#Instructions:

#Missing data homework

#Use a data source you are familiar with: DHS Uganda

#Measure an outcome variable and at least 5 predictors: outcome- want another child, predictors- ideal number of children, recieved HIv results, husband’s occupation, husband’s education level, and feelings about wife-beating. #I chose these variables because they had missing values, most empowerment variables had no missing values.

#packages
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.6     v dplyr   1.0.8
## v tidyr   1.2.0     v stringr 1.4.0
## v readr   2.1.2     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(survey)
## Loading required package: grid
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
## Loading required package: survival
## 
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
## 
##     dotchart
library(ggplot2)
library(haven)
library(gtsummary)
library(car)
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
## The following object is masked from 'package:purrr':
## 
##     some
#data
uganda16 <- read_dta("C:/Users/sok536/Downloads/UGIR7BFL.DTA")
uganda16<-zap_labels(uganda16)
#recodes

uganda16$wantanotherchild<-ifelse(uganda16$v602!=9&uganda16$v602==1,1,0)

uganda16$idealnumchil<-car::recode(uganda16$v614, recodes= "1='1'; 2='2'; 3='3'; 4='4'; 5='5'; 6='6 or more'; 7='NA'", as.factor=T)

#bank account
uganda16$bank<-car::Recode(uganda16$v170, recodes= "0= 'No'; 1= 'Yes'", as.factor=T)
#education level
uganda16$educationlevel <- car::recode(uganda16$v106, 
                                       recodes = "0 = 'none'; 1 = 'primary'; 2:3='secondary and above'; else='NA' ",
                                       as.factor=T)
 uganda16$huseducationlevel <- car::recode(uganda16$v729, 
                            recodes = "0 = 'none'; 1:2 = 'primary'; 3:5='secondary and above'; else='NA'",
                            as.factor=T)
#internet
uganda16$internet<-as.factor(uganda16$v171a)
uganda16$internet<-car::Recode(uganda16$v171a, recodes= "0='never'; 1= 'in the past year'; 2='over a year ago'; 3= 'yes, but unsure when'; else='NA'", as.factor=T)

#contraception
uganda16$contraception<-as.factor(uganda16$v313)
uganda16$contraception<-car::Recode(uganda16$v313, recodes= "0='none'; 1='folkloric method'; 2='traditional method' ;3= 'modern method'", as.factor=T)

#usingmoderncontraception
uganda16$moderncon<-car::Recode(uganda16$v313, recodes= "0='0'; 1='1'; 2='1'; 3='2';else=;'NA'", as.factor=T)

as.numeric(uganda16$moderncon)
##     [1] 1 1 1 1 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 3 1 1 1
##    [37] 3 1 2 1 3 1 3 3 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 3 1 3 1 1 1 1 3 1 3 1 1 1
##    [73] 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 3 2 3 3 2 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 3
##   [109] 1 1 3 3 3 1 3 1 3 3 1 1 1 1 1 1 3 2 1 1 1 1 1 1 3 1 1 1 3 3 1 1 1 1 1 3
##   [145] 1 1 3 3 3 3 1 3 1 1 3 1 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 3 1 1 2 1 2 1 3
##   [181] 1 1 1 1 1 3 1 3 1 2 1 3 1 1 1 1 1 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 3
##   [217] 3 3 1 1 3 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 3 1 1 1 1 1 1 1 3 2 1 1 1 1 1
##   [253] 3 1 1 1 1 1 1 3 3 1 1 1 1 2 1 1 1 3 1 1 3 1 1 1 1 1 1 3 1 3 3 3 1 3 1 1
##   [289] 1 3 1 1 1 3 1 1 1 1 1 3 1 1 3 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2
##   [325] 1 1 1 3 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 3 1 3 1 1 1 1 1 2 1 1 1 1 3 3
##   [361] 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 1 1 1 3 3 1 3 1 1 1 3 1 3 1
##   [397] 1 1 1 3 1 1 1 1 1 1 3 1 3 1 3 1 1 1 1 3 1 3 3 1 1 1 1 1 1 3 1 3 1 1 1 3
##   [433] 1 1 1 3 1 1 3 1 1 1 1 1 1 1 3 3 3 1 3 1 1 1 3 1 1 1 1 1 3 3 3 3 1 3 1 1
##   [469] 1 3 3 3 3 1 3 3 1 1 3 1 3 1 1 1 1 1 1 1 1 3 2 1 1 1 3 3 3 1 3 3 1 3 1 1
##   [505] 1 1 1 3 3 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 3 3 3 1 3 1 3 2 2 1 1 1 3
##   [541] 3 1 3 1 1 1 1 1 1 3 1 1 1 1 3 3 1 3 3 1 3 1 1 3 3 3 3 3 1 1 3 1 3 1 1 1
##   [577] 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 3 1 1 1 1 1 3 3 1 1 1 3 3 1 1 3 1 1 3 2 3
##   [613] 3 1 3 3 1 1 1 1 3 1 3 3 1 3 3 3 1 3 1 1 1 3 1 3 3 1 3 1 2 3 1 1 1 1 1 1
##   [649] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 1
##   [685] 1 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 3 3 3 1 3 3 3 3 1 3 1 3 1 1 1
##   [721] 2 1 1 3 3 1 1 3 1 2 3 1 1 1 3 1 3 1 1 1 3 3 1 3 1 2 3 1 1 3 1 3 1 1 1 1
##   [757] 1 1 3 3 1 3 3 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 3 1 1 1 3 2 1 3 2 1 1 1
##   [793] 1 3 1 1 1 1 1 3 1 1 1 3 3 1 1 3 1 1 3 1 3 1 1 1 1 3 1 1 3 3 3 1 1 1 1 1
##   [829] 1 3 3 1 1 3 1 1 1 1 1 1 1 3 1 3 3 1 3 1 3 1 1 1 1 3 1 3 1 3 1 1 1 3 1 3
##   [865] 1 3 1 1 1 3 2 3 3 1 3 1 1 3 1 1 1 3 3 1 3 1 3 1 1 1 1 3 1 1 1 3 1 1 3 1
##   [901] 1 1 3 3 1 1 1 1 1 3 2 3 1 3 1 1 1 3 1 1 1 1 1 1 1 1 3 3 1 2 3 3 1 1 1 3
##   [937] 1 1 1 1 1 1 1 3 3 1 1 3 1 1 1 1 1 1 1 1 1 3 1 2 3 3 1 1 1 1 1 1 1 1 1 3
##   [973] 1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 3 3 3 1 1 3 3 1
##  [1009] 1 1 3 1 1 1 3 3 3 1 1 3 1 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 2 1 1 1 3 1 1 3
##  [1045] 1 3 1 2 3 1 1 1 1 2 3 3 1 1 3 1 1 3 3 3 3 1 1 1 3 3 1 1 1 3 1 1 1 3 1 3
##  [1081] 3 3 1 1 1 1 3 1 3 3 1 1 3 1 3 1 1 3 1 3 1 1 1 1 3 3 1 1 1 1 1 1 3 3 1 3
##  [1117] 1 3 3 1 3 3 1 3 3 1 1 1 2 1 1 3 1 1 3 1 3 1 1 1 1 3 1 3 1 3 3 1 1 1 1 1
##  [1153] 3 1 3 1 1 1 1 1 3 1 3 1 1 3 1 3 2 1 1 1 3 3 3 3 1 3 1 1 3 1 1 1 3 3 1 1
##  [1189] 3 1 1 1 1 3 3 3 1 2 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 3 1 3 3 3 1 1 1 2 3
