRUE
## 87  5.413162      14      10    268  TRUE
## 88  4.561375      18      11    289  TRUE
## 89  6.076244      14      12     14  TRUE
## 90  5.140797      16       8    225  TRUE
## 91  4.427752      16       4    268 FALSE
## 92  5.902777      14       9    279  TRUE
## 93  5.729409      16      10    222  TRUE
## 94  4.563922      16       8    215  TRUE
## 95  6.536906      15      13    212  TRUE
## 96  3.892238      16      13     86  TRUE
## 97  6.248745      16      19    239  TRUE
## 98  6.049258      18      15    171  TRUE
## 99  5.151745      14       9    150 FALSE
## 100 4.328072      15      14    220  TRUE
## 101 5.946870      13       7    242  TRUE
## 102 4.441015      17      10    129  TRUE
## 103 4.512727      15      13     25  TRUE
## 104 5.241019      11      12    202  TRUE
## 105 5.047264      17      12    212 FALSE
## 106 5.032729      19      11    298 FALSE
## 107 4.800188      15      13    264  TRUE
## 108 4.754542      14      10     18  TRUE
## 109 4.139596      17      12    199  TRUE
## 110 5.336830      18       7     10  TRUE
## 111 4.410783      17      11    283  TRUE
## 112 5.301664      16      12    285 FALSE
## 113 4.248514      15       4    286  TRUE
## 114 4.482439      16       7    291  TRUE
## 115 5.199317      16      10    165  TRUE
## 116 4.960738      15      10    236  TRUE
## 117 4.508527      15       6    131  TRUE
## 118 4.821758      18      11     82 FALSE
## 119 6.706502      20      12    129  TRUE
## 120 4.619753      18       9    190 FALSE
tib.c %>% select(Biomasa)
##      Biomasa
## 1   5.191382
## 2   4.682817
## 3   5.444438
## 4   3.525376
## 5   4.860301
## 6   4.284344
## 7   5.057715
## 8   6.372872
## 9   4.814129
## 10  5.875504
## 11  5.545751
## 12  4.332472
## 13  4.143265
## 14  3.942137
## 15  4.085222
## 16  5.135173
## 17  4.198869
## 18  3.931221
## 19  4.645347
## 20  4.364195
## 21  4.731182
## 22  5.872350
## 23  3.566169
## 24  4.533903
## 25  5.494825
## 26  3.792585
## 27  3.479056
## 28  6.000100
## 29  5.385418
## 30  4.295210
## 31  4.705739
## 32  4.967705
## 33  4.883999
## 34  6.685638
## 35  6.782740
## 36  4.895407
## 37  6.089084
## 38  4.058907
## 39  5.309868
## 40  4.583636
## 41  4.390665
## 42  5.553013
## 43  5.399750
## 44  4.387268
## 45  5.033227
## 46  4.550117
## 47  5.381977
## 48  4.957284
## 49  4.662462
## 50  5.744640
## 51  4.572862
## 52  6.061314
## 53  4.077621
## 54  5.227363
## 55  6.347073
## 56  4.453775
## 57  4.682281
## 58  5.176889
## 59  4.389201
## 60  3.284646
## 61  5.837547
## 62  4.968740
## 63  3.903301
## 64  6.132158
## 65  5.873990
## 66  5.515326
## 67  4.084581
## 68  3.723847
## 69  5.188571
## 70  5.086961
## 71  5.833276
## 72  4.376451
## 73  3.695728
## 74  4.623261
## 75  5.533799
## 76  3.128952
## 77  3.984496
## 78  6.174937
## 79  5.831186
## 80  4.584803
## 81  4.444875
## 82  5.384299
## 83  5.781127
## 84  4.279655
## 85  4.534812
## 86  4.458870
## 87  5.413162
## 88  4.561375
## 89  6.076244
## 90  5.140797
## 91  4.427752
## 92  5.902777
## 93  5.729409
## 94  4.563922
## 95  6.536906
## 96  3.892238
## 97  6.248745
## 98  6.049258
## 99  5.151745
## 100 4.328072
## 101 5.946870
## 102 4.441015
## 103 4.512727
## 104 5.241019
## 105 5.047264
## 106 5.032729
## 107 4.800188
## 108 4.754542
## 109 4.139596
## 110 5.336830
## 111 4.410783
## 112 5.301664
## 113 4.248514
## 114 4.482439
## 115 5.199317
## 116 4.960738
## 117 4.508527
## 118 4.821758
## 119 6.706502
## 120 4.619753
tib.c %>% select(Floresd : Plaga)
##     Floresd Hojasd Plaga
## 1         1    150  TRUE
## 2        13    197 FALSE
## 3        10    279  TRUE
## 4        13    118  TRUE
## 5         8    277 FALSE
## 6        19     89  TRUE
## 7         8    253  TRUE
## 8         8     54 FALSE
## 9         8    121  TRUE
## 10        8     37 FALSE
## 11       12      2  TRUE
## 12       10     57 FALSE
## 13       11    203  TRUE
## 14        8     68  TRUE
## 15       13     83  TRUE
## 16       10    150  TRUE
## 17        8    237  TRUE
## 18       11     32  TRUE
## 19        7    281  TRUE
## 20        5    130 FALSE
## 21        8     84  TRUE
## 22       14    262  TRUE
## 23       14     78  TRUE
## 24        9     75  TRUE
## 25       13    241  TRUE
## 26        6    300 FALSE
## 27        8    256  TRUE
## 28       11     38  TRUE
## 29       10    164  TRUE
## 30       10    199 FALSE
## 31       12    235 FALSE
## 32        9     26  TRUE
## 33       11    260 FALSE
## 34        7    187 FALSE
## 35        7    224  TRUE
## 36       11    227  TRUE
## 37       11    222  TRUE
## 38       10     59 FALSE
## 39       13    186  TRUE
## 40       10      9 FALSE
## 41        6     10  TRUE
## 42       11    105  TRUE
## 43        7     59  TRUE
## 44       14     18  TRUE
## 45       10     43  TRUE
## 46       14    258  TRUE
## 47        7    158  TRUE
## 48       11    208  TRUE
## 49        9    119 FALSE
## 50       13    250 FALSE
## 51        6     60 FALSE
## 52       12    134  TRUE
## 53       13    138  TRUE
## 54       15     38 FALSE
## 55        7     31  TRUE
## 56        6    111  TRUE
## 57        5      3  TRUE
## 58       13     37 FALSE
## 59       12    114  TRUE
## 60        5     33  TRUE
## 61        9     61 FALSE
## 62        8    188  TRUE
## 63       10     58  TRUE
## 64       10    286 FALSE
## 65       12    151 FALSE
## 66       14    191  TRUE
## 67       13    265  TRUE
## 68       10     72  TRUE
## 69       11    157  TRUE
## 70        8    240  TRUE
## 71       14    133  TRUE
## 72       13    170  TRUE
## 73       11     66 FALSE
## 74        5    220  TRUE
## 75       16    218 FALSE
## 76       12    120  TRUE
## 77       14    199  TRUE
## 78       14     81  TRUE
## 79       11    141  TRUE
## 80        9    185 FALSE
## 81       12    216 FALSE
## 82        9     22  TRUE
## 83       11    169  TRUE
## 84        8    246  TRUE
## 85       10     24  TRUE
## 86        7    240  TRUE
## 87       10    268  TRUE
## 88       11    289  TRUE
## 89       12     14  TRUE
## 90        8    225  TRUE
## 91        4    268 FALSE
## 92        9    279  TRUE
## 93       10    222  TRUE
## 94        8    215  TRUE
## 95       13    212  TRUE
## 96       13     86  TRUE
## 97       19    239  TRUE
## 98       15    171  TRUE
## 99        9    150 FALSE
## 100      14    220  TRUE
## 101       7    242  TRUE
## 102      10    129  TRUE
## 103      13     25  TRUE
## 104      12    202  TRUE
## 105      12    212 FALSE
## 106      11    298 FALSE
## 107      13    264  TRUE
## 108      10     18  TRUE
## 109      12    199  TRUE
## 110       7     10  TRUE
## 111      11    283  TRUE
## 112      12    285 FALSE
## 113       4    286  TRUE
## 114       7    291  TRUE
## 115      10    165  TRUE
## 116      10    236  TRUE
## 117       6    131  TRUE
## 118      11     82 FALSE
## 119      12    129  TRUE
## 120       9    190 FALSE
tib.c %>% select(!Floresd : Plaga)
##      Biomasa Floresr
## 1   5.191382      16
## 2   4.682817      19
## 3   5.444438      20
## 4   3.525376      17
## 5   4.860301      17
## 6   4.284344      16
## 7   5.057715      16
## 8   6.372872      16
## 9   4.814129      17
## 10  5.875504      17
## 11  5.545751      15
## 12  4.332472      16
## 13  4.143265      12
## 14  3.942137      17
## 15  4.085222      16
## 16  5.135173      14
## 17  4.198869      17
## 18  3.931221      13
## 19  4.645347      15
## 20  4.364195      16
## 21  4.731182      17
## 22  5.872350      19
## 23  3.566169      17
## 24  4.533903      20
## 25  5.494825      14
## 26  3.792585      17
## 27  3.479056      15
## 28  6.000100      16
## 29  5.385418      18
## 30  4.295210      18
## 31  4.705739      16
## 32  4.967705      14
## 33  4.883999      16
## 34  6.685638      17
## 35  6.782740      18
## 36  4.895407      17
## 37  6.089084      14
## 38  4.058907      12
## 39  5.309868      19
## 40  4.583636      11
## 41  4.390665      13
## 42  5.553013      16
## 43  5.399750      18
## 44  4.387268      14
## 45  5.033227      16
## 46  4.550117      17
## 47  5.381977      14
## 48  4.957284      15
## 49  4.662462      15
## 50  5.744640      15
## 51  4.572862      14
## 52  6.061314      16
## 53  4.077621      14
## 54  5.227363      16
## 55  6.347073      17
## 56  4.453775      11
## 57  4.682281      17
## 58  5.176889      12
## 59  4.389201      17
## 60  3.284646      16
## 61  5.837547      19
## 62  4.968740      17
## 63  3.903301      17
## 64  6.132158      15
## 65  5.873990      17
## 66  5.515326      14
## 67  4.084581      13
## 68  3.723847      18
## 69  5.188571      17
## 70  5.086961      15
## 71  5.833276      16
## 72  4.376451      17
## 73  3.695728      17
## 74  4.623261      16
## 75  5.533799      15
## 76  3.128952      18
## 77  3.984496      16
## 78  6.174937      15
## 79  5.831186      16
## 80  4.584803      14
## 81  4.444875      17
## 82  5.384299      14
## 83  5.781127      16
## 84  4.279655      16
## 85  4.534812      17
## 86  4.458870      17
## 87  5.413162      14
## 88  4.561375      18
## 89  6.076244      14
## 90  5.140797      16
## 91  4.427752      16
## 92  5.902777      14
## 93  5.729409      16
## 94  4.563922      16
## 95  6.536906      15
## 96  3.892238      16
## 97  6.248745      16
## 98  6.049258      18
## 99  5.151745      14
## 100 4.328072      15
## 101 5.946870      13
## 102 4.441015      17
## 103 4.512727      15
## 104 5.241019      11
## 105 5.047264      17
## 106 5.032729      19
## 107 4.800188      15
## 108 4.754542      14
## 109 4.139596      17
## 110 5.336830      18
## 111 4.410783      17
## 112 5.301664      16
## 113 4.248514      15
## 114 4.482439      16
## 115 5.199317      16
## 116 4.960738      15
## 117 4.508527      15
## 118 4.821758      18
## 119 6.706502      20
## 120 4.619753      18
tib.c %>% select(!ends_with("d"))
