fit=lm(wage~poly(age, 5), data=Wage)
coef(summary(fit))
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 111.70361 0.7287647 153.2780243 0.000000e+00
## poly(age, 5)1 447.06785 39.9160847 11.2001930 1.491111e-28
## poly(age, 5)2 -478.31581 39.9160847 -11.9830341 2.367734e-32
## poly(age, 5)3 125.52169 39.9160847 3.1446392 1.679213e-03
## poly(age, 5)4 -77.91118 39.9160847 -1.9518743 5.104623e-02
## poly(age, 5)5 -35.81289 39.9160847 -0.8972045 3.696820e-01
fit.1 = lm(wage~age, data=Wage)
fit.2 = lm(wage~poly(age, 2), data=Wage)
fit.3 = lm(wage~poly(age, 3), data=Wage)
fit.4 = lm(wage~poly(age, 4), data=Wage)
fit.5 = lm(wage~poly(age, 5), data=Wage)
anova(fit.1, fit.2, fit.3, fit.4, fit.5)
## Analysis of Variance Table
##
## Model 1: wage ~ age
## Model 2: wage ~ poly(age, 2)
## Model 3: wage ~ poly(age, 3)
## Model 4: wage ~ poly(age, 4)
## Model 5: wage ~ poly(age, 5)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2998 5022216
## 2 2997 4793430 1 228786 143.5931 < 2.2e-16 ***
## 3 2996 4777674 1 15756 9.8888 0.001679 **
## 4 2995 4771604 1 6070 3.8098 0.051046 .
## 5 2994 4770322 1 1283 0.8050 0.369682
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
attach(Wage)
agelims=range(Wage$age)
age.grid=seq(from=agelims[1],to=agelims[2])
preds=predict(fit,newdata=list(age=age.grid),se=TRUE)
se.bands=cbind(preds$fit+2*preds$se.fit,preds$fit-2*preds$se.fit)
plot(age,wage,xlim=agelims,cex=.5,col="darkgrey")
title("Degree 5 Polynomial")
lines(age.grid,preds$fit,lwd=2,col="red")
matlines(age.grid,se.bands,lwd =1,col="blue",lty =3)
detach(Wage)
library(boot)
cv.error.10 = rep(NA,9)
for (i in 2:10) {
Wage$age.cut = cut(Wage$age,i)
step.fit=glm(wage~age.cut,data=Wage)
cv.error.10[i-1]=cv.glm(Wage,step.fit,K=10)$delta[1] # [1]: Std [2]: Bias corrected.
}
which.min(cv.error.10)+1# index starts at 2 so add 1 to get count of true cuts
## [1] 8
cv.error.10
## [1] 1734.648 1683.086 1636.543 1630.488 1623.839 1611.798 1600.291 1608.664
## [9] 1603.674
step.fit = glm(wage~cut(age,8), data=Wage)
preds2=predict(step.fit,newdata=list(age=age.grid), se=T)
se.bands2=cbind(preds2$fit+2*preds2$se.fit,preds2$fit-2*preds2$se.fit)
plot(Wage$age,Wage$wage,xlim=agelims,cex=.5,col="darkgrey")
title("8 cut step Function")
lines(age.grid,preds2$fit,lwd=2,col="red")
matlines(age.grid,se.bands2,lwd =1,col="blue",lty =3)
train = sample(length(College$Outstate), length(College$Outstate)/2)
College.train = College[train, ]
College.test = College[-train, ]
regfit.fwd = regsubsets(Outstate ~ ., data = College.train, nvmax = 17, method = "forward")
fit.summary = summary(regfit.fwd)
which.min(fit.summary$cp)
## [1] 11
fit.summary