##  [1225] 1 1 1 1 1 3 1 3 1 3 1 1 3 1 1 1 1 1 1 2 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 2
##  [1261] 3 3 1 3 1 1 1 1 1 3 3 1 3 3 3 3 1 1 1 3 1 3 3 1 1 3 1 1 1 3 2 3 1 3 1 3
##  [1297] 1 2 1 1 3 3 3 3 3 1 3 1 3 3 1 1 3 1 3 3 1 3 1 3 1 1 1 3 1 1 3 1 1 3 3 3
##  [1333] 3 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 3 1 3 2 1 1 1 1 1 1 3 1 3 3 2 1 3 1 1
##  [1369] 1 1 1 3 1 3 3 1 1 3 2 1 1 3 1 1 1 1 3 1 1 1 1 3 3 1 3 1 1 1 3 1 1 2 1 3
##  [1405] 3 1 1 3 1 1 1 3 1 3 1 1 1 2 3 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 2 1 3 1 1
##  [1441] 1 1 1 3 1 2 1 1 3 1 3 3 3 1 1 1 1 3 1 1 3 1 1 3 1 1 2 3 1 1 3 1 2 1 1 3
##  [1477] 1 1 3 3 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 3 1 1 1 3 1 3 1 1 1 1 1 1 1 3 1 2
##  [1513] 1 3 3 1 1 3 1 1 3 1 1 1 1 3 1 3 3 1 1 1 1 1 1 3 1 3 1 1 1 1 1 1 3 1 3 1
##  [1549] 3 1 1 1 1 2 2 3 1 2 1 1 3 1 1 1 1 1 1 3 1 3 3 1 1 1 1 1 3 3 1 1 1 1 3 1
##  [1585] 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 2 1 3 2 1 1 1 3 3 3 3 1 3 1
##  [1621] 1 1 1 1 1 2 3 3 1 1 3 1 3 1 1 3 1 1 3 3 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1
##  [1657] 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 3 3 1 1 1 1 1 1
##  [1693] 3 3 3 1 3 2 2 3 1 1 1 3 1 1 1 1 1 3 3 2 1 1 1 3 1 1 1 1 1 3 3 1 1 1 1 1
##  [1729] 1 1 1 3 1 1 1 2 3 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1
##  [1765] 1 2 1 3 1 1 1 1 1 3 3 1 1 3 1 3 1 3 1 1 1 1 3 1 1 1 3 3 3 1 1 1 1 1 3 3
##  [1801] 1 2 3 3 3 1 1 1 1 1 1 1 1 3 1 1 1 3 1 3 3 3 3 3 3 1 3 1 3 1 3 1 3 1 1 1
##  [1837] 1 3 3 3 1 3 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 3 1 3 3 2 3 1 3 3 3 3 3 3 1 1
##  [1873] 1 1 1 1 1 1 1 1 3 1 1 1 1 1 2 1 3 1 1 3 1 1 2 3 3 3 1 1 1 3 1 1 1 1 1 1
##  [1909] 1 1 1 3 1 1 1 3 3 1 1 3 1 2 1 1 1 1 1 3 1 3 3 1 1 1 3 3 1 3 1 1 3 3 1 1
##  [1945] 1 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 3 1 1 3 1 1 2 1 3 1 1 3 1 1 3
##  [1981] 3 1 3 1 1 1 2 1 1 3 3 3 1 1 3 2 1 1 1 1 1 1 1 3 3 1 1 1 3 3 1 1 1 1 1 1
##  [2017] 1 1 1 1 3 1 3 1 1 1 1 1 1 2 3 3 3 1 3 3 3 2 1 3 1 3 3 3 3 3 3 1 3 3 1 1
##  [2053] 1 3 1 1 1 1 3 1 3 3 3 1 2 1 1 1 1 3 1 1 1 2 1 1 1 1 1 1 1 1 1 1 3 1 3 1
##  [2089] 3 1 1 1 1 1 3 1 3 3 1 1 1 1 1 1 3 1 3 3 1 1 1 1 3 1 2 1 1 1 3 1 1 1 2 2
##  [2125] 3 1 1 2 1 1 3 3 3 1 3 3 3 1 1 3 1 3 1 3 1 1 3 1 1 1 3 3 3 1 3 1 3 1 1 1
##  [2161] 1 1 1 2 1 1 1 3 3 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 2 3 3 1 1 1 3 1 1 1 1 1
##  [2197] 1 1 3 1 1 3 3 1 1 2 1 3 1 2 1 1 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 1 3 2 1 1
##  [2233] 1 2 1 1 1 1 3 1 1 3 1 1 3 3 3 1 3 3 1 1 1 1 3 1 1 1 1 3 2 1 1 1 1 3 1 1
##  [2269] 1 1 1 1 2 1 3 1 1 3 1 1 3 3 1 1 1 1 1 1 3 1 3 3 3 1 3 3 3 3 1 3 1 1 3 1
##  [2305] 1 1 1 1 1 3 3 1 3 1 1 3 3 3 1 3 1 3 3 3 1 1 3 1 1 3 1 2 1 1 2 3 1 1 1 1
##  [2341] 1 3 3 1 1 1 3 1 1 1 2 1 3 2 3 1 2 3 1 3 1 3 1 1 1 1 1 3 1 1 3 2 1 1 3 1
##  [2377] 1 1 2 2 3 3 1 3 1 1 1 1 1 1 1 1 1 1 2 1 1 3 1 3 1 1 1 1 3 3 3 3 1 2 1 1
##  [2413] 3 3 3 1 1 1 3 3 1 3 3 3 3 3 3 1 3 1 1 1 1 1 3 1 1 1 3 3 1 3 3 1 3 1 3 1
##  [2449] 1 1 1 1 3 2 2 1 1 1 1 1 1 1 2 3 1 1 3 1 1 1 1 1 1 2 3 1 1 3 1 1 2 3 3 3
##  [2485] 3 1 1 1 3 3 1 1 1 1 3 1 1 3 1 3 3 2 3 3 1 3 1 3 1 1 1 1 1 1 1 3 1 1 3 1
##  [2521] 1 1 1 1 3 3 1 1 1 1 1 1 1 3 3 3 1 1 1 1 3 1 1 1 1 1 3 3 3 1 2 3 1 1 3 1
##  [2557] 3 3 1 1 2 1 1 1 3 1 3 1 1 3 1 3 3 1 1 1 1 1 1 1 3 1 3 1 1 1 3 1 1 1 1 1
##  [2593] 3 1 1 3 3 3 3 1 1 1 1 3 1 3 3 1 1 1 1 1 3 1 1 1 1 1 1 3 1 3 1 1 1 1 1 3
##  [2629] 1 1 3 1 1 1 3 1 3 2 1 1 3 3 1 3 1 1 3 1 1 1 3 3 3 1 3 2 1 1 1 3 1 3 3 1
##  [2665] 3 1 3 3 1 1 1 1 3 3 1 1 1 1 1 3 1 3 1 1 1 1 1 3 1 1 1 3 1 1 1 1 1 1 3 1
##  [2701] 3 1 3 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1 1 3 3 1 1 1 1 1 1 1 1 3 1 3 1 3 3 1
##  [2737] 1 1 3 2 1 3 1 1 1 3 1 3 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 1 1 3
##  [2773] 1 1 1 2 1 2 1 3 1 1 1 1 1 1 3 1 3 2 1 3 1 1 3 1 1 1 3 1 3 1 1 2 3 3 1 3
##  [2809] 3 1 3 3 1 3 1 1 3 1 1 1 1 3 1 3 3 1 1 1 1 3 3 1 1 1 1 3 3 1 1 1 1 3 3 1
##  [2845] 2 1 1 1 3 1 1 1 1 3 1 1 1 1 3 3 1 1 1 3 3 1 1 1 1 3 3 3 3 1 1 1 3 1 3 3
##  [2881] 1 3 1 3 3 2 3 1 1 1 1 1 1 1 1 3 1 3 1 1 1 1 3 1 3 1 1 3 1 1 1 1 1 3 1 1
##  [2917] 3 1 3 1 1 1 1 3 3 2 3 1 3 1 1 1 1 3 1 1 2 1 1 1 1 3 3 1 3 3 1 3 1 3 1 1
##  [2953] 1 3 3 3 1 1 3 3 1 2 3 3 1 3 1 1 1 1 1 1 1 1 3 1 1 1 1 1 3 1 3 3 1 1 3 3
##  [2989] 1 2 1 1 1 1 1 1 3 1 3 3 1 1 3 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3
##  [3025] 1 1 3 1 1 1 3 1 1 1 3 1 3 1 3 3 1 1 3 1 3 1 1 1 3 1 3 1 1 1 1 1 3 1 3 1
##  [3061] 1 1 1 1 3 3 1 1 3 3 3 3 1 1 1 3 3 1 1 1 1 3 3 3 3 1 1 1 2 3 1 3 1 1 1 3
##  [3097] 3 3 3 1 1 1 1 1 3 3 3 3 1 3 3 3 1 1 1 3 1 1 3 2 3 1 1 1 3 2 1 3 3 3 3 1
##  [3133] 1 1 1 3 1 3 1 1 1 3 3 1 1 1 1 1 3 1 1 3 3 1 3 3 1 1 3 1 1 1 3 1 1 2 1 3
##  [3169] 3 3 3 1 3 3 2 1 1 1 1 3 1 3 1 1 1 3 3 1 1 1 3 1 1 1 1 1 1 1 1 3 1 1 1 1
##  [3205] 3 1 1 3 1 1 1 2 1 1 1 1 3 1 3 1 1 1 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 3 3
##  [3241] 1 1 3 3 3 3 1 1 1 1 3 1 3 1 1 1 1 3 3 3 3 1 1 1 1 3 1 3 1 3 1 1 3 1 1 1
##  [3277] 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 1 1 1 3 1 3 1 2 1 1 1 3 1 1 1 1 2 1 1 1
##  [3313] 1 1 1 1 3 3 1 1 3 3 1 3 3 1 3 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 3 1 1
##  [3349] 1 1 1 1 1 1 1 1 3 1 3 3 1 1 3 3 1 3 1 3 1 3 3 1 3 3 1 1 1 3 1 3 1 1 3 1
##  [3385] 3 1 1 3 1 1 2 1 1 3 3 3 1 1 1 1 3 3 3 1 1 3 1 3 1 3 1 1 1 1 3 1 3 1 1 1
##  [3421] 1 1 1 3 1 1 3 1 1 1 3 3 1 3 1 1 3 2 1 3 1 1 3 1 1 3 3 1 1 1 2 3 1 1 3 3
##  [3457] 1 1 1 1 1 1 1 1 1 1 1 2 1 1 3 3 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1
##  [3493] 1 1 1 1 1 2 1 3 1 1 3 1 3 1 