##      Biomasa Floresr Plaga
## 1   5.191382      16  TRUE
## 2   4.682817      19 FALSE
## 3   5.444438      20  TRUE
## 4   3.525376      17  TRUE
## 5   4.860301      17 FALSE
## 6   4.284344      16  TRUE
## 7   5.057715      16  TRUE
## 8   6.372872      16 FALSE
## 9   4.814129      17  TRUE
## 10  5.875504      17 FALSE
## 11  5.545751      15  TRUE
## 12  4.332472      16 FALSE
## 13  4.143265      12  TRUE
## 14  3.942137      17  TRUE
## 15  4.085222      16  TRUE
## 16  5.135173      14  TRUE
## 17  4.198869      17  TRUE
## 18  3.931221      13  TRUE
## 19  4.645347      15  TRUE
## 20  4.364195      16 FALSE
## 21  4.731182      17  TRUE
## 22  5.872350      19  TRUE
## 23  3.566169      17  TRUE
## 24  4.533903      20  TRUE
## 25  5.494825      14  TRUE
## 26  3.792585      17 FALSE
## 27  3.479056      15  TRUE
## 28  6.000100      16  TRUE
## 29  5.385418      18  TRUE
## 30  4.295210      18 FALSE
## 31  4.705739      16 FALSE
## 32  4.967705      14  TRUE
## 33  4.883999      16 FALSE
## 34  6.685638      17 FALSE
## 35  6.782740      18  TRUE
## 36  4.895407      17  TRUE
## 37  6.089084      14  TRUE
## 38  4.058907      12 FALSE
## 39  5.309868      19  TRUE
## 40  4.583636      11 FALSE
## 41  4.390665      13  TRUE
## 42  5.553013      16  TRUE
## 43  5.399750      18  TRUE
## 44  4.387268      14  TRUE
## 45  5.033227      16  TRUE
## 46  4.550117      17  TRUE
## 47  5.381977      14  TRUE
## 48  4.957284      15  TRUE
## 49  4.662462      15 FALSE
## 50  5.744640      15 FALSE
## 51  4.572862      14 FALSE
## 52  6.061314      16  TRUE
## 53  4.077621      14  TRUE
## 54  5.227363      16 FALSE
## 55  6.347073      17  TRUE
## 56  4.453775      11  TRUE
## 57  4.682281      17  TRUE
## 58  5.176889      12 FALSE
## 59  4.389201      17  TRUE
## 60  3.284646      16  TRUE
## 61  5.837547      19 FALSE
## 62  4.968740      17  TRUE
## 63  3.903301      17  TRUE
## 64  6.132158      15 FALSE
## 65  5.873990      17 FALSE
## 66  5.515326      14  TRUE
## 67  4.084581      13  TRUE
## 68  3.723847      18  TRUE
## 69  5.188571      17  TRUE
## 70  5.086961      15  TRUE
## 71  5.833276      16  TRUE
## 72  4.376451      17  TRUE
## 73  3.695728      17 FALSE
## 74  4.623261      16  TRUE
## 75  5.533799      15 FALSE
## 76  3.128952      18  TRUE
## 77  3.984496      16  TRUE
## 78  6.174937      15  TRUE
## 79  5.831186      16  TRUE
## 80  4.584803      14 FALSE
## 81  4.444875      17 FALSE
## 82  5.384299      14  TRUE
## 83  5.781127      16  TRUE
## 84  4.279655      16  TRUE
## 85  4.534812      17  TRUE
## 86  4.458870      17  TRUE
## 87  5.413162      14  TRUE
## 88  4.561375      18  TRUE
## 89  6.076244      14  TRUE
## 90  5.140797      16  TRUE
## 91  4.427752      16 FALSE
## 92  5.902777      14  TRUE
## 93  5.729409      16  TRUE
## 94  4.563922      16  TRUE
## 95  6.536906      15  TRUE
## 96  3.892238      16  TRUE
## 97  6.248745      16  TRUE
## 98  6.049258      18  TRUE
## 99  5.151745      14 FALSE
## 100 4.328072      15  TRUE
## 101 5.946870      13  TRUE
## 102 4.441015      17  TRUE
## 103 4.512727      15  TRUE
## 104 5.241019      11  TRUE
## 105 5.047264      17 FALSE
## 106 5.032729      19 FALSE
## 107 4.800188      15  TRUE
## 108 4.754542      14  TRUE
## 109 4.139596      17  TRUE
## 110 5.336830      18  TRUE
## 111 4.410783      17  TRUE
## 112 5.301664      16 FALSE
## 113 4.248514      15  TRUE
## 114 4.482439      16  TRUE
## 115 5.199317      16  TRUE
## 116 4.960738      15  TRUE
## 117 4.508527      15  TRUE
## 118 4.821758      18 FALSE
## 119 6.706502      20  TRUE
## 120 4.619753      18 FALSE
tib.c %>% select(starts_with("Fl"))
##     Floresr Floresd
## 1        16       1
## 2        19      13
## 3        20      10
## 4        17      13
## 5        17       8
## 6        16      19
## 7        16       8
## 8        16       8
## 9        17       8
## 10       17       8
## 11       15      12
## 12       16      10
## 13       12      11
## 14       17       8
## 15       16      13
## 16       14      10
## 17       17       8
## 18       13      11
## 19       15       7
## 20       16       5
## 21       17       8
## 22       19      14
## 23       17      14
## 24       20       9
## 25       14      13
## 26       17       6
## 27       15       8
## 28       16      11
## 29       18      10
## 30       18      10
## 31       16      12
## 32       14       9
## 33       16      11
## 34       17       7
## 35       18       7
## 36       17      11
## 37       14      11
## 38       12      10
## 39       19      13
## 40       11      10
## 41       13       6
## 42       16      11
## 43       18       7
## 44       14      14
## 45       16      10
## 46       17      14
## 47       14       7
## 48       15      11
## 49       15       9
## 50       15      13
## 51       14       6
## 52       16      12
## 53       14      13
## 54       16      15
## 55       17       7
## 56       11       6
## 57       17       5
## 58       12      13
## 59       17      12
## 60       16       5
## 61       19       9
## 62       17       8
## 63       17      10
## 64       15      10
## 65       17      12
## 66       14      14
## 67       13      13
## 68       18      10
## 69       17      11
## 70       15       8
## 71       16      14
## 72       17      13
## 73       17      11
## 74       16       5
## 75       15      16
## 76       18      12
## 77       16      14
## 78       15      14
## 79       16      11
## 80       14       9
## 81       17      12
## 82       14       9
## 83       16      11
## 84       16       8
## 85       17      10
## 86       17       7
## 87       14      10
## 88       18      11
## 89       14      12
## 90       16       8
## 91       16       4
## 92       14       9
## 93       16      10
## 94       16       8
## 95       15      13
## 96       16      13
## 97       16      19
## 98       18      15
## 99       14       9
## 100      15      14
## 101      13       7
## 102      17      10
## 103      15      13
## 104      11      12
## 105      17      12
## 106      19      11
## 107      15      13
## 108      14      10
## 109      17      12
## 110      18       7
## 111      17      11
## 112      16      12
## 113      15       4
## 114      16       7
## 115      16      10
## 116      15      10
## 117      15       6
## 118      18      11
## 119      20      12
## 120      18       9
tib.c %>% select(starts_with("F"), ends_with("d"))
##     Floresr Floresd Hojasd
## 1        16       1    150
## 2        19      13    197
## 3        20      10    279
## 4        17      13    118
## 5        17       8    277
## 6        16      19     89
## 7        16       8    253
## 8        16       8     54
## 9        17       8    121
## 10       17       8     37
## 11       15      12      2
## 12       16      10     57
## 13       12      11    203
## 14       17       8     68
## 15       16      13     83
## 16       14      10    150
## 17       17       8    237
## 18       13      11     32
## 19       15       7    281
## 20       16       5    130
## 21       17       8     84
## 22       19      14    262
## 23       17      14     78
## 24       20       9     75
## 25       14      13    241
## 26       17       6    300
## 27       15       8    256
## 28       16      11     38
## 29       18      10    164
## 30       18      10    199
## 31       16      12    235
## 32       14       9     26
## 33       16      11    260
## 34       17       7    187
## 35       18       7    224
## 36       17      11    227
## 37       14      11    222
## 38       12      10     59
## 39       19      13    186
## 40       11      10      9
## 41       13       6     10
## 42       16      11    105
## 43       18       7     59
## 44       14      14     18
## 45       16      10     43
## 46       17      14    258
## 47       14       7    158
## 48       15      11    208
## 49       15       9    119
## 50       15      13    250
## 51       14       6     60
## 52       16      12    134
## 53       14      13    138
## 54       16      15     38
## 55       17       7     31
## 56       11       6    111
## 57       17       5      3
## 58       12      13     37
## 59       17      12    114
## 60       16       5     33
## 61       19       9     61
## 62       17       8    188
## 63       17      10     58
## 64       15      10    286
## 65       17      12    151
## 66       14      14    191
## 67       13      13    265
## 68       18      10     72
## 69       17      11    157
## 70       15       8    240
## 71       16      