## Subset selection object
## Call: regsubsets.formula(Outstate ~ ., data = College.train, nvmax = 17,
## method = "forward")
## 17 Variables (and intercept)
## Forced in Forced out
## PrivateYes FALSE FALSE
## Apps FALSE FALSE
## Accept FALSE FALSE
## Enroll FALSE FALSE
## Top10perc FALSE FALSE
## Top25perc FALSE FALSE
## F.Undergrad FALSE FALSE
## P.Undergrad FALSE FALSE
## Room.Board FALSE FALSE
## Books FALSE FALSE
## Personal FALSE FALSE
## PhD FALSE FALSE
## Terminal FALSE FALSE
## S.F.Ratio FALSE FALSE
## perc.alumni FALSE FALSE
## Expend FALSE FALSE
## Grad.Rate FALSE FALSE
## 1 subsets of each size up to 17
## Selection Algorithm: forward
## PrivateYes Apps Accept Enroll Top10perc Top25perc F.Undergrad
## 1 ( 1 ) " " " " " " " " " " " " " "
## 2 ( 1 ) "*" " " " " " " " " " " " "
## 3 ( 1 ) "*" " " " " " " " " " " " "
## 4 ( 1 ) "*" " " " " " " " " " " " "
## 5 ( 1 ) "*" " " " " " " " " " " " "
## 6 ( 1 ) "*" " " " " " " " " " " " "
## 7 ( 1 ) "*" " " " " " " " " " " " "
## 8 ( 1 ) "*" " " "*" " " " " " " " "
## 9 ( 1 ) "*" " " "*" "*" " " " " " "
## 10 ( 1 ) "*" "*" "*" "*" " " " " " "
## 11 ( 1 ) "*" "*" "*" "*" "*" " " " "
## 12 ( 1 ) "*" "*" "*" "*" "*" " " " "
## 13 ( 1 ) "*" "*" "*" "*" "*" " " " "
## 14 ( 1 ) "*" "*" "*" "*" "*" " " " "
## 15 ( 1 ) "*" "*" "*" "*" "*" " " "*"
## 16 ( 1 ) "*" "*" "*" "*" "*" " " "*"
## 17 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
## P.Undergrad Room.Board Books Personal PhD Terminal S.F.Ratio
## 1 ( 1 ) " " " " " " " " " " " " " "
## 2 ( 1 ) " " " " " " " " " " " " " "
## 3 ( 1 ) " " "*" " " " " " " " " " "
## 4 ( 1 ) " " "*" " " " " " " " " " "
## 5 ( 1 ) " " "*" " " " " " " "*" " "
## 6 ( 1 ) " " "*" " " " " " " "*" " "
## 7 ( 1 ) " " "*" " " " " " " "*" "*"
## 8 ( 1 ) " " "*" " " " " " " "*" "*"
## 9 ( 1 ) " " "*" " " " " " " "*" "*"
## 10 ( 1 ) " " "*" " " " " " " "*" "*"
## 11 ( 1 ) " " "*" " " " " " " "*" "*"
## 12 ( 1 ) " " "*" " " "*" " " "*" "*"
## 13 ( 1 ) "*" "*" " " "*" " " "*" "*"
## 14 ( 1 ) "*" "*" "*" "*" " " "*" "*"
## 15 ( 1 ) "*" "*" "*" "*" " " "*" "*"
## 16 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
## 17 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
## perc.alumni Expend Grad.Rate
## 1 ( 1 ) " " "*" " "
## 2 ( 1 ) " " "*" " "
## 3 ( 1 ) " " "*" " "
## 4 ( 1 ) "*" "*" " "
## 5 ( 1 ) "*" "*" " "
## 6 ( 1 ) "*" "*" "*"
## 7 ( 1 ) "*" "*" "*"
## 8 ( 1 ) "*" "*" "*"
## 9 ( 1 ) "*" "*" "*"
## 10 ( 1 ) "*" "*" "*"
## 11 ( 1 ) "*" "*" "*"
## 12 ( 1 ) "*" "*" "*"
## 13 ( 1 ) "*" "*" "*"
## 14 ( 1 ) "*" "*" "*"
## 15 ( 1 ) "*" "*" "*"
## 16 ( 1 ) "*" "*" "*"
## 17 ( 1 ) "*" "*" "*"
Model with 13 variables is best fitted model.