1 1 3 1 1 1 3 1 1 1 1 3 3 3 3 1 3 1 1 3 3 1
##  [3529] 3 1 1 1 3 3 1 1 1 3 3 3 3 3 1 3 1 3 1 3 3 3 1 1 3 1 1 1 3 3 1 1 1 2 1 1
##  [3565] 3 3 3 3 1 1 3 1 1 1 1 1 1 1 1 3 1 3 1 1 1 3 1 1 1 1 2 1 3 3 1 3 3 3 1 1
##  [3601] 3 1 3 1 3 1 1 1 1 3 3 2 3 1 3 1 3 1 3 1 1 3 1 3 1 1 3 1 3 3 1 3 3 1 3 1
##  [3637] 1 1 1 1 1 1 3 2 1 1 1 1 1 1 3 1 3 1 1 3 1 1 3 1 1 3 1 3 3 1 1 1 3 3 1 3
##  [3673] 3 1 1 1 1 1 1 3 1 1 1 1 1 3 1 3 1 3 3 3 1 1 3 1 1 3 1 1 1 3 2 3 1 1 1 3
##  [3709] 1 1 1 1 1 3 1 1 3 1 1 3 1 1 3 2 3 3 1 1 3 3 1 1 1 1 1 1 1 3 3 1 1 1 1 3
##  [3745] 1 3 1 1 1 1 1 1 1 3 1 3 1 1 2 1 3 2 1 3 1 1 1 1 3 3 1 2 3 1 3 3 3 1 1 1
##  [3781] 3 3 3 3 1 2 1 3 1 2 2 3 1 1 1 1 3 1 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 3 3 1
##  [3817] 1 2 3 3 3 1 3 1 1 3 1 1 1 1 3 1 3 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 3 3 3 1
##  [3853] 3 1 1 1 1 1 1 1 3 1 1 1 3 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [3889] 1 1 1 1 1 1 1 1 1 3 3 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 1 1
##  [3925] 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 3 2 3 1 1 1 1 1 1 1 1 1 3 1
##  [3961] 1 1 1 3 1 1 3 1 3 1 1 3 1 3 3 1 1 1 1 1 1 1 3 1 1 1 1 3 1 3 3 1 1 1 1 3
##  [3997] 3 3 1 1 1 1 1 1 3 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3
##  [4033] 3 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 2 1 3 1 1 1 1 1 1 1 3 3 1 3 1 1 1 3 1 3
##  [4069] 1 1 1 1 1 3 3 1 3 3 1 3 3 3 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 3 3 1 3 1 3
##  [4105] 1 1 3 1 3 1 1 3 3 1 3 1 1 3 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 3 1 1 1 1 3
##  [4141] 1 1 1 3 3 2 3 3 1 1 3 1 1 1 1 3 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 3 3 1
##  [4177] 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 1 1 1 1 3 1 1 1 3 1
##  [4213] 1 2 1 1 3 3 3 1 1 1 1 1 3 1 1 1 1 1 1 1 3 1 1 1 1 1 3 3 1 1 3 1 3 1 1 3
##  [4249] 1 1 1 1 1 1 1 1 1 3 1 1 1 1 3 1 3 1 1 1 1 3 1 3 1 1 1 3 3 1 1 1 1 1 1 1
##  [4285] 3 3 1 2 1 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 3 3 2 2 1 1 3 1 3 1 1 3 3 1 1
##  [4321] 3 3 1 1 3 1 3 3 1 1 1 1 1 1 1 1 3 1 1 1 3 3 3 1 1 1 3 1 1 1 3 1 3 1 3 3
##  [4357] 1 1 3 3 1 3 1 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 3 1 1 1 3 1 3 1 1 1 1 1 1
##  [4393] 1 3 1 3 1 3 1 1 3 3 1 1 1 3 3 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 3 1 3 3 3
##  [4429] 1 3 3 3 1 3 1 1 3 1 2 1 3 1 1 1 3 3 1 1 3 1 3 3 3 1 1 3 1 1 3 1 3 1 2 1
##  [4465] 3 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 3 3 1 1 1 1 1 1 3 3 1 3 1 3 1 3 1 3 1
##  [4501] 1 1 1 1 1 1 1 1 1 3 1 3 1 1 1 1 2 1 1 3 1 1 3 2 1 1 1 3 1 1 1 1 1 1 3 1
##  [4537] 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1 3 1 1 1 1
##  [4573] 3 1 1 1 1 1 1 1 3 1 1 2 3 1 1 1 1 3 1 1 1 1 1 3 1 1 3 1 1 3 1 1 1 1 1 1
##  [4609] 1 1 3 1 1 1 1 1 1 1 1 3 1 1 1 3 1 3 1 1 3 1 1 1 1 1 1 3 1 1 3 3 3 3 3 1
##  [4645] 1 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 3 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1
##  [4681] 3 1 1 1 1 1 1 1 3 1 1 1 3 3 1 1 1 1 1 3 3 1 3 1 3 1 1 1 1 3 3 3 1 3 2 1
##  [4717] 1 1 3 3 1 1 3 1 3 1 3 1 1 3 1 1 3 3 1 1 1 1 1 3 1 1 1 1 2 1 1 1 1 3 1 1
##  [4753] 1 3 3 1 1 3 1 1 1 1 1 1 3 3 1 3 3 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1 3 1 1 1
##  [4789] 1 1 1 3 1 1 1 1 1 1 3 3 3 1 1 1 3 1 1 1 1 1 1 1 1 2 1 3 1 1 1 3 1 1 3 1
##  [4825] 1 1 1 1 1 3 2 1 3 1 1 1 1 1 3 3 3 3 1 1 2 1 1 1 1 1 1 3 1 1 1 3 1 3 3 1
##  [4861] 3 3 3 3 3 3 3 1 3 3 3 1 3 1 1 3 3 1 1 1 3 1 1 1 3 2 1 1 1 3 3 1 1 3 1 1
##  [4897] 1 3 1 1 3 1 1 3 1 1 1 3 3 1 3 3 1 3 3 3 1 1 1 3 1 1 1 1 1 2 1 1 1 1 1 1
##  [4933] 3 1 1 1 3 1 1 1 3 3 3 1 1 1 1 1 3 1 1 3 1 1 1 1 3 1 1 1 3 3 1 1 3 2 1 1
##  [4969] 1 3 1 1 1 1 1 3 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 3
##  [5005] 1 1 3 2 1 1 3 1 1 3 1 1 3 3 1 1 3 1 3 1 1 1 3 3 1 3 1 1 1 3 3 2 1 1 1 1
##  [5041] 3 3 2 3 1 1 1 3 3 1 3 1 1 3 1 1 1 3 1 1 1 1 1 1 1 3 1 1 1 3 1 1 1 1 1 3
##  [5077] 1 1 1 1 1 3 1 1 3 1 1 1 3 1 3 1 1 1 3 1 3 2 1 3 3 3 1 1 1 3 3 1 1 1 3 1
##  [5113] 3 3 3 3 1 3 3 3 1 1 3 1 1 1 3 1 1 1 1 1 3 3 3 1 3 3 3 1 3 3 1 2 3 1 1 1
##  [5149] 1 1 1 1 3 3 1 2 3 1 1 1 1 1 3 1 3 1 1 1 1 1 3 1 3 1 1 1 1 3 1 1 2 1 1 1
##  [5185] 2 1 1 1 1 1 1 1 1 3 1 3 1 3 3 1 1 3 3 1 3 1 3 1 1 3 3 3 1 1 1 2 1 1 3 1
##  [5221] 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 1 3 1 1 3 1 3 1 1 3 3 1 1 1 1 1 1 1 3 1
##  [5257] 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 3 1 3 1 1 3 1 3 1 1 1 1 1 1 1 3 1 1 1 1 1
##  [5293] 1 1 1 3 2 1 1 3 1 3 1 1 1 2 3 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 3 1 3 3 3
##  [5329] 1 1 1 1 3 3 3 1 3 1 1 1 1 1 1 1 1 3 1 1 1 3 2 3 3 2 1 1 1 1 1 3 3 1 1 3
##  [5365] 1 1 1 1 3 3 1 1 1 1 3 1 1 1 1 1 1 2 3 1 3 1 1 1 1 3 1 2 1 3 3 1 3 1 3 3
##  [5401] 1 1 1 1 1 1 1 1 3 1 3 1 1 2 1 3 3 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1
##  [5437] 1 1 3 2 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 2 3 1 1 1 3 3 1 1 1 2 1 1 1 1 3
##  [5473] 3 3 1 2 1 1 1 1 3 1 3 1 3 1 1 1 3 1 1 1 3 3 1 3 1 1 1 3 1 3 1 1 1 1 1 1
##  [5509] 1 3 3 1 1 3 1 3 2 1 1 1 1 1 3 1 3 1 1 1 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1
##  [5545] 1 1 1 1 1 3 3 1 1 2 1 2 1 2 1 1 3 1 3 1 3 3 3 2 1 1 1 2 3 3 3 1 1 1 3 2
##  [5581] 3 1 1 3 3 1 2 1 1 1 3 3 1 3 2 2 2 1 1 1 1 1 1 3 3 1 1 1 1 3 1 1 1 1 3 1
##  [5617] 1 1 3 3 1 1 3 1 1 1 1 2 3 3 1 1 1 1 1 3 1 2 1 1 3 1 1 1 1 1 1 1 3 3 1 3
##  [5653] 3 1 1 3 3 1 3 3 1 1 1 1 1 3 3 3 1 1 1 3 1 3 1 1 3 1 1 1 2 1 1 1 1 3 1 1
##  [5689] 1 1 3 1 1 3 3 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1
##  [5725] 1 1 1 2 1 1 1 1 3 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3