14    133
## 72       17      13    170
## 73       17      11     66
## 74       16       5    220
## 75       15      16    218
## 76       18      12    120
## 77       16      14    199
## 78       15      14     81
## 79       16      11    141
## 80       14       9    185
## 81       17      12    216
## 82       14       9     22
## 83       16      11    169
## 84       16       8    246
## 85       17      10     24
## 86       17       7    240
## 87       14      10    268
## 88       18      11    289
## 89       14      12     14
## 90       16       8    225
## 91       16       4    268
## 92       14       9    279
## 93       16      10    222
## 94       16       8    215
## 95       15      13    212
## 96       16      13     86
## 97       16      19    239
## 98       18      15    171
## 99       14       9    150
## 100      15      14    220
## 101      13       7    242
## 102      17      10    129
## 103      15      13     25
## 104      11      12    202
## 105      17      12    212
## 106      19      11    298
## 107      15      13    264
## 108      14      10     18
## 109      17      12    199
## 110      18       7     10
## 111      17      11    283
## 112      16      12    285
## 113      15       4    286
## 114      16       7    291
## 115      16      10    165
## 116      15      10    236
## 117      15       6    131
## 118      18      11     82
## 119      20      12    129
## 120      18       9    190
agrup <- tib.c %>% select(Plaga)
varstatus <- agrup %>% group_by("Estatus")
arrange(varstatus, by_group= FALSE)
## # A tibble: 120 x 2
## # Groups:   "Estatus" [1]
##    Plaga `"Estatus"`
##    <lgl> <chr>      
##  1 TRUE  Estatus    
##  2 FALSE Estatus    
##  3 TRUE  Estatus    
##  4 TRUE  Estatus    
##  5 FALSE Estatus    
##  6 TRUE  Estatus    
##  7 TRUE  Estatus    
##  8 FALSE Estatus    
##  9 TRUE  Estatus    
## 10 FALSE Estatus    
## # ... with 110 more rows
filter(df1, Estatus == "MA", Estatus == "MA")
##     Biomasa Floresr Floresd Hojasd Plaga Estatus Fertilización
## 1  5.444438      20      10    279  TRUE      MA            FI
## 2  4.284344      16      19     89  TRUE      MA            FI
## 3  4.814129      17       8    121  TRUE      MA            FO
## 4  4.332472      16      10     57 FALSE      MA            FO
## 5  4.085222      16      13     83  TRUE      MA            FO
## 6  3.931221      13      11     32  TRUE      MA            FI
## 7  4.731182      17       8     84  TRUE      MA            FO
## 8  4.533903      20       9     75  TRUE      MA            FI
## 9  3.479056      15       8    256  TRUE      MA            FI
## 10 4.295210      18      10    199 FALSE      MA            FO
## 11 4.883999      16      11    260 FALSE      MA            FI
## 12 4.895407      17      11    227  TRUE      MA            FI
## 13 5.309868      19      13    186  TRUE      MA            FI
## 14 5.553013      16      11    105  TRUE      MA            FI
## 15 5.033227      16      10     43  TRUE      MA            FO
## 16 4.957284      15      11    208  TRUE      MA            FI
## 17 4.572862      14       6     60 FALSE      MA            FI
## 18 5.227363      16      15     38 FALSE      MA            FI
## 19 4.682281      17       5      3  TRUE      MA            FO
## 20 3.284646      16       5     33  TRUE      MA            FO
## 21 3.903301      17      10     58  TRUE      MA            FO
## 22 5.515326      14      14    191  TRUE      MA            FO
## 23 5.188571      17      11    157  TRUE      MA            FI
## 24 4.376451      17      13    170  TRUE      MA            FI
## 25 5.533799      15      16    218 FALSE      MA            FI
## 26 6.174937      15      14     81  TRUE      MA            FO
## 27 4.444875      17      12    216 FALSE      MA            FI
## 28 4.279655      16       8    246  TRUE      MA            FI
## 29 5.413162      14      10    268  TRUE      MA            FO
## 30 5.140797      16       8    225  TRUE      MA            FO
## 31 5.729409      16      10    222  TRUE      MA            FO
## 32 3.892238      16      13     86  TRUE      MA            FI
## 33 5.151745      14       9    150 FALSE      MA            FI
## 34 4.441015      17      10    129  TRUE      MA            FI
## 35 5.047264      17      12    212 FALSE      MA            FI
## 36 4.754542      14      10     18  TRUE      MA            FI
## 37 4.410783      17      11    283  TRUE      MA            FI
## 38 4.482439      16       7    291  TRUE      MA            FO
## 39 4.508527      15       6    131  TRUE      MA            FI
## 40 4.619753      18       9    190 FALSE      MA            FO
filter(df1, Biomasa > 5)
##     Biomasa Floresr Floresd Hojasd Plaga Estatus Fertilización
## 1  5.191382      16       1    150  TRUE       S            FO
## 2  5.444438      20      10    279  TRUE      MA            FI
## 3  5.057715      16       8    253  TRUE       S            FO
## 4  6.372872      16       8     54 FALSE      PA            FO
## 5  5.875504      17       8     37 FALSE       S            FO
## 6  5.545751      15      12      2  TRUE      PA            FI
## 7  5.135173      14      10    150  TRUE       S            FO
## 8  5.872350      19      14    262  TRUE       S            FI
## 9  5.494825      14      13    241  TRUE       S            FO
## 10 6.000100      16      11     38  TRUE       S            FO
## 11 5.385418      18      10    164  TRUE      PA            FI
## 12 6.685638      17       7    187 FALSE       S            FI
## 13 6.782740      18       7    224  TRUE      PA            FI
## 14 6.089084      14      11    222  TRUE       S            FI
## 15 5.309868      19      13    186  TRUE      MA            FI
## 16 5.553013      16      11    105  TRUE      MA            FI
## 17 5.399750      18       7     59  TRUE       S            FI
## 18 5.033227      16      10     43  TRUE      MA            FO
## 19 5.381977      14       7    158  TRUE      PA            FI
## 20 5.744640      15      13    250 FALSE      PA            FO
## 21 6.061314      16      12    134  TRUE       S            FI
## 22 5.227363      16      15     38 FALSE      MA            FI
## 23 6.347073      17       7     31  TRUE       S            FI
## 24 5.176889      12      13     37 FALSE       S            FO
## 25 5.837547      19       9     61 FALSE       S            FI
## 26 6.132158      15      10    286 FALSE       S            FI
## 27 5.873990      17      12    151 FALSE      PA            FI
## 28 5.515326      14      14    191  TRUE      MA            FO
## 29 5.188571      17      11    157  TRUE      MA            FI
## 30 5.086961      15       8    240  TRUE       S            FI
## 31 5.833276      16      14    133  TRUE      PA            FI
## 32 5.533799      15      16    218 FALSE      MA            FI
## 33 6.174937      15      14     81  TRUE      MA            FO
## 34 5.831186      16      11    141  TRUE       S            FO
## 35 5.384299      14       9     22  TRUE       S            FO
## 36 5.781127      16      11    169  TRUE      PA            FI
## 37 5.413162      14      10    268  TRUE      MA            FO
## 38 6.076244      14      12     14  TRUE      PA            FO
## 39 5.140797      16       8    225  TRUE      MA            FO
## 40 5.902777      14       9    279  TRUE      PA            FO
## 41 5.729409      16      10    222  TRUE      MA            FO
## 42 6.536906      15      13    212  TRUE      PA            FI
## 43 6.248745      16      19    239  TRUE       S            FI
## 44 6.049258      18      15    171  TRUE      PA            FI
## 45 5.151745      14       9    150 FALSE      MA            FI
## 46 5.946870      13       7    242  TRUE      PA            FI
## 47 5.241019      11      12    202  TRUE      PA            FO
## 48 5.047264      17      12    212 FALSE      MA            FI
## 49 5.032729      19      11    298 FALSE       S            FI
## 50 5.336830      18       7     10  TRUE      PA            FO
## 51 5.301664      16      12    285 FALSE       S            FI
## 52 5.199317      16      10    165  TRUE       S            FO
## 53 6.706502      20      12    129  TRUE      PA            FI
filter(df1, Estatus == "PA", Fertilización == "FO")
##     Biomasa Floresr Floresd Hojasd Plaga Estatus Fertilización
## 1  6.372872      16       8     54 FALSE      PA            FO
## 2  4.198869      17       8    237  TRUE      PA            FO
## 3  3.792585      17       6    300 FALSE      PA            FO
## 4  5.744640      15      13    250 FALSE      PA            FO
## 5  4.968740      17       8    188  TRUE      PA            FO
## 6  3.984496      16      14    199  TRUE      PA            FO
## 7  4.584803      14       9    185 FALSE      PA            FO
## 8  4.458870      17       7    240  TRUE      PA            FO
## 9  6.076244      14      12     14  TRUE      PA            FO
## 10 5.902777      14       9    279  TRUE      PA            FO
## 11 5.241019      11      12    202  TRUE      PA            FO
## 12 5.336830      18       7     10  TRUE      PA            FO
filter(df1, Estatus == "PA", Fertilización == "FI")