gam.fit = gam(Outstate~Private+
s(Room.Board,4)+
s(PhD,4)+
s(perc.alumni,2)+
s(Expend,4)+
s(Grad.Rate,5)+
s(Apps,4)+
s(Accept,4)+
s(Enroll,2)+
s(Top10perc,4)+
s(F.Undergrad,5)+
s(Personal,2)+
s(S.F.Ratio,4)
,data=College.train)
par(mfrow=c(4,3))
plot(gam.fit, col="blue", se=T)
gam.pred = predict(gam.fit, College.test)
gam.err = mean((College.test$Outstate - gam.pred)^2)
gam.err
## [1] 4105545
summary(gam.fit)
##
## Call: gam(formula = Outstate ~ Private + s(Room.Board, 4) + s(PhD,
## 4) + s(perc.alumni, 2) + s(Expend, 4) + s(Grad.Rate, 5) +
## s(Apps, 4) + s(Accept, 4) + s(Enroll, 2) + s(Top10perc, 4) +
## s(F.Undergrad, 5) + s(Personal, 2) + s(S.F.Ratio, 4), data = College.train)
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -5507.53 -1101.28 31.83 1007.49 7333.42
##
## (Dispersion Parameter for gaussian family taken to be 3174103)
##
## Null Deviance: 6364591940 on 387 degrees of freedom
## Residual Deviance: 1085540457 on 341.9991 degrees of freedom
## AIC: 6954.701
##
## Number of Local Scoring Iterations: NA
##
## Anova for Parametric Effects
## Df Sum Sq Mean Sq F value Pr(>F)
## Private 1 1686196996 1686196996 531.2357 < 2.2e-16 ***
## s(Room.Board, 4) 1 1343943478 1343943478 423.4089 < 2.2e-16 ***
## s(PhD, 4) 1 417275830 417275830 131.4626 < 2.2e-16 ***
## s(perc.alumni, 2) 1 273988960 273988960 86.3201 < 2.2e-16 ***
## s(Expend, 4) 1 420642744 420642744 132.5233 < 2.2e-16 ***
## s(Grad.Rate, 5) 1 27908264 27908264 8.7925 0.0032372 **
## s(Apps, 4) 1 2612154 2612154 0.8230 0.3649554
## s(Accept, 4) 1 13407989 13407989 4.2242 0.0406108 *
## s(Enroll, 2) 1 43495086 43495086 13.7031 0.0002495 ***
## s(Top10perc, 4) 1 21635330 21635330 6.8162 0.0094310 **
## s(F.Undergrad, 5) 1 773504 773504 0.2437 0.6218689
## s(Personal, 2) 1 5424145 5424145 1.7089 0.1920096
## s(S.F.Ratio, 4) 1 2091687 2091687 0.6590 0.4174830
## Residuals 342 1085540457 3174103
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Anova for Nonparametric Effects
## Npar Df Npar F Pr(F)
## (Intercept)
## Private
## s(Room.Board, 4) 3 1.2595 0.2881914
## s(PhD, 4) 3 2.1636 0.0920847 .
## s(perc.alumni, 2) 1 0.8996 0.3435640
## s(Expend, 4) 3 14.0742 1.135e-08 ***
## s(Grad.Rate, 5) 4 1.8965 0.1106130
## s(Apps, 4) 3 2.5769 0.0536815 .
## s(Accept, 4) 3 5.7835 0.0007237 ***
## s(Enroll, 2) 1 0.2299 0.6319111
## s(Top10perc, 4) 3 3.5244 0.0152543 *
## s(F.Undergrad, 5) 4 3.4834 0.0083270 **
## s(Personal, 2) 1 3.2295 0.0731986 .
## s(S.F.Ratio, 4) 3 2.4202 0.0659357 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Under Anova for Parametric Effects these variables are non significant: Apps, Top10perc, F.Undergrad, S.F.Ratio