##  [5761] 1 1 1 1 1 1 1 3 3 1 1 1 3 1 2 1 1 1 1 3 1 3 1 1 1 1 1 1 3 1 1 3 1 1 1 1
##  [5797] 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 3 1 3 1 3 3 2 1 1 3 1 1 1 3 3
##  [5833] 1 1 1 1 1 1 1 3 1 1 3 3 3 1 1 2 3 1 1 1 3 1 1 2 3 3 1 1 2 3 3 3 1 1 1 1
##  [5869] 2 3 1 3 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 3 1 1 2 3 1 3 1 1 1 1 3 3 1
##  [5905] 3 2 1 1 1 2 2 1 1 1 1 1 1 1 3 3 1 3 3 1 1 3 1 3 3 3 3 1 1 1 1 1 1 3 1 1
##  [5941] 1 1 3 1 1 1 1 1 3 3 1 1 3 1 3 1 1 1 3 1 3 1 1 3 1 1 1 1 1 3 3 1 3 1 1 1
##  [5977] 3 3 1 3 1 1 3 1 3 1 1 1 1 3 2 2 1 1 3 1 1 1 1 1 3 1 1 3 3 1 3 3 1 1 1 1
##  [6013] 1 1 1 3 3 2 1 1 1 1 1 1 1 1 1 1 2 1 3 1 1 1 1 1 1 1 2 1 1 1 1 3 1 1 3 1
##  [6049] 3 3 3 3 3 3 3 1 1 1 3 1 1 1 3 1 3 1 2 1 1 3 3 3 3 3 3 1 1 3 3 1 3 3 1 3
##  [6085] 3 3 1 1 1 1 1 1 1 3 3 1 3 1 1 1 1 3 2 3 1 1 1 3 1 3 1 1 1 3 1 3 3 1 1 3
##  [6121] 3 1 1 1 3 3 3 1 1 3 1 3 1 3 3 1 3 3 1 1 1 3 1 1 1 1 1 3 3 3 3 1 1 1 1 3
##  [6157] 1 1 1 1 1 3 1 1 3 1 1 3 1 3 3 2 1 3 1 3 1 1 3 1 3 3 1 1 1 3 3 1 1 1 1 1
##  [6193] 3 1 1 1 3 3 1 3 3 1 1 1 3 1 1 1 3 1 3 3 3 1 1 1 1 3 3 3 1 1 1 3 3 1 1 1
##  [6229] 3 1 1 3 1 1 1 1 3 3 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 3 3 1 1
##  [6265] 1 3 1 1 1 1 1 1 1 1 3 1 1 1 3 1 1 3 1 3 1 1 1 3 1 1 3 1 1 1 1 1 3 3 1 1
##  [6301] 1 1 1 1 3 3 1 1 1 1 1 3 1 1 1 3 1 1 3 3 1 1 1 1 1 1 1 3 1 3 3 1 1 1 1 3
##  [6337] 1 3 3 3 3 3 3 1 3 1 1 3 3 3 1 3 1 3 3 1 1 1 3 1 1 3 3 3 3 1 1 3 3 3 1 3
##  [6373] 1 1 1 3 1 1 1 1 3 3 1 1 1 1 1 1 1 3 1 1 1 3 1 3 3 1 1 3 1 1 1 1 1 3 1 1
##  [6409] 1 1 3 1 1 1 3 1 1 3 1 1 3 3 1 1 2 1 1 1 1 3 3 1 3 1 1 1 3 1 1 1 1 1 1 1
##  [6445] 1 2 1 1 1 1 1 3 3 3 1 1 1 3 1 3 1 1 1 1 1 1 1 3 3 3 3 3 3 3 1 3 3 1 1 3
##  [6481] 3 3 1 3 1 1 1 1 1 1 1 1 1 1 3 3 3 1 3 3 3 3 3 1 3 1 1 1 3 1 1 1 1 3 3 1
##  [6517] 3 3 1 1 1 1 1 1 1 1 1 1 3 3 3 2 1 1 1 1 3 1 1 1 1 3 1 3 1 3 3 1 2 3 3 1
##  [6553] 1 1 3 1 1 1 1 1 3 1 1 1 3 3 1 3 1 3 3 1 1 1 3 1 1 1 3 1 3 1 1 1 1 3 3 3
##  [6589] 1 1 1 3 2 3 3 1 1 1 1 3 1 1 3 1 1 3 1 1 1 1 1 1 1 3 1 3 3 1 1 1 3 3 1 1
##  [6625] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 3 3 1 3 1 1 1 1 1 3
##  [6661] 1 1 1 1 1 1 1 1 1 3 3 1 1 1 2 1 3 1 3 3 1 3 1 1 3 1 3 1 1 3 3 3 1 1 1 1
##  [6697] 3 1 1 1 1 1 1 3 3 3 3 1 1 3 3 3 1 1 3 3 1 3 3 1 1 1 1 1 1 1 1 1 1 3 1 1
##  [6733] 3 1 1 1 1 1 3 1 3 1 3 1 1 3 1 1 1 2 3 1 1 1 3 3 3 3 3 1 1 1 1 3 1 1 3 1
##  [6769] 3 3 3 1 1 3 1 3 1 2 1 3 3 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 3 3 3 3 1 1 1 3
##  [6805] 1 1 3 1 1 1 1 1 1 1 3 3 1 1 3 3 1 1 1 3 3 3 1 1 1 1 3 3 1 3 1 1 1 1 1 3
##  [6841] 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 3 1 1 1 1 3 3 3 3 2 1 3 3 3 1 1 3 1 3 3
##  [6877] 1 1 1 3 1 3 3 1 1 1 1 1 3 1 3 1 1 1 1 1 1 3 3 1 3 3 1 1 1 1 1 1 3 3 1 1
##  [6913] 1 1 1 1 3 1 1 1 3 3 1 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 3 1 3 3 3 1 1 1 1 3
##  [6949] 3 1 3 1 3 3 1 3 1 1 3 3 1 1 1 1 3 1 1 3 1 1 3 1 1 1 3 3 3 3 1 1 1 1 1 1
##  [6985] 1 1 3 1 1 3 1 3 1 1 3 1 1 1 1 1 1 3 1 3 3 1 1 1 1 3 1 1 1 1 1 3 1 3 1 1
##  [7021] 1 3 1 1 3 1 1 3 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 3 2 1 3 3
##  [7057] 1 2 3 3 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 2 1 1 1 3 3 1 1 1 1
##  [7093] 1 1 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 2 1 1 1 1 1 3 3 3 1 3 1 1 1 1
##  [7129] 1 1 3 1 1 1 1 1 3 3 1 3 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3
##  [7165] 1 2 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1
##  [7201] 1 1 3 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 3 1 3 1 1 1
##  [7237] 1 1 1 1 3 1 1 1 3 3 3 1 1 1 1 3 1 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 2 1 3
##  [7273] 3 3 3 1 1 1 1 1 3 1 3 3 1 1 3 1 3 3 3 3 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 3
##  [7309] 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 3 1 3 1 1 3 1 1 3 1 1 3 1 1 3 3 3 3 1 1 1
##  [7345] 1 1 3 1 1 1 1 3 3 1 3 1 1 1 1 3 2 1 1 1 3 1 3 1 1 1 1 1 1 3 1 1 1 1 3 1
##  [7381] 1 3 1 1 1 3 1 1 3 1 3 3 1 1 1 1 3 1 1 1 1 1 3 2 1 1 1 1 1 3 3 1 2 1 1 3
##  [7417] 1 1 3 1 3 1 3 3 3 1 1 1 1 1 1 1 1 3 1 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1
##  [7453] 1 1 1 1 3 1 1 1 1 1 3 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1
##  [7489] 1 3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [7525] 1 3 1 1 1 1 3 1 3 3 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1
##  [7561] 1 1 1 1 1 1 1 1 1 2 1 1 1 1 3 1 1 1 1 1 1 1 1 1 3 1 3 1 1 1 3 1 1 1 1 1
##  [7597] 1 1 1 1 1 1 1 1 3 3 3 1 3 1 1 1 1 1 1 3 3 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1
##  [7633] 2 1 1 1 1 3 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 3 1
##  [7669] 1 1 1 1 1 1 3 1 1 3 3 1 1 1 1 1 1 1 3 2 1 1 1 1 2 1 3 1 3 1 3 2 1 1 1 3
##  [7705] 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 3 3 3 1 3 1 1 1 1 1
##  [7741] 1 3 1 1 3 1 1 1 1 1 1 2 3 1 3 3 1 1 1 1 1 1 2 3 1 1 1 3 1 1 1 1 1 1 1 1
##  [7777] 3 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 3 3 1 3 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 3
##  [7813] 3 1 1 1 3 2 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3 2 1 1 1 3
##  [7849] 3 1 1 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 3 3 1 1 1 1 1 1 1 1 3 3
##  [7885] 3 1 3 1 1 1 1 1 3 1 1 3 1 1 1 3 3 1 1 1 1 3 1 1 1 1 1 1 1 1 3 1 1 1 1 1
##  [7921] 1 1 3 1 3 3 1 1 1 1 1 1 3 1 1 1 3 1 3 3 1 1 1 1 1 1 1 1 3 3 1 3 1 1 1 3
##  [7957] 1 3 1 1 1 1 3 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1
##  [7993] 1 1 1 1 1 3 3 1 3 1 1 1 3 3 1 3 1 1 1 3 1 3 3 3 1 3 3 1 1 2 1 1 1 1 1 1
##  [8029] 1 1 1 1 1 1 1 1 2 1 1 3 1 