##     Biomasa Floresr Floresd Hojasd Plaga Estatus Fertilización
## 1  4.682817      19      13    197 FALSE      PA            FI
## 2  4.860301      17       8    277 FALSE      PA            FI
## 3  5.545751      15      12      2  TRUE      PA            FI
## 4  3.942137      17       8     68  TRUE      PA            FI
## 5  4.364195      16       5    130 FALSE      PA            FI
## 6  3.566169      17      14     78  TRUE      PA            FI
## 7  5.385418      18      10    164  TRUE      PA            FI
## 8  4.967705      14       9     26  TRUE      PA            FI
## 9  6.782740      18       7    224  TRUE      PA            FI
## 10 4.058907      12      10     59 FALSE      PA            FI
## 11 4.390665      13       6     10  TRUE      PA            FI
## 12 4.387268      14      14     18  TRUE      PA            FI
## 13 5.381977      14       7    158  TRUE      PA            FI
## 14 4.077621      14      13    138  TRUE      PA            FI
## 15 4.453775      11       6    111  TRUE      PA            FI
## 16 4.389201      17      12    114  TRUE      PA            FI
## 17 5.873990      17      12    151 FALSE      PA            FI
## 18 3.723847      18      10     72  TRUE      PA            FI
## 19 5.833276      16      14    133  TRUE      PA            FI
## 20 4.623261      16       5    220  TRUE      PA            FI
## 21 5.781127      16      11    169  TRUE      PA            FI
## 22 6.536906      15      13    212  TRUE      PA            FI
## 23 6.049258      18      15    171  TRUE      PA            FI
## 24 5.946870      13       7    242  TRUE      PA            FI
## 25 4.800188      15      13    264  TRUE      PA            FI
## 26 4.248514      15       4    286  TRUE      PA            FI
## 27 4.960738      15      10    236  TRUE      PA            FI
## 28 6.706502      20      12    129  TRUE      PA            FI
mediana <- median(df1$Floresd, na.rm = FALSE)
df1 %>% filter_at(vars(Plaga), all_vars(. < mediana))
##      Biomasa Floresr Floresd Hojasd Plaga Estatus Fertilización
## 1   5.191382      16       1    150  TRUE       S            FO
## 2   4.682817      19      13    197 FALSE      PA            FI
## 3   5.444438      20      10    279  TRUE      MA            FI
## 4   3.525376      17      13    118  TRUE       S            FI
## 5   4.860301      17       8    277 FALSE      PA            FI
## 6   4.284344      16      19     89  TRUE      MA            FI
## 7   5.057715      16       8    253  TRUE       S            FO
## 8   6.372872      16       8     54 FALSE      PA            FO
## 9   4.814129      17       8    121  TRUE      MA            FO
## 10  5.875504      17       8     37 FALSE       S            FO
## 11  5.545751      15      12      2  TRUE      PA            FI
## 12  4.332472      16      10     57 FALSE      MA            FO
## 13  4.143265      12      11    203  TRUE       S            FO
## 14  3.942137      17       8     68  TRUE      PA            FI
## 15  4.085222      16      13     83  TRUE      MA            FO
## 16  5.135173      14      10    150  TRUE       S            FO
## 17  4.198869      17       8    237  TRUE      PA            FO
## 18  3.931221      13      11     32  TRUE      MA            FI
## 19  4.645347      15       7    281  TRUE       S            FI
## 20  4.364195      16       5    130 FALSE      PA            FI
## 21  4.731182      17       8     84  TRUE      MA            FO
## 22  5.872350      19      14    262  TRUE       S            FI
## 23  3.566169      17      14     78  TRUE      PA            FI
## 24  4.533903      20       9     75  TRUE      MA            FI
## 25  5.494825      14      13    241  TRUE       S            FO
## 26  3.792585      17       6    300 FALSE      PA            FO
## 27  3.479056      15       8    256  TRUE      MA            FI
## 28  6.000100      16      11     38  TRUE       S            FO
## 29  5.385418      18      10    164  TRUE      PA            FI
## 30  4.295210      18      10    199 FALSE      MA            FO
## 31  4.705739      16      12    235 FALSE       S            FO
## 32  4.967705      14       9     26  TRUE      PA            FI
## 33  4.883999      16      11    260 FALSE      MA            FI
## 34  6.685638      17       7    187 FALSE       S            FI
## 35  6.782740      18       7    224  TRUE      PA            FI
## 36  4.895407      17      11    227  TRUE      MA            FI
## 37  6.089084      14      11    222  TRUE       S            FI
## 38  4.058907      12      10     59 FALSE      PA            FI
## 39  5.309868      19      13    186  TRUE      MA            FI
## 40  4.583636      11      10      9 FALSE       S            FI
## 41  4.390665      13       6     10  TRUE      PA            FI
## 42  5.553013      16      11    105  TRUE      MA            FI
## 43  5.399750      18       7     59  TRUE       S            FI
## 44  4.387268      14      14     18  TRUE      PA            FI
## 45  5.033227      16      10     43  TRUE      MA            FO
## 46  4.550117      17      14    258  TRUE       S            FO
## 47  5.381977      14       7    158  TRUE      PA            FI
## 48  4.957284      15      11    208  TRUE      MA            FI
## 49  4.662462      15       9    119 FALSE       S            FO
## 50  5.744640      15      13    250 FALSE      PA            FO
## 51  4.572862      14       6     60 FALSE      MA            FI
## 52  6.061314      16      12    134  TRUE       S            FI
## 53  4.077621      14      13    138  TRUE      PA            FI
## 54  5.227363      16      15     38 FALSE      MA            FI
## 55  6.347073      17       7     31  TRUE       S            FI
## 56  4.453775      11       6    111  TRUE      PA            FI
## 57  4.682281      17       5      3  TRUE      MA            FO
## 58  5.176889      12      13     37 FALSE       S            FO
## 59  4.389201      17      12    114  TRUE      PA            FI
## 60  3.284646      16       5     33  TRUE      MA            FO
## 61  5.837547      19       9     61 FALSE       S            FI
## 62  4.968740      17       8    188  TRUE      PA            FO
## 63  3.903301      17      10     58  TRUE      MA            FO
## 64  6.132158      15      10    286 FALSE       S            FI
## 65  5.873990      17      12    151 FALSE      PA            FI
## 66  5.515326      14      14    191  TRUE      MA            FO
## 67  4.084581      13      13    265  TRUE       S            FI
## 68  3.723847      18      10     72  TRUE      PA            FI
## 69  5.188571      17      11    157  TRUE      MA            FI
## 70  5.086961      15       8    240  TRUE       S            FI
## 71  5.833276      16      14    133  TRUE      PA            FI
## 72  4.376451      17      13    170  TRUE      MA            FI
## 73  3.695728      17      11     66 FALSE       S            FO
## 74  4.623261      16       5    220  TRUE      PA            FI
## 75  5.533799      15      16    218 FALSE      MA            FI
## 76  3.128952      18      12    120  TRUE       S            FI
## 77  3.984496      16      14    199  TRUE      PA            FO
## 78  6.174937      15      14     81  TRUE      MA            FO
## 79  5.831186      16      11    141  TRUE       S            FO
## 80  4.584803      14       9    185 FALSE      PA            FO
## 81  4.444875      17      12    216 FALSE      MA            FI
## 82  5.384299      14       9     22  TRUE       S            FO
## 83  5.781127      16      11    169  TRUE      PA            FI
## 84  4.279655      16       8    246  TRUE      MA            FI
## 85  4.534812      17      10     24  TRUE       S            FO
## 86  4.458870      17       7    240  TRUE      PA            FO
## 87  5.413162      14      10    268  TRUE      MA            FO
## 88  4.561375      18      11    289  TRUE       S            FI
## 89  6.076244      14      12     14  TRUE      PA            FO
## 90  5.140797      16       8    225  TRUE      MA            FO
## 91  4.427752      16       4    268 FALSE       S            FO
## 92  5.902777      14       9    279  TRUE      PA            FO
## 93  5.729409      16      10    222  TRUE      MA            FO
## 94  4.563922      16       8    215  TRUE       S            FI
## 95  6.536906      15      13    212  TRUE      PA            FI
## 96  3.892238      16      13     86  TRUE      MA            FI
## 97  6.248745      16      19    239  TRUE       S            FI
## 98  6.049258      18      15    171  TRUE      PA            FI
## 99  5.151745      14       9    150 FALSE      MA            FI
## 100 4.328072      15      14    220  TRUE       S            FI
## 101 5.946870      13       7    242  TRUE      PA            FI
## 102 4.441015      17      10    129  TRUE      MA            FI
## 103 4.512727      15      13     25  TRUE       S            FI
## 104 5.241019      11      12    202  TRUE      PA            FO
## 105 5.047264      17      12    212 FALSE      MA            FI
## 106 5.032729      19      11    298 FALSE       S            FI
## 107 4.800188      15      13    264  TRUE      PA            FI
## 108 4.754542      14      10     18  TRUE      MA            FI
## 109 4.139596      17      12    199  TRUE       S            FO
## 110 5.336830      18       7     10  TRUE      PA            FO
## 111 4.410783      17      11    283  TRUE      MA            FI
## 112 5.301664      16      12    285 FALSE       S            FI
## 113 4.248514      15       4    286  TRUE      PA            FI
## 114 4.482439      16       7    291  TRUE      MA            FO
## 115 5.199317      16      10    165  TRUE       S            FO
## 116 4.960738      15      10    236  TRUE      PA            FI
## 117 4.508527      15       6    131  TRUE      MA            FI
## 118 4.821758      18      11     82 FALSE       S            FO
## 119 6.706502      20      12    129  TRUE      PA            FI
## 120 4.619753      18       9    190 FALSE      MA            FO
df1 %>% filter_at(vars(Plaga, Biomasa), all_vars(. < mediana))