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 2
##  [8065] 3 1 1 3 2 3 3 1 3 3 3 3 1 1 1 2 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 2 1
##  [8101] 3 3 3 2 1 1 3 3 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 3 1 1 3 1 3 1 1 1 1 1 2 1
##  [8137] 3 1 3 1 1 1 1 1 3 1 3 2 1 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 3 1 1 3
##  [8173] 1 1 1 1 1 1 1 3 3 2 1 3 3 1 1 3 1 3 1 3 3 1 1 1 3 1 1 3 1 3 1 1 1 3 1 1
##  [8209] 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 3 3 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 3 1
##  [8245] 1 3 1 1 3 1 3 1 1 1 1 1 2 1 1 1 1 1 1 1 3 1 1 2 1 1 3 1 2 1 1 1 3 1 1 3
##  [8281] 3 2 1 3 1 1 1 3 1 1 1 2 1 3 3 3 3 1 1 1 3 2 3 1 1 1 3 1 3 1 1 1 3 3 1 3
##  [8317] 3 3 1 3 3 1 1 1 3 1 1 1 3 3 3 3 3 1 3 1 3 3 1 1 1 1 3 1 1 1 1 3 1 1 3 1
##  [8353] 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1 1
##  [8389] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 3 3 1 3 1 3 1 1 2 1 1 1 2 3
##  [8425] 3 3 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1
##  [8461] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8497] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 3 1
##  [8533] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8569] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8605] 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8641] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8677] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 3 1 3 1 3 1 1 1 1
##  [8713] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8749] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8785] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8821] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8857] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8893] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 2 1 1 1 1 1 1 3
##  [8929] 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 3 1 1 1 3 2 2 1
##  [8965] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 3 3 1 1 3
##  [9001] 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 3 1 1 1 1 1
##  [9037] 1 1 1 3 1 1 3 1 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9073] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9109] 1 1 3 3 3 1 1 3 1 1 3 1 1 3 1 1 1 1 1 3 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1
##  [9145] 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 3 3 1 1 1 1 1 1 1 1 3 1 1 1 3 1 2 1 1 3 1
##  [9181] 1 3 3 3 1 3 3 3 1 1 3 1 1 1 3 1 1 3 1 1 3 3 1 1 1 1 1 1 1 3 1 1 3 3 3 3
##  [9217] 3 1 3 3 1 1 1 1 1 3 1 3 2 2 3 1 1 3 1 1 1 1 3 3 1 1 1 1 1 1 1 3 1 1 1 1
##  [9253] 1 1 1 1 1 1 3 1 1 1 1 3 3 1 1 1 3 1 3 1 1 1 1 1 1 1 3 1 3 1 1 3 1 1 1 3
##  [9289] 3 1 3 2 1 1 1 3 1 3 3 3 3 3 1 1 1 2 3 1 3 3 1 1 1 1 3 2 1 3 1 1 1 1 1 3
##  [9325] 1 1 3 3 1 1 1 3 1 1 3 1 3 1 3 1 3 1 1 1 3 3 1 3 3 1 1 1 3 1 1 3 3 3 1 1
##  [9361] 1 1 1 3 1 1 3 1 1 1 1 1 1 1 3 3 1 1 1 1 1 3 1 3 1 1 3 1 1 1 1 3 3 1 3 1
##  [9397] 1 1 1 1 1 1 3 1 3 1 1 3 3 3 3 3 1 1 1 1 1 3 1 3 3 1 1 1 1 1 1 1 1 2 1 3
##  [9433] 3 3 1 1 3 1 1 1 1 1 3 1 1 3 1 1 1 3 1 1 3 1 1 1 3 1 3 3 3 3 3 1 3 3 1 1
##  [9469] 1 3 1 1 1 1 3 1 1 3 1 1 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1
##  [9505] 1 3 1 1 1 3 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 3 1 3 1 1
##  [9541] 1 1 1 3 3 1 3 3 1 1 3 1 1 3 3 3 3 3 1 1 3 1 3 1 1 1 1 3 1 3 3 3 3 1 1 1
##  [9577] 3 1 1 1 1 1 1 3 1 1 3 1 1 1 3 3 1 1 3 3 1 3 3 3 1 1 3 3 1 1 1 1 3 3 3 1
##  [9613] 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 3 3 3 3 3 1 3 3 3 1 3 1 1 1 3 1 1 3 1 1 1
##  [9649] 1 1 1 1 1 1 3 1 1 3 1 1 3 3 1 1 1 1 1 1 3 3 3 1 3 1 1 1 3 3 3 1 3 1 3 3
##  [9685] 1 1 1 3 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 1 1 3 1 3 1 1 1 2 3
##  [9721] 3 3 1 1 1 3 3 3 3 1 1 3 3 3 1 1 3 1 1 1 3 1 3 1 3 1 1 3 1 3 1 3 1 1 1 3
##  [9757] 3 1 3 1 1 1 1 1 1 1 1 3 1 3 1 1 1 1 1 3 1 1 1 3 1 2 3 1 1 1 1 1 1 1 1 1
##  [9793] 1 3 3 3 1 3 3 3 1 1 1 1 1 1 1 1 1 1 3 1 3 1 3 3 1 3 1 3 1 1 1 3 3 1 1 3
##  [9829] 1 1 1 3 1 1 1 3 1 1 1 2 3 1 1 1 1 3 3 3 3 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1
##  [9865] 1 1 1 1 1 1 1 1 1 3 3 1 1 1 3 1 1 1 1 1 1 1 1 1 3 1 2 1 1 1 3 3 1 1 1 3
##  [9901] 1 3 3 1 3 1 1 3 1 1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1 3 1 1 3 1 1 1 1 1 3
##  [9937] 1 3 1 1 1 1 3 1 3 1 1 1 1 1 1 3 1 3 1 1 1 1 3 3 3 1 1 1 3 3 3 1 3 3 3 2
##  [9973] 3 1 1 1 1 3 1 1 1 1 1 1 1 3 2 1 3 1 3 1 1 1 1 1 1 1 1 3 1 3 1 2 1 1 1 2
## [10009] 3 1 1 1 1 1 3 3 3 1 3 1 1 1 1 1 1 3 1 3 1 3 1 3 3 1 1 1 3 1 1 1 1 1 1 1
## [10045] 3 3 1 1 1 1 1 1 1 3 1 3 3 3 1 1 3 1 3 1 1 3 1 1 1 2 1 1 1 1 3 1 1 3 3 3
## [10081] 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 3 1 1 1 1 3 1 3 1 3 3 1 1 1 1 1 1 1 3 1 3
## [10117] 3 1 1 3 1 1 1 1 1 1 1 3 3 1 1 1 1 1 3 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 3 3
## [10153] 3 1 1 1 2 1 3 1 1 1 1 3 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 3 1 1 1 3 1 1 1
## [10189] 3 3 1 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 2 1 3 1 3 1 1 1 1 1 1 1
## [10225] 3 3 1 1 3 1 1 1 3 1 3 1 3 3 3 1 1 3 1 1 1 3 1 3 3 3 3 1 1 1 1 3 1 1 1 3
## [10261] 3 3 3 3 1 1 3 3 1 3 1 3 2 3 1 1 1 1 3 1 1 3 3 3 3 3 1 3 1 1 1 1 1 1 1 3
## [10297] 3 1 3 3 3 3 1 1 3 1 1 1 3 1 1 1 3 1 3 3 1 1 3 1 1 3 1 1 3 1 3 1 1 3 3 1
## [10333] 1 1 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [10369] 1 1 1 1 1 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1 1 3 3 1 1 3 1 1 3 1 1 1 1 1 3
## [10405] 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1
## [10441] 3 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1
## [10477] 1 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 3 1 3 1 1 3 1 1 1 1 1 1 1 3 1 1 1
## [10513] 1 1 1 1 1 1 3 1 3 2 1 1 3 1 1 1 1 1 1 3 1 1 3 3 1 1 1 1 1 3 1 1 3 3 3 1
## [10549] 1 3 1 1 1 1 1 3 3 1 1 1 3 1 1 1 1 1 1 1 1 1 3 1 3 1 3 1 1 3 1 1 1 1 1 1
## [10585] 3 1 1 1 1 2 1 1 1 1 1 1 1 3 1 1 1 1 3 1 3 1 1 3 1 3 3 3 3 3 3 1 1 1 1 3
## [10621] 1 1 1 1 1 3 1 1 1 1 1 1 1 3 1 2 1 1 3 1 2 1 1 1 3 1 1 1 1 1 1 1 1 1 1 3
## [10657] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 3 1 1 3 1 1 1 1 3 3 1 3 3
## [10693] 1 1 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 3 1 3 1 1 1 3 3 1 1 1 3 1 1 1 1 1 1 1
## [10729] 1 1 1 3 1 1 1 3 1 1 1 1 3 1 1 1 3 3 1 1 1 1 3 3 3 1 1 3 1 3 3 3 3 1 3 3
## [10765] 3 1 1 3 1 1 1 1 1 3 1 1 1 3 1 1 1 1 3 3 1 3 1 1 1 1 3 1 1 3 3 3 1 1 1 1
## [10801] 3 1 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3
## [10837] 1 1 1 3 1 1 1 1 1 1 1 1 1 3 3 1 3 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 3 1
## [10873] 3 1 3 1 1 1 3 1 1 1 1 1 1 3 1 1 3 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2 3
## [10909] 1 1 3 1 1 1 1 3 1 1 1 3 3 1 1 1 1 3 1 3 1 1 1 1 1 3 3 1 1 1 1 1 1 1 2 1
## [10945] 1 1 1 1 1 3 1 1 1 3 1 3 1 1 1 3 1 1 3 1 1 3 1 1 3 1 1 1 3 3 1 1 3 1 1 1
## [10981] 3 1 1 3 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1
## [11017] 1 1 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1
## [11053] 1 3 1 1 1 1 1 1 1 1 3 3 1 3 3 3 1 1 3 1 1 1 1 3 1 1 3 3 1 3 3 3 3 3 1 1
## [11089] 1 1 3 1 1 1 3 3 1 1 1 1 1 3 1 1 3 1 1 3 3 3 3 1 1 1 1 1 3 1 1 1 1 1 1 1
## [11125] 1 1 3 3 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 3 1 1 1 1 1
## [11161] 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 3 3 3 1 3 1 3 1 1 1 1 3 1 1
## [11197] 1 1 3 1 1 1 1 1 3 3 1 1 1 1 3 3 1 3 1 1 1 1 1 3 1 1 3 3 1 3 3 1 1 1 1 3
## [11233] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 3 1 1 1 1 3 1
## [11269] 1 3 2 1 3 1 1 3 3 1 3 1 1 1 1 1 3 3 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1
## [11305] 1 1 1 1 1 1 1 3 1 1 3 1 1 1 3 1 3 1 3 1 1 1 1 3 1 1 1 1 1 1 1 3 1 1 1 1
## [11341] 1 1 1 1 1 1 1 1 3 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 3 1 3 1 1 1 3 1 3 1
## [11377] 1 3 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 3 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3
## [11413] 3 2 3 1 1 1 1 1 3 1 3 1 1 1 3 3 1 3 3 1 1 3 1 1 3 1 3 1 3 1 3 1 3 3 1 1
## [11449] 1 3 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1
## [11485] 3 1 3 1 1 1 1 1 1 1 3 3 3 1 1 1 3 3 3 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1
## [11521] 1 3 3 3 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 3 1
## [11557] 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 3 1 3 1 1 3 1
## [11593] 3 1 1 1 2 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [11629] 3 3 1 1 2 3 1 1 1 3 1 1 1 3 1 1 3 1 1 1 1 3 3 1 1 3 3 1 3 1 1 1 1 1 1 1
## [11665] 1 1 1 1 1 1 1 1 1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 1
## [11701] 2 1 1 1 1 3 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 1 1 1 1 1 3 1 1 1 3 3 3 3 1 1
## [11737] 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1
## [11773] 1 1 3 1 3 1 1 1 1 1 3 1 1 2 1 1 3 3 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [11809] 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1
## [11845] 1 1 1 1 1 1 1 1 1 1 3 3 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1
## [11881] 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 3
## [11917] 1 1 1 3 1 1 1 1 1 1 1 3 1 3 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 3 1 1 3 1 1
## [11953] 1 1 3 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 3 1 1 1 1 1 2 1
## [11989] 3 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1
## [12025] 1 1 1 1 1 1 1 3 2 1 3 1 1 1 3 3 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 1 3 1 1 1
## [12061] 1 1 1 1 1 3 1 3 3 3 1 1 1 1 1 1 1 3 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1
## [12097] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [12133] 3 1 3 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1
## [12169] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 2 1 3 3 1 1 1 3 1 1 3 1 1 1
## [12205] 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 3 3 1 1 3 1 1 3 1 1 1 3 1 3
## [12241] 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 3
## [12277] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [12313] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 1 1 3 1 1 1
## [12349] 1 1 1 1 3 1 1 3 1 1 3 1 1 3 1 1 1 1 2 3 1 3 3 1 3 1 1 1 1 1 3 3 3 1 3 1
## [12385] 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 1 3 3 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 3
## [12421] 1 1 1 1 1 1 1 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1
## [12457] 1 3 3 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [12493] 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 3 1 3 1 3 1
## [12529] 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [12565] 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 3
## [12601] 1 1 1 3 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 3 1 1
## [12637] 1 1 1 1 1 1 1 3 1 3 3 3 1 1 3 1 1 3 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 3 1
## [12673] 1 1 1 1 1 3 3 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1
## [12709] 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1
## [12745] 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 3 1 1 1 1 3 1 1 3 3 1 3 1
## [12781] 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 3 3 1 3 1 1 3 3 1 1 1 1 3 3 1 1 1 3 1 1 1
## [12817] 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [12853] 3 3 1 1 1 3 1 1 3 3 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 