##      Biomasa Floresr Floresd Hojasd Plaga Estatus Fertilización
## 1   5.191382      16       1    150  TRUE       S            FO
## 2   4.682817      19      13    197 FALSE      PA            FI
## 3   5.444438      20      10    279  TRUE      MA            FI
## 4   3.525376      17      13    118  TRUE       S            FI
## 5   4.860301      17       8    277 FALSE      PA            FI
## 6   4.284344      16      19     89  TRUE      MA            FI
## 7   5.057715      16       8    253  TRUE       S            FO
## 8   6.372872      16       8     54 FALSE      PA            FO
## 9   4.814129      17       8    121  TRUE      MA            FO
## 10  5.875504      17       8     37 FALSE       S            FO
## 11  5.545751      15      12      2  TRUE      PA            FI
## 12  4.332472      16      10     57 FALSE      MA            FO
## 13  4.143265      12      11    203  TRUE       S            FO
## 14  3.942137      17       8     68  TRUE      PA            FI
## 15  4.085222      16      13     83  TRUE      MA            FO
## 16  5.135173      14      10    150  TRUE       S            FO
## 17  4.198869      17       8    237  TRUE      PA            FO
## 18  3.931221      13      11     32  TRUE      MA            FI
## 19  4.645347      15       7    281  TRUE       S            FI
## 20  4.364195      16       5    130 FALSE      PA            FI
## 21  4.731182      17       8     84  TRUE      MA            FO
## 22  5.872350      19      14    262  TRUE       S            FI
## 23  3.566169      17      14     78  TRUE      PA            FI
## 24  4.533903      20       9     75  TRUE      MA            FI
## 25  5.494825      14      13    241  TRUE       S            FO
## 26  3.792585      17       6    300 FALSE      PA            FO
## 27  3.479056      15       8    256  TRUE      MA            FI
## 28  6.000100      16      11     38  TRUE       S            FO
## 29  5.385418      18      10    164  TRUE      PA            FI
## 30  4.295210      18      10    199 FALSE      MA            FO
## 31  4.705739      16      12    235 FALSE       S            FO
## 32  4.967705      14       9     26  TRUE      PA            FI
## 33  4.883999      16      11    260 FALSE      MA            FI
## 34  6.685638      17       7    187 FALSE       S            FI
## 35  6.782740      18       7    224  TRUE      PA            FI
## 36  4.895407      17      11    227  TRUE      MA            FI
## 37  6.089084      14      11    222  TRUE       S            FI
## 38  4.058907      12      10     59 FALSE      PA            FI
## 39  5.309868      19      13    186  TRUE      MA            FI
## 40  4.583636      11      10      9 FALSE       S            FI
## 41  4.390665      13       6     10  TRUE      PA            FI
## 42  5.553013      16      11    105  TRUE      MA            FI
## 43  5.399750      18       7     59  TRUE       S            FI
## 44  4.387268      14      14     18  TRUE      PA            FI
## 45  5.033227      16      10     43  TRUE      MA            FO
## 46  4.550117      17      14    258  TRUE       S            FO
## 47  5.381977      14       7    158  TRUE      PA            FI
## 48  4.957284      15      11    208  TRUE      MA            FI
## 49  4.662462      15       9    119 FALSE       S            FO
## 50  5.744640      15      13    250 FALSE      PA            FO
## 51  4.572862      14       6     60 FALSE      MA            FI
## 52  6.061314      16      12    134  TRUE       S            FI
## 53  4.077621      14      13    138  TRUE      PA            FI
## 54  5.227363      16      15     38 FALSE      MA            FI
## 55  6.347073      17       7     31  TRUE       S            FI
## 56  4.453775      11       6    111  TRUE      PA            FI
## 57  4.682281      17       5      3  TRUE      MA            FO
## 58  5.176889      12      13     37 FALSE       S            FO
## 59  4.389201      17      12    114  TRUE      PA            FI
## 60  3.284646      16       5     33  TRUE      MA            FO
## 61  5.837547      19       9     61 FALSE       S            FI
## 62  4.968740      17       8    188  TRUE      PA            FO
## 63  3.903301      17      10     58  TRUE      MA            FO
## 64  6.132158      15      10    286 FALSE       S            FI
## 65  5.873990      17      12    151 FALSE      PA            FI
## 66  5.515326      14      14    191  TRUE      MA            FO
## 67  4.084581      13      13    265  TRUE       S            FI
## 68  3.723847      18      10     72  TRUE      PA            FI
## 69  5.188571      17      11    157  TRUE      MA            FI
## 70  5.086961      15       8    240  TRUE       S            FI
## 71  5.833276      16      14    133  TRUE      PA            FI
## 72  4.376451      17      13    170  TRUE      MA            FI
## 73  3.695728      17      11     66 FALSE       S            FO
## 74  4.623261      16       5    220  TRUE      PA            FI
## 75  5.533799      15      16    218 FALSE      MA            FI
## 76  3.128952      18      12    120  TRUE       S            FI
## 77  3.984496      16      14    199  TRUE      PA            FO
## 78  6.174937      15      14     81  TRUE      MA            FO
## 79  5.831186      16      11    141  TRUE       S            FO
## 80  4.584803      14       9    185 FALSE      PA            FO
## 81  4.444875      17      12    216 FALSE      MA            FI
## 82  5.384299      14       9     22  TRUE       S            FO
## 83  5.781127      16      11    169  TRUE      PA            FI
## 84  4.279655      16       8    246  TRUE      MA            FI
## 85  4.534812      17      10     24  TRUE       S            FO
## 86  4.458870      17       7    240  TRUE      PA            FO
## 87  5.413162      14      10    268  TRUE      MA            FO
## 88  4.561375      18      11    289  TRUE       S            FI
## 89  6.076244      14      12     14  TRUE      PA            FO
## 90  5.140797      16       8    225  TRUE      MA            FO
## 91  4.427752      16       4    268 FALSE       S            FO
## 92  5.902777      14       9    279  TRUE      PA            FO
## 93  5.729409      16      10    222  TRUE      MA            FO
## 94  4.563922      16       8    215  TRUE       S            FI
## 95  6.536906      15      13    212  TRUE      PA            FI
## 96  3.892238      16      13     86  TRUE      MA            FI
## 97  6.248745      16      19    239  TRUE       S            FI
## 98  6.049258      18      15    171  TRUE      PA            FI
## 99  5.151745      14       9    150 FALSE      MA            FI
## 100 4.328072      15      14    220  TRUE       S            FI
## 101 5.946870      13       7    242  TRUE      PA            FI
## 102 4.441015      17      10    129  TRUE      MA            FI
## 103 4.512727      15      13     25  TRUE       S            FI
## 104 5.241019      11      12    202  TRUE      PA            FO
## 105 5.047264      17      12    212 FALSE      MA            FI
## 106 5.032729      19      11    298 FALSE       S            FI
## 107 4.800188      15      13    264  TRUE      PA            FI
## 108 4.754542      14      10     18  TRUE      MA            FI
## 109 4.139596      17      12    199  TRUE       S            FO
## 110 5.336830      18       7     10  TRUE      PA            FO
## 111 4.410783      17      11    283  TRUE      MA            FI
## 112 5.301664      16      12    285 FALSE       S            FI
## 113 4.248514      15       4    286  TRUE      PA            FI
## 114 4.482439      16       7    291  TRUE      MA            FO
## 115 5.199317      16      10    165  TRUE       S            FO
## 116 4.960738      15      10    236  TRUE      PA            FI
## 117 4.508527      15       6    131  TRUE      MA            FI
## 118 4.821758      18      11     82 FALSE       S            FO
## 119 6.706502      20      12    129  TRUE      PA            FI
## 120 4.619753      18       9    190 FALSE      MA            FO
v1 <- c("Floresr", "Floresd")
v1 <- c("20", "8")
##df1 %>% filter(df1[v1[1]] > v2[[1]], df1[v1[2]] > v2[[2]])


medbiom <- mean(df1$Biomasa)
desvbiom <- sd(df1$Biomasa)
zbiom <- (x - mean(x))/sd(x)

medfld <- mean(df1$Floresd)
desfld <- sd(df1$Floresd)