3 1 3 1 1 1 1 1
## [12889] 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1 3 3 1 3 3 1 1 1 3 1 1 3 3 1 3 1 1 3 3 3 1
## [12925] 1 3 3 1 1 3 3 3 1 1 1 1 3 1 1 3 1 3 3 1 3 1 3 3 1 1 3 1 1 1 1 3 1 1 1 1
## [12961] 3 1 1 3 3 1 1 3 3 3 1 1 1 1 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [12997] 1 1 1 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 3 3 1 3 3 3 1 1 1 3 3 1 3 3
## [13033] 1 3 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1
## [13069] 1 1 3 1 1 1 1 1 3 1 1 1 1 3 3 3 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 3 3 3 1
## [13105] 1 3 3 1 3 1 1 1 3 1 1 1 3 1 1 1 3 3 3 3 3 3 3 1 1 3 1 3 1 1 2 1 3 1 3 3
## [13141] 1 1 3 3 3 3 1 3 1 1 1 1 3 1 1 1 1 1 2 1 3 1 3 1 1 1 3 1 1 3 3 1 1 1 2 1
## [13177] 1 1 3 1 1 1 3 3 1 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [13213] 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 3
## [13249] 1 2 3 1 3 1 1 1 1 1 1 1 3 1 1 1 3 1 1 1 3 3 2 1 1 3 1 1 3 1 3 3 1 1 3 1
## [13285] 3 1 1 1 1 1 1 1 1 3 1 1 1 3 1 1 3 2 1 3 1 1 1 3 1 1 3 1 1 3 1 3 1 1 3 1
## [13321] 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [13357] 1 1 3 1 1 1 3 1 3 1 1 3 1 3 1 3 1 3 1 3 3 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1
## [13393] 1 1 1 3 1 1 3 2 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1
## [13429] 1 1 1 1 1 3 1 2 1 3 1 3 1 1 1 1 3 1 3 1 1 3 1 1 1 3 3 3 1 3 3 3 1 1 1 1
## [13465] 1 1 1 1 1 1 3 1 3 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 2 1 1 1 3 3 1 1 1
## [13501] 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 2 3 1 3 1 1 1 1 3 1 1 1
## [13537] 3 1 1 1 1 3 1 1 1 3 1 1 1 1 3 3 3 3 1 3 2 1 1 3 1 1 1 1 3 1 1 3 1 1 3 1
## [13573] 3 1 1 1 1 3 1 1 1 1 1 1 3 3 3 1 1 1 1 3 1 3 1 1 1 3 3 1 1 1 1 1 1 1 1 1
## [13609] 3 1 1 1 1 1 1 3 3 3 1 3 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1
## [13645] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 3 1 3 1 1 1 1 1 1
## [13681] 3 3 3 1 1 1 3 1 3 3 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 3 3 1 3 1 3 1 3 1 1
## [13717] 1 1 1 1 3 2 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 3 1 1 1 3 1 1 3 1 1 1 1 1 1 1
## [13753] 1 1 3 1 1 1 1 1 3 3 1 1 1 1 1 1 3 3 1 1 3 3 1 1 3 3 1 3 2 3 3 1 3 1 3 1
## [13789] 3 3 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 3 1 3 1 3 1 3 3 3 1 3 3 1 1 3 1 1 1
## [13825] 3 1 3 1 1 1 1 1 3 1 1 3 3 1 3 1 1 3 1 1 3 3 1 1 1 1 1 3 1 1 3 1 1 1 1 3
## [13861] 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 3 1 1 3 3 3 2 1 1 1 1 1 1 1 3 1 2
## [13897] 1 3 1 1 3 1 1 1 1 2 3 1 3 3 3 1 3 1 3 1 1 1 3 1 3 3 3 3 1 1 3 1 3 1 3 1
## [13933] 3 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 2 1 3 3 3 1 1 1 1 2 1 3 1 1 2 1 3
## [13969] 1 3 1 3 1 1 1 3 2 1 1 1 1 1 3 3 3 1 1 3 1 1 3 1 1 3 3 3 3 1 1 3 1 1 1 3
## [14005] 1 1 3 1 1 1 1 3 1 3 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 3 3 1 1
## [14041] 1 1 1 2 1 1 1 1 1 1 1 1 3 3 1 2 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1
## [14077] 1 1 1 1 1 3 1 1 1 1 1 3 1 3 1 1 1 3 1 1 1 1 1 1 1 3 1 3 1 3 3 3 3 1 1 3
## [14113] 1 1 1 1 1 1 3 3 3 1 3 1 1 1 3 1 3 3 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 3 3
## [14149] 3 3 1 1 1 3 3 1 2 1 2 3 3 1 1 1 1 3 3 3 1 1 3 3 1 3 3 1 1 1 3 1 3 3 1 1
## [14185] 3 1 1 2 3 3 1 3 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 2 3 3 1 1 1 1
## [14221] 1 1 1 3 1 1 3 1 2 1 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 3
## [14257] 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 3 1 3 3 3 3 3 1 1 3 3 3 3 1 1 3 1
## [14293] 1 1 1 3 3 1 1 3 3 1 3 1 1 3 1 1 2 3 1 1 3 3 1 1 3 3 1 3 3 3 3 1 3 3 1 1
## [14329] 3 3 1 3 1 1 1 1 1 3 3 3 1 1 3 1 1 1 1 3 1 1 1 1 1 3 3 1 1 3 1 3 3 3 1 3
## [14365] 1 1 3 1 2 2 1 3 3 1 1 3 1 1 3 1 1 3 1 1 1 3 3 3 1 3 1 1 1 3 1 1 3 3 1 1
## [14401] 1 1 1 1 1 3 1 1 3 2 3 1 3 3 3 2 3 3 3 1 3 1 1 2 1 2 1 1 3 1 3 1 1 1 1 1
## [14437] 1 3 3 1 1 1 1 3 2 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1
## [14473] 3 3 2 3 3 3 1 1 1 2 1 3 3 3 3 2 1 1 1 3 3 1 3 1 3 2 1 3 1 1 1 1 1 1 3 3
## [14509] 1 3 3 3 2 1 3 3 1 3 1 1 1 3 3 3 3 1 1 1 1 1 1 1 3 3 3 1 3 1 3 1 3 1 3 3
## [14545] 3 1 1 1 2 1 1 3 1 1 3 1 1 3 3 1 1 1 3 3 1 3 1 3 1 1 3 3 1 1 1 1 1 1 1 1
## [14581] 3 1 1 1 1 1 3 3 1 1 3 2 1 3 1 3 1 1 1 1 1 3 3 3 3 1 1 1 3 1 1 3 1 1 1 1
## [14617] 3 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 2 3 1 3 1 1 1 1 1 1
## [14653] 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 1 3 1 1 1 3 2 3 1 3 1 1 1
## [14689] 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 3 1 1 1 3 1
## [14725] 1 1 1 3 1 3 1 1 3 3 1 1 1 1 1 3 1 3 1 3 1 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1
## [14761] 3 3 3 1 1 1 1 3 2 1 3 1 1 1 3 3 3 3 1 1 1 3 2 3 3 1 1 1 1 1 1 1 1 1 1 3
## [14797] 3 2 1 1 1 1 1 3 1 1 3 1 2 1 1 1 3 1 1 2 1 2 1 1 3 3 1 1 1 1 1 1 1 1 1 1
## [14833] 1 3 1 1 3 1 1 3 3 1 1 3 1 3 3 1 1 1 1 3 1 1 3 1 1 1 3 3 3 1 3 1 1 1 1 1
## [14869] 1 1 1 3 1 1 1 1 1 1 3 1 1 1 3 1 1 3 1 3 1 3 3 3 1 1 3 1 1 3 2 1 3 3 3 3
## [14905] 1 1 1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1
## [14941] 3 3 3 3 2 1 3 1 1 1 3 1 3 2 1 3 2 1 1 1 3 1 1 1 3 1 3 1 1 1 1 1 3 3 3 1
## [14977] 3 3 1 3 3 3 3 1 1 1 1 3 2 1 1 3 1 3 1 3 1 3 1 3 3 3 3 1 3 3 1 1 1 1 1 1
## [15013] 1 1 1 1 1 1 1 1 1 1 1 3 1 1 3 3 1 1 3 1 1 3 3 2 1 1 1 1 1 3 1 1 1 3 1 1
## [15049] 1 1 1 3 1 2 1 1 1 2 1 3 1 1 3 3 1 3 3 1 3 1 3 3 1 3 3 1 1 3 1 3 3 1 3 1
## [15085] 1 3 1 1 2 1 3 1 3 1 1 1 1 1 3 1 1 3 3 1 1 2 1 2 2 3 3 1 3 1 2 3 1 3 3 1
## [15121] 3 1 3 3 3 1 3 3 2 1 1 3 3 3 3 3 1 1 1 1 3 3 1 3 3 1 3 2 1 1 1 3 1 3 1 1
## [15157] 1 2 1 3 1 2 3 1 3 1 1 3 1 3 