zfld <- (y - mean(y))/sd(y)


medflr <- mean(df1$Floresr)
desflr <- sd(df1$Floresr)
zflr <- (z - mean(z))/sd(z)

medho <- mean(df1$Hojasd)
desho <- sd(df1$Hojasd)
zho <- (p - mean(p))/sd(p)

zscores <- c("zbiom", "zfld", "zflr", "zho")
tib.e <- df1 %>% 
  select(Biomasa, Floresd, Floresr, Hojasd, Plaga) %>%
  mutate(Biomasa = zbiom,
         Floresd = zfld,
         Floresr = zflr,
         Hojasd = zho,
         Plaga = a
         )

View(tib.e)

cociente <- y/z
df2 <- cbind(cociente, tib.e)
View(df2)
nueva1 <- df2 %>% select(cociente) 
nueva2 <- tib.e %>% group_by(Plaga)
min1 <- min(nueva1)
min2 <- min(nueva2)
rangomin <- c("min1","min2")


rename(df2, Frutosd = Floresd , Frutosr = Floresr)
##       cociente     Biomasa     Frutosd     Frutosr      Hojasd Plaga
## 1   16.0000000  0.32256828  0.04975065 -3.07600613 -0.06819586  TRUE
## 2    1.4615385 -0.32105542  1.67795358  0.92892048  0.45796645 FALSE
## 3    2.0000000  0.64282878  2.22068789 -0.07231117  1.37595177  TRUE
## 4    1.3076923 -1.78587855  0.59248496  0.92892048 -0.42643403  TRUE
## 5    2.1250000 -0.09643693  0.59248496 -0.73979894  1.35356188 FALSE
## 6    0.8421053 -0.82535081  0.04975065  2.93138378 -0.75108738  TRUE
## 7    2.0000000  0.15340339  0.04975065 -0.73979894  1.08488326  TRUE
## 8    2.0000000  1.81782722  0.04975065 -0.73979894 -1.14291038 FALSE
## 9    2.1250000 -0.15487179  0.59248496 -0.73979894 -0.39284920  TRUE
## 10   2.1250000  1.18837345  0.59248496 -0.73979894 -1.33322440 FALSE
## 11   1.2500000  0.77104769 -0.49298367  0.59517659 -1.72504740  TRUE
## 12   1.6000000 -0.76444236  0.04975065 -0.07231117 -1.10932555 FALSE
## 13   1.0909091 -1.00389634 -2.12118660  0.26143271  0.52513611  TRUE
## 14   2.1250000 -1.25843803  0.59248496 -0.73979894 -0.98618118  TRUE
## 15   1.2307692 -1.07735441  0.04975065  0.92892048 -0.81825703  TRUE
## 16   1.4000000  0.25143209 -1.03571798 -0.07231117 -0.06819586  TRUE
## 17   2.1250000 -0.93352575  0.59248496 -0.73979894  0.90576417  TRUE
## 18   1.1818182 -1.27225371 -1.57845229  0.26143271 -1.38919912  TRUE
## 19   2.1428571 -0.36847687 -0.49298367 -1.07354283  1.39834166  TRUE
## 20   3.2000000 -0.72429479  0.04975065 -1.74103060 -0.29209472 FALSE
## 21   2.1250000 -0.25984598  0.59248496 -0.73979894 -0.80706209  TRUE
## 22   1.3571429  1.18438226  1.67795358  1.26266436  1.18563774  TRUE
## 23   1.2142857 -1.73425175  0.59248496  1.26266436 -0.87423175  TRUE
## 24   2.2222222 -0.50951637  2.22068789 -0.40605506 -0.90781658  TRUE
## 25   1.0769231  0.70659682 -1.03571798  0.92892048  0.95054394  TRUE
## 26   2.8333333 -1.44770686  0.59248496 -1.40728671  1.61104557 FALSE
## 27   1.8750000 -1.84449917 -0.49298367 -0.73979894  1.11846808  TRUE
## 28   1.4545455  1.34605887  0.04975065  0.26143271 -1.32202946  TRUE
## 29   1.8000000  0.56813472  1.13521927 -0.07231117  0.08853334  TRUE
## 30   1.8000000 -0.81160003  1.13521927 -0.07231117  0.48035634 FALSE
## 31   1.3333333 -0.29204630  0.04975065  0.59517659  0.88337428 FALSE
## 32   1.5555556  0.03949019 -1.03571798 -0.40605506 -1.45636878  TRUE
## 33   1.4545455 -0.06644559  0.04975065  0.26143271  1.16324786 FALSE
## 34   2.4285714  2.21365470  0.59248496 -1.07354283  0.34601703 FALSE
## 35   2.5714286  2.33654413  1.13521927 -1.07354283  0.76022991  TRUE
## 36   1.5454545 -0.05200864  0.59248496  0.26143271  0.79381474  TRUE
## 37   1.2727273  1.45867401 -1.03571798  0.26143271  0.73784003  TRUE
## 38   1.2000000 -1.11065822 -2.12118660 -0.07231117 -1.08693566 FALSE
## 39   1.4615385  0.47252080  1.67795358  0.92892048  0.33482208  TRUE
## 40   1.1000000 -0.44657575 -2.66392091 -0.07231117 -1.64668280 FALSE
## 41   2.1666667 -0.69079403 -1.57845229 -1.40728671 -1.63548786  TRUE
## 42   1.4545455  0.78023818  0.04975065  0.26143271 -0.57196829  TRUE
## 43   2.5714286  0.58627361  1.13521927 -1.07354283 -1.08693566  TRUE
## 44   1.0000000 -0.69509353 -1.03571798  1.26266436 -1.54592832  TRUE
## 45   1.6000000  0.12241306  0.04975065 -0.07231117 -1.26605475  TRUE
## 46   1.2142857 -0.48899677  0.59248496  1.26266436  1.14085797  TRUE
## 47   2.0000000  0.56377988 -1.03571798 -1.07354283  0.02136368  TRUE
## 48   1.3636364  0.02630149 -0.49298367  0.26143271  0.58111083  TRUE
## 49   1.6666667 -0.34681684 -0.49298367 -0.40605506 -0.41523909 FALSE
## 50   1.1538462  1.02275545 -0.49298367  0.92892048  1.05129843 FALSE
## 51   2.3333333 -0.46021191 -1.03571798 -1.40728671 -1.07574072 FALSE
## 52   1.3333333  1.42352952  0.04975065  0.59517659 -0.24731495  TRUE
## 53   1.0769231 -1.08697317 -1.03571798  0.92892048 -0.20253517  TRUE
## 54   1.0666667  0.36810524  0.04975065  1.59640825 -1.32202946 FALSE
## 55   2.4285714  1.78517702  0.59248496 -1.07354283 -1.40039406  TRUE
## 56   1.8333333 -0.61092407 -2.66392091 -1.40728671 -0.50479863  TRUE
## 57   3.4000000 -0.32173428  0.59248496 -1.74103060 -1.71385246  TRUE
## 58   0.9230769  0.30422749 -2.12118660  0.92892048 -1.33322440 FALSE
## 59   1.4166667 -0.69264701  0.59248496  0.59517659 -0.47121380  TRUE
## 60   3.2000000 -2.09053892  0.04975065 -1.74103060 -1.37800418  TRUE
## 61   2.1111111  1.14033630  1.67795358 -0.40605506 -1.06454578 FALSE
## 62   2.1250000  0.04079962  0.59248496 -0.73979894  0.35721197  TRUE
## 63   1.7000000 -1.30758817  0.59248496 -0.07231117 -1.09813060  TRUE
## 64   1.5000000  1.51318757 -0.49298367 -0.07231117  1.45431637 FALSE
## 65   1.4166667  1.18645697  0.59248496  0.59517659 -0.05700092 FALSE
## 66   1.0000000  0.73254234 -1.03571798  1.26266436  0.39079680  TRUE
## 67   1.0000000 -1.07816572 -1.57845229  0.92892048  1.21922257  TRUE
## 68   1.8000000 -1.53469908  1.13521927 -0.07231117 -0.94140140  TRUE
## 69   1.5454545  0.31901096  0.59248496  0.26143271  0.01016874  TRUE
## 70   1.8750000  0.19041647 -0.49298367 -0.73979894  0.93934900  TRUE
## 71   1.1428571  1.13493130  0.04975065  1.26266436 -0.25850989  TRUE
## 72   1.3076923 -0.70878406  0.59248496  0.92892048  0.15570300  TRUE
## 73   1.5454545 -1.57028584  0.59248496  0.26143271 -1.00857106 FALSE
## 74   3.2000000 -0.39642840  0.04975065 -1.74103060  0.71545014  TRUE
## 75   0.9375000  0.75592187 -0.49298367  1.93015213  0.69306025 FALSE
## 76   1.5000000 -2.28758147  1.13521927  0.59517659 -0.40404415  TRUE
## 77   1.1428571 -1.20483062  0.04975065  1.26266436  0.48035634  TRUE
## 78   1.0714286  1.56732639 -0.49298367  1.26266436 -0.84064692  TRUE
## 79   1.4545455  1.13228578  0.04975065  0.26143271 -0.16895035  TRUE
## 80   1.5555556 -0.44509883 -1.03571798 -0.40605506  0.32362714 FALSE
## 81   1.4166667 -0.62218761  0.59248496  0.59517659  0.67067037 FALSE
## 82   1.5555556  0.56671929 -1.03571798 -0.40605506 -1.50114855  TRUE
## 83   1.4545455  1.06893279  0.04975065  0.26143271  0.14450805  TRUE
## 84   2.0000000 -0.83128609  0.04975065 -0.73979894  1.00651866  TRUE
## 85   1.7000000 -0.50836651  0.59248496 -0.07231117 -1.47875866  TRUE
## 86   2.4285714 -0.60447683  0.59248496 -1.07354283  0.93934900  TRUE
## 87   1.4000000  0.60324740 -1.03571798 -0.07231117  1.25280740  TRUE
## 88   1.6363636 -0.47474949  1.13521927  0.26143271  1.48790120  TRUE
## 89   1.1666667  1.44242444 -1.03571798  0.59517659 -1.59070809  TRUE
## 90   2.0000000  0.25854963  0.04975065 -0.73979894  0.77142485  TRUE
## 91   4.0000000 -0.64385782  0.04975065 -2.07477448  1.25280740 FALSE
## 92   1.5555556  1.22288870 -1.03571798 -0.40605506  1.37595177  TRUE
## 93   1.6000000  1.00347946  0.04975065 -0.07231117  0.73784003  TRUE
## 94   2.0000000 -0.47152551  0.04975065 -0.73979894  0.65947543  TRUE
## 95   1.1538462  2.02542354 -0.49298367  0.92892048  0.62589060  TRUE
## 96   1.2307692 -1.32158885  0.04975065  0.92892048 -0.78467220  TRUE
## 97   0.8421053  1.66073563  0.04975065  2.93138378  0.92815405  TRUE
## 98   1.2000000  1.40827116  1.13521927  1.59640825  0.16689794  TRUE
## 99   1.5555556  0.27240553 -1.03571798 -0.40605506 -0.06819586 FALSE
## 100  1.0714286 -0.77001103 -0.49298367  1.26266436  0.71545014  TRUE
## 101  1.8571429  1.27869202 -1.57845229 -1.07354283  0.96173888  TRUE
## 102  1.7000000 -0.62707287  0.59248496 -0.07231117 -0.30328966  TRUE
## 103  1.1538462 -0.53631614 -0.49298367  0.92892048 -1.46756372  TRUE
## 104  0.9166667  0.38538859 -2.66392091  0.59517659  0.51394117  TRUE
## 105  1.4166667  0.14017781  0.59248496  0.59517659  0.62589060 FALSE
## 106  1.7272727  0.12178195  1.67795358  0.26143271  1.58865568 FALSE
## 107  1.1538462 -0.17251493 -0.49298367  0.92892048  1.20802763  TRUE
## 108  1.4000000 -0.23028283 -1.03571798 -0.07231117 -1.54592832  TRUE
## 109  1.4166667 -1.00854026  0.59248496  0.59517659  0.48035634  TRUE
## 110  2.5714286  0.50664358  1.13521927 -1.07354283 -1.63548786  TRUE
## 111  1.5454545 -0.66533452  0.59248496  0.26143271  1.42073154  TRUE
## 112  1.3333333  0.46213819  0.04975065  0.59517659  1.44312143 FALSE
## 113  3.7500000 -0.87069699 -0.49298367 -2.07477448  1.45431637  TRUE
## 114  2.2857143 -0.57464870  0.04975065 -1.07354283  1.51029108  TRUE
## 115  1.6000000  0.33261121  0.04975065 -0.07231117  0.09972828  TRUE
## 116  1.5000000  0.03067253 -0.49298367 -0.07231117  0.89456923  TRUE
## 117  2.5000000 -0.54163218 -0.49298367 -1.40728671 -0.28089977  TRUE
## 118  1.6363636 -0.14521670  1.13521927  0.26143271 -0.82945198 FALSE
## 119  1.6666667  2.24005907  2.22068789  0.59517659 -0.30328966  TRUE
## 120  2.0000000 -0.40086739  1.13521927 -0.40605506  0.37960185 FALSE
mayúsculas <- rename_with(df2,toupper)
View(mayúsculas)


select(tib.i, Biomasa)
##      Biomasa
## 1   5.191382
## 2   4.682817
## 3   5.444438
## 4   3.525376
## 5   4.860301
## 6   4.284344
## 7   5.057715
## 8   6.372872
## 9   4.814129
## 10  5.875504
## 11  5.545751
## 12  4.332472
## 13  4.143265
## 14  3.942137
## 15  4.085222
## 16  5.135173
## 17  4.198869
## 18  3.931221
## 19  4.645347
## 20  4.364195
## 21  4.731182
## 22  5.872350
## 23  3.566169
## 24  4.533903
## 25  5.494825
## 26  3.792585
## 27  3.479056
## 28  6.000100
## 29  5.385418
## 30  4.295210
## 31  4.705739
## 32  4.967705
## 33  4.883999
## 34  6.685638
## 35  6.782740
## 36  4.895407
## 37  6.089084
## 38  4.058907
## 39  5.309868
## 40  4.583636
## 41  4.390665
## 42  5.553013
## 43  5.399750
## 44  4.387268
## 45  5.033227
## 46  4.550117
## 47  5.381977
## 48  4.957284
## 49  4.662462
## 50  5.744640
## 51  4.572862
## 52  6.061314
## 53  4.077621
## 54  5.227363
## 55  6.347073
## 56  4.453775
## 57  4.682281
## 58  5.176889
## 59  4.389201
## 60  3.284646
## 61  5.837547
## 62  4.968740
## 63  3.903301
## 64  6.132158
## 65  5.873990
## 66  5.515326
## 67  4.084581
## 68  3.723847
## 69  5.188571
## 70  5.086961
## 71  5.833276
## 72  4.376451
## 73  3.695728
## 74  4.623261
## 75  5.533799
## 76  3.128952
## 77  3.984496
## 78  6.174937
## 79  5.831186
## 80  4.584803
## 81  4.444875
## 82  5.384299
## 83  5.781127
## 84  4.279655
## 85  4.534812
## 86  4.458870
## 87  5.413162
## 88  4.561375
## 89  6.076244
## 90  5.140797
## 91  4.427752
## 92  5.902777
## 93  5.729409
## 94  4.563922
## 95  6.536906
## 96  3.892238
## 97  6.248745
## 98  6.049258
## 99  5.151745
## 100 4.328072
## 101 5.946870
## 102 4.441015
## 103 4.512727
## 104 5.241019
## 105 5.047264
## 106 5.032729
## 107 4.800188
## 108 4.754542
## 109 4.139596
## 110 5.336830
## 111 4.410783
## 112 5.301664
## 113 4.248514
## 114 4.482439
## 115 5.199317
## 116 4.960738
## 117 4.508527
## 118 4.821758
## 119 6.706502
## 120 4.619753
tib.i %>% summarise(mean(Biomasa)) 
##   mean(Biomasa)
## 1      4.936502
agrup <- df1 %>% select(Biomasa, Fertilización)
agrup %>% group_by(Fertilización)
## # A tibble: 120 x 2
## # Groups:   Fertilización [2]
##    Biomasa Fertilización
##      <dbl> <chr>        
##  1    5.19 FO           
##  2    4.68 FI           
##  3    5.44 FI           
##  4    3.53 FI           
##  5    4.86 FI           
##  6    4.28 FI           
##  7    5.06 FO           
##  8    6.37 FO           
##  9    4.81 FO           
## 10    5.88 FO           
## # ... with 110 more rows
agrup %>% summarise(qs = quantile(c(0.10,0.10,0.30,0.40,0.50))) 
##    qs
## 1 0.1
## 2 0.1
## 3 0.3
## 4 0.4
## 5 0.5
tib.i %>% summarise(mean(Biomasa, trim=0.5), median(Biomasa, na.rm = FALSE), sd(Biomasa, na.rm = FALSE), min(Biomasa, na.rm = FALSE), max(Biomasa, na.rm = FALSE),var(Biomasa, y=NULL, na.rm=FALSE)) 
##   mean(Biomasa, trim = 0.5) median(Biomasa, na.rm = FALSE)
## 1                  4.841029                       4.841029
##   sd(Biomasa, na.rm = FALSE) min(Biomasa, na.rm = FALSE)
## 1                  0.7901577                    3.128952
##   max(Biomasa, na.rm = FALSE) var(Biomasa, y = NULL, na.rm = FALSE)
## 1                     6.78274                             0.6243492
filtro <- filter(df1, Estatus %in% c("s"))
filtro %>% summarise(mean(Estatus, trim=0.5), median(Estatus, na.rm = FALSE), sd(Estatus, na.rm = FALSE), min(Estatus, na.rm = FALSE), max(Estatus, na.rm = FALSE),var(Estatus, y=NULL, na.rm=FALSE)) 
## Warning in mean.default(Estatus, trim = 0.5): argument is not numeric or
## logical: returning NA
## Warning in min(Estatus, na.rm = FALSE): no non-missing arguments, returning NA
## Warning in max(Estatus, na.rm = FALSE): no non-missing arguments, returning NA
##   mean(Estatus, trim = 0.5) median(Estatus, na.rm = FALSE)
## 1                        NA                           <NA>
##   sd(Estatus, na.rm = FALSE) min(Estatus, na.rm = FALSE)
## 1                         NA                        <NA>
##   max(Estatus, na.rm = FALSE) var(Estatus, y = NULL, na.rm = FALSE)
## 1                        <NA>                                    NA
library(tidyr)
subdatos <- drop_na(tib.i)


filter(df1, Estatus %in% c("PA", "MA"))
##     Biomasa Floresr Floresd Hojasd Plaga Estatus Fertilización
## 1  4.682817      19      13    197 FALSE      PA            FI
## 2  5.444438      20      10    279  TRUE      MA            FI
## 3  4.860301      17       8    277 FALSE      PA            FI
## 4  4.284344      16      19     89  TRUE      MA            FI
## 5  6.372872      16       8     54 FALSE      PA            FO
## 6  4.814129      17       8    121  TRUE      MA            FO
## 7  5.545751      15      12      2  TRUE      PA            FI
## 8  4.332472      16      10     57 FALSE      MA            FO
## 9  3.942137      17       8     68  TRUE      PA            FI
## 10 4.085222      16      13     83  TRUE      MA            FO
## 11 4.198869      17       8    237  TRUE      PA            FO
## 12 3.931221      13      11     32  TRUE      MA            FI
## 13 4.364195      16       5    130 FALSE      PA            FI
## 14 4.731182      17       8     84  TRUE      MA            FO
## 15 3.566169      17      14     78  TRUE      PA            FI
## 16 4.533903      20       9     75  TRUE      MA            FI
## 17 3.792585      17       6    300 FALSE      PA            FO
## 18 3.479056      15       8    256  TRUE      MA            FI
## 19 5.385418      18      10    164  TRUE      PA            FI
## 20 4.295210      18      10    199 FALSE      MA            FO
## 21 4.967705      14       9     26  TRUE      PA            FI
## 22 4.883999      16      11    260 FALSE      MA            FI
## 23 6.782740      18       7    224  TRUE      PA            FI
## 24 4.895407      17      11    227  TRUE      MA            FI
## 25 4.058907      12      10     59 FALSE      PA            FI
## 26 5.309868      19      13    186  TRUE      MA            FI
## 27 4.390665      13       6     10  TRUE      PA            FI
## 28 5.553013      16      11    105  TRUE      MA            FI
## 29 4.387268      14      14     18  TRUE      PA            FI
## 30 5.033227      16      10     43  TRUE      MA            FO
## 31 5.381977      14       7    158  TRUE      PA            FI
## 32 4.957284      15      11    208  TRUE      MA            FI
## 33 5.744640      15      13    250 FALSE      PA            FO
## 34 4.572862      14       6     60 FALSE      MA            FI
## 35 4.077621      14      13    138  TRUE      PA            FI
## 36 5.227363      16      15     38 FALSE      MA            FI
## 37 4.453775      11       6    111  TRUE      PA            FI
## 38 4.682281      17       5      3  TRUE      MA            FO
## 39 4.389201      17      12    114  TRUE      PA            FI
## 40 3.284646      16       5     33  TRUE      MA            FO
## 41 4.968740      17       8    188  TRUE      PA            FO
## 42 3.903301      17      10     58  TRUE      MA            FO
## 43 5.873990      17      12    151 FALSE      PA            FI
## 44 5.515326      14      14    191  TRUE      MA            FO
## 45 3.723847      18      10     72  TRUE      PA            FI
## 46 5.188571      17      11    157  TRUE      MA            FI
## 47 5.833276      16      14    133  TRUE      PA            FI
## 48 4.376451      17      13    170  TRUE      MA            FI
## 49 4.623261      16       5    220  TRUE      PA            FI
## 50 5.533799      15      16    218 FALSE      MA            FI
## 51 3.984496      16      14    199  TRUE      PA            FO
## 52 6.174937      15      14     81  TRUE      MA            FO
## 53 4.584803      14       9    185 FALSE      PA            FO
## 54 4.444875      17      12    216 FALSE      MA            FI
## 55 5.781127      16      11    169  TRUE      PA            FI
## 56 4.279655      16       8    246  TRUE      MA            FI
## 57 4.458870      17       7    240  TRUE      PA            FO
## 58 5.413162      14      10    268  TRUE      MA            FO
## 59 6.076244      14      12     14  TRUE      PA            FO
## 60 5.140797      16       8    225  TRUE      MA            FO
## 61 5.902777      14       9    279  TRUE      PA            FO
## 62 5.729409      16      10    222  TRUE      MA            FO
## 63 6.536906      15      13    212  TRUE      PA            FI
## 64 3.892238      16      13     86  TRUE      MA            FI
## 65 6.049258      18      15    171  TRUE      PA            FI
## 66 5.151745      14       9    150 FALSE      MA            FI
## 67 5.946870      13       7    242  TRUE      PA            FI
## 68 4.441015      17      10    129  TRUE      MA            FI
## 69 5.241019      11      12    202  TRUE      PA            FO
## 70 5.047264      17      12    212 FALSE      MA            FI
## 71 4.800188      15      13    264  TRUE      PA            FI
## 72 4.754542      14      10     18  TRUE      MA            FI
## 73 5.336830      18       7     10  TRUE      PA            FO
## 74 4.410783      17      11    283  TRUE      MA            FI
## 75 4.248514      15       4    286  TRUE      PA            FI
## 76 4.482439      16       7    291  TRUE      MA            FO
## 77 4.960738      15      10    236  TRUE      PA            FI
## 78 4.508527      15       6    131  TRUE      MA            FI
## 79 6.706502      20      12    129  TRUE      PA            FI
## 80 4.619753      18       9    190 FALSE      MA            FO
complete.cases(tib.i)
##   [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
##  [16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
##  [31] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
##  [46] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
##  [61] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
##  [76] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
##  [91] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [106] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
df2$Floresd <- NULL
df2$Floresr <- NULL
View(df2)


select(tib.i, contains("d"))
##     Floresd Hojasd
## 1         1    150
## 2        13    197
## 3        10    279
## 4        13    118
## 5         8    277
## 6        19     89
## 7         8    253
## 8         8     54
## 9         8    121
## 10        8     37
## 11       12      2
## 12       10     57
## 13       11    203
## 14        8     68
## 15       13     83
## 16       10    150
## 17        8    237
## 18       11     32
## 19        7    281
## 20        5    130
## 21        8     84
## 22       14    262
## 23       14     78
## 24        9     75
## 25       13    241
## 26        6    300
## 27        8    256
## 28       11     38
## 29       10    164
## 30       10    199
## 31       12    235
## 32        9     26
## 33       11    260
## 34        7    187
## 35        7    224
## 36       11    227
## 37       11    222
## 38       10     59
## 39       13    186
## 40       10      9
## 41        6     10
## 42       11    105
## 43        7     59
## 44       14     18
## 45       10     43
## 46       14    258
## 47        7    158
## 48       11    208
## 49        9    119
## 50       13    250
## 51        6     60
## 52       12    134
## 53       13    138
## 54       15     38
## 55        7     31
## 56        6    111
## 57        5      3
## 58       13     37
## 59       12    114
## 60        5     33
## 61        9     61
## 62        8    188
## 63       10     58
## 64       10    286
## 65       12    151
## 66       14    191
## 67       13    265
## 68       10     72
## 69       11    157
## 70        8    240
## 71       14    133
## 72       13    170
## 73       11     66
## 74        5    220
## 75       16    218
## 76       12    120
## 77       14    199
## 78       14     81
## 79       11    141
## 80        9    185
## 81       12    216
## 82        9     22
## 83       11    169
## 84        8    246
## 85       10     24
## 86        7    240
## 87       10    268
## 88       11    289
## 89       12     14
## 90        8    225
## 91        4    268
## 92        9    279
## 93       10    222
## 94        8    215
## 95       13    212
## 96       13     86
## 97       19    239
## 98       15    171
## 99        9    150
## 100      14    220
## 101       7    242
## 102      10    129
## 103      13     25
## 104      12    202
## 105      12    212
## 106      11    298
## 107      13    264
## 108      10     18
## 109      12    199
## 110       7     10
## 111      11    283
## 112      12    285
## 113       4    286
## 114       7    291
## 115      10    165
## 116      10    236
## 117       6    131
## 118      11     82
## 119      12    129
## 120       9    190
select(tib.i, everything()) %>% 
       relocate(c("Floresd", "Floresr"), .before = Biomasa)
##     Floresd Floresr  Biomasa Hojasd Plaga
## 1         1      16 5.191382    150  TRUE
## 2        13      19 4.682817    197 FALSE
## 3        10      20 5.444438    279  TRUE
## 4        13      17 3.525376    118  TRUE
## 5         8      17 4.860301    277 FALSE
## 6        19      16 4.284344     89  TRUE
## 7         8      16 5.057715    253  TRUE
## 8         8      16 6.372872     54 FALSE
## 9         8      17 4.814129    121  TRUE
## 10        8      17 5.875504     37 FALSE
## 11       12      15 5.545751      2  TRUE
## 12       10      16 4.332472     57 FALSE
## 13       11      12 4.143265    203  TRUE
## 14        8      17 3.942137     68  TRUE
## 15       13      16 4.085222     83  TRUE
## 16       10      14 5.135173    150  TRUE
## 17        8      17 4.198869    237  TRUE
## 18       11      13 3.931221     32  TRUE
## 19        7      15 4.645347    281  TRUE
## 20        5      16 4.364195    130 FALSE
## 21        8      17 4.731182     84  TRUE
## 22       14      19 5.872350    262  TRUE
## 23       14      17 3.566169     78  TRUE
## 24        9      20 4.533903     75  TRUE
## 25       13      14 5.494825    241  TRUE
## 26        6      17 3.792585    300 FALSE
## 27        8      15 3.479056    256  TRUE
## 28       11      16 6.000100     38  TRUE
## 29       10      18 5.385418    164  TRUE
## 30       10      18 4.295210    199 FALSE
## 31       12      16 4.705739    235 FALSE
## 32        9      14 4.967705     26  TRUE
## 33       11      16 4.883999    260 FALSE
## 34        7      17 6.685638    187 FALSE
## 35        7      18 6.782740    224  TRUE
## 36       11      17 4.895407    227  TRUE
## 37       11      14 6.089084    222  TRUE
## 38       10      12 4.058907     59 FALSE
## 39       13      19 5.309868    186  TRUE
## 40       10      11 4.583636      9 FALSE
## 41        6      13 4.390665     10  TRUE
## 42       11      16 5.553013    105  TRUE
## 43        7      18 5.399750     59  TRUE
## 44       14      14 4.387268     18  TRUE
## 45       10      16 5.033227     43  TRUE
## 46       14      17 4.550117    258  TRUE
## 47        7      14 5.381977    158  TRUE
## 48       11      15 4.957284    208  TRUE
## 49        9      15 4.662462    119 FALSE
## 50       13      15 5.744640    250 FALSE
## 51        6      14 4.572862     60 FALSE
## 52       12      16 6.061314    134  TRUE
## 53       13      14 4.077621    138  TRUE
## 54       15      16 5.227363     38 FALSE
## 55        7      17 6.347073     31  TRUE
## 56        6      11 4.453775    111  TRUE
## 57        5      17 4.682281      3  TRUE
## 58       13      12 5.176889     37 FALSE
## 59       12      17 4.389201    114  TRUE
## 60        5      16 3.284646     33  TRUE
## 61        9      19 5.837547     61 FALSE
## 62        8      17 4.968740    188  TRUE
## 63       10      17 3.903301     58  TRUE
## 64       10      15 6.132158    286 FALSE
## 65       12      17 5.873990    151 FALSE
## 66       14      14 5.515326    191  TRUE
## 67       13      13 4.084581    265  TRUE
## 68       10      18 3.723847     72  TRUE
## 69       11      17 5.188571    157  TRUE
## 70        8      15 5.086961    240  TRUE
## 71       14      16 5.833276    133  TRUE
## 72       13      17 4.376451    170  TRUE
## 73       11      17 3.695728     66 FALSE
## 74        5      16 4.623261    220  TRUE
## 75       16      15 5.533799    218 FALSE
## 76       12      18 3.128952    120  TRUE
## 77       14      16 3.984496    199  TRUE
## 78       14      15 6.174937     81  TRUE
## 79       11      16 5.831186    141  TRUE
## 80        9      14 4.584803    185 FALSE
## 81       12      17 4.444875    216 FALSE
## 82        9      14 5.384299     22  TRUE
## 83       11      16 5.781127    169  TRUE
## 84        8      16 4.279655    246  TRUE
## 85       10      17 4.534812     24  TRUE
## 86        7      17 4.458870    240  TRUE
## 87       10      14 5.413162    268  TRUE
## 88       11      18 4.561375    289  TRUE
## 89       12      14 6.076244     14  TRUE
## 90        8      16 5.140797    225  TRUE
## 91        4      16 4.427752    268 FALSE
## 92        9      14 5.902777    279  TRUE
## 93       10      16 5.729409    222  TRUE
## 94        8      16 4.563922    215  TRUE
## 95       13      15 6.536906    212  TRUE
## 96       13      16 3.892238     86  TRUE
## 97       19      16 6.248745    239  TRUE
## 98       15      18 6.049258    171  TRUE
## 99        9      14 5.151745    150 FALSE
## 100      14      15 4.328072    220  TRUE
## 101       7      13 5.946870    242  TRUE
## 102      10      17 4.441015    129  TRUE
## 103      13      15 4.512727     25  TRUE
## 104      12      11 5.241019    202  TRUE
## 105      12      17 5.047264    212 FALSE
## 106      11      19 5.032729    298 FALSE
## 107      13      15 4.800188    264  TRUE
## 108      10      14 4.754542     18  TRUE
## 109      12      17 4.139596    199  TRUE
## 110       7      18 5.336830     10  TRUE
## 111      11      17 4.410783    283  TRUE
## 112      12      16 5.301664    285 FALSE
## 113       4      15 4.248514    286  TRUE
## 114       7      16 4.482439    291  TRUE
## 115      10      16 5.199317    165  TRUE
## 116      10      15 4.960738    236  TRUE
## 117       6      15 4.508527    131  TRUE
## 118      11      18 4.821758     82 FALSE
## 119      12      20 6.706502    129  TRUE
## 120       9      18 4.619753    190 FALSE