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1
## [15193] 3 2 1 3 3 3 1 1 1 1 3 1 1 1 1 1 3 1 1 1 3 1 3 3 3 1 1 1 1 3 1 3 1 1 1 3
## [15229] 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 3 1 3 1 1 2 3 1 3 1 1 1 1 3 3
## [15265] 1 1 3 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 2 1 3 1 1 1 1 1 1 3 3 1 1 1 1
## [15301] 2 1 1 1 3 1 3 3 1 1 3 1 1 3 3 1 1 3 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 3 1 3
## [15337] 3 1 3 1 3 1 3 1 2 3 1 3 3 3 1 3 1 1 2 1 1 3 1 2 2 1 3 1 1 2 1 1 1 1 1 1
## [15373] 3 1 1 1 1 3 2 1 1 1 3 1 1 1 1 3 1 3 3 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1
## [15409] 1 1 3 1 2 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 3 2 1 3 1
## [15445] 2 3 1 3 3 3 3 3 1 1 1 1 1 3 1 3 3 3 3 1 1 1 1 1 3 3 3 1 1 1 3 1 1 3 3 2
## [15481] 1 3 1 1 1 1 3 1 1 1 3 1 2 1 2 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1
## [15517] 1 1 1 1 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 3 1 1 3 2 1 1 1 1 1 1 1 1 1
## [15553] 1 1 1 1 1 3 3 3 1 1 1 1 1 1 1 1 1 3 1 3 1 1 3 3 1 3 1 1 1 3 1 3 1 3 3 1
## [15589] 1 1 1 3 1 2 2 3 3 1 3 3 1 1 3 1 1 1 2 1 3 1 3 3 3 1 1 1 3 1 1 1 1 1 3 3
## [15625] 1 1 1 1 1 1 1 3 1 1 1 1 3 1 3 3 1 3 3 2 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 3
## [15661] 1 3 1 1 3 3 3 1 1 3 3 1 1 1 3 1 1 3 1 1 3 3 1 1 3 3 1 1 1 3 3 2 1 1 1 1
## [15697] 1 3 3 3 1 1 3 1 1 1 2 1 1 1 1 1 1 1 1 3 1 1 3 3 1 3 1 1 3 1 1 1 1 3 3 1
## [15733] 3 1 1 3 1 3 1 1 1 1 3 1 1 1 3 3 1 1 3 1 1 1 1 3 3 3 1 1 1 3 2 1 1 1 1 1
## [15769] 2 1 1 3 2 1 3 1 1 1 1 1 1 1 1 3 1 3 1 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1
## [15805] 1 1 1 3 1 3 1 1 1 1 1 1 2 3 1 3 3 1 1 3 1 3 1 1 1 1 3 1 1 3 1 1 3 3 1 3
## [15841] 3 1 3 1 3 3 1 3 1 1 3 1 1 1 3 1 1 3 3 1 1 1 3 3 1 1 1 3 1 2 1 1 1 3 1 1
## [15877] 1 1 1 3 1 1 3 1 1 1 1 1 2 1 3 1 1 1 1 1 1 1 3 3 1 1 3 1 3 1 2 1 3 1 3 3
## [15913] 3 1 3 3 3 3 1 1 1 1 1 1 1 2 1 3 3 1 3 1 1 3 3 1 3 1 3 3 1 1 1 1 3 1 3 3
## [15949] 1 1 2 1 1 3 3 1 1 1 1 1 3 1 1 1 1 1 3 3 3 1 3 2 2 1 1 3 1 1 1 1 1 3 1 1
## [15985] 1 1 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 3 3 1
## [16021] 1 1 1 3 1 1 1 1 3 3 1 3 3 3 1 3 1 1 1 2 1 3 3 1 1 1 3 1 3 3 3 1 1 1 3 1
## [16057] 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 3 1 3 1 1 1 3 1 1 3 2 1 1 1 1 1 2 1 1 1
## [16093] 1 1 3 1 1 3 1 1 1 1 3 1 3 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 3
## [16129] 1 3 1 1 1 3 3 1 2 1 2 1 3 1 3 1 1 2 1 1 3 1 1 3 1 2 1 1 1 3 1 1 1 1 3 1
## [16165] 1 1 1 1 1 1 1 1 1 1 1 3 1 3 3 1 3 1 3 2 3 1 3 1 1 3 1 3 1 1 1 1 1 2 3 3
## [16201] 1 1 1 3 1 1 3 3 1 1 1 1 3 2 1 1 1 3 3 3 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1
## [16237] 3 2 1 1 3 1 3 3 3 1 3 3 1 3 1 1 3 3 3 1 2 1 3 3 3 1 1 3 3 1 1 3 1 2 3 1
## [16273] 1 1 1 1 1 1 2 3 1 1 3 3 1 1 3 1 1 1 1 3 1 1 1 3 3 3 1 1 3 1 2 3 1 1 1 1
## [16309] 3 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 1 3 3 1 3 2 1 1 3
## [16345] 1 3 1 1 1 3 1 1 2 1 3 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 3 1 1 1 2 1
## [16381] 1 1 3 1 1 3 3 3 1 3 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 3 2 3 1 1 2 1 1 1 3 1
## [16417] 1 3 1 2 3 1 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 1 3 1 2 1 1 1 1
## [16453] 3 1 1 2 3 1 3 3 1 1 1 3 1 2 1 1 1 1 3 3 1 1 1 1 1 3 1 1 1 1 1 1 3 3 1 3
## [16489] 3 1 1 1 1 1 3 2 3 1 3 1 3 1 1 1 3 1 1 2 1 3 1 1 3 1 1 1 1 1 1 1 1 3 2 1
## [16525] 1 2 1 1 3 1 1 1 3 3 1 3 1 3 1 1 3 1 3 1 3 1 3 1 1 1 1 1 1 3 3 1 1 3 1 1
## [16561] 1 1 3 3 3 1 1 1 3 1 1 3 1 3 1 3 1 3 1 1 1 1 3 3 3 1 1 3 1 1 3 1 1 3 1 1
## [16597] 1 1 1 3 1 1 3 1 3 3 1 1 1 1 1 2 1 3 1 3 3 1 3 1 1 1 3 1 1 1 2 3 1 3 1 1
## [16633] 3 1 1 1 1 2 3 1 3 1 1 1 1 1 3 1 3 1 1 1 1 3 2 1 1 3 3 1 1 1 1 3 3 1 3 3
## [16669] 1 1 1 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 3 3 1 1 1 3 3 3 1 1 1 1 1 3 3
## [16705] 1 1 1 3 3 1 1 1 1 1 1 3 3 3 3 1 1 3 3 3 1 1 3 1 1 3 1 1 1 1 3 3 3 1 3 3
## [16741] 2 3 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 3 1 3 3 1 1 1 1 3 1 1 1 3 1 1 1 3 1 1
## [16777] 1 3 1 3 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 1 3 2 1 1 1 1 3 1 1 1
## [16813] 1 3 1 3 1 1 1 1 1 1 3 1 3 1 1 3 1 2 1 1 3 1 1 1 1 3 3 3 1 3 1 3 3 1 1 1
## [16849] 1 3 3 1 1 1 3 3 1 1 3 1 3 1 3 3 1 1 1 3 1 3 3 3 1 1 3 3 3 1 1 3 3 3 1 1
## [16885] 1 3 1 1 1 1 1 1 3 3 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1
## [16921] 1 3 3 1 1 1 1 3 3 1 3 1 3 3 3 1 3 1 1 3 3 3 1 1 3 1 1 3 1 1 1 3 1 1 1 1
## [16957] 3 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 3 1 2 3 1 1 1 1 1 1 1 1 1 1
## [16993] 3 1 1 3 3 1 1 1 1 3 1 1 3 1 3 1 1 3 1 2 1 1 1 3 3 3 1 1 1 1 3 1 1 3 3 1
## [17029] 1 1 3 1 3 1 3 3 1 1 3 1 1 1 3 1 1 3 2 1 3 1 1 1 1 1 3 1 1 1 1 3 3 3 1 1
## [17065] 1 1 3 1 3 1 3 1 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 2 2 3
## [17101] 1 3 1 1 3 1 3 1 3 3 1 1 1 1 1 1 3 1 1 3 1 3 1 1 3 1 1 2 2 1 1 3 1 1 1 1
## [17137] 3 1 3 1 1 1 3 3 3 1 1 3 1 1 3 1 1 1 3 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 3 2
## [17173] 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1
## [17209] 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1
## [17245] 1 1 1 1 1 1 1 3 3 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 1 3 3 1 3 1 1 1 1 1 1 3
## [17281] 1 3 1 1 3 3 3 3 3 1 1 3 1 1 1 1 1 3 1 3 3 1 3 1 1 1 3 1 1 1 1 1 1 3 1 1
## [17317] 1 3 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 3 1 1 1 3 1 1 1 1 1 1
## [17353] 1 1 1 1 1 3 1 3 1 3 1 3 3 3 1 1 1 1 3 1 1 2 1 1 1 1 3 1 1 3 3 1 1 1 1 2
## [17389] 1 1 3 1 1 3 3 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 3 3 1 3 1 3 3 2 1 3 3 3 1 1
## [17425] 3 1 1 3 3 3 3 3 1 3 1 3 2 3 1 1 1 3 1 3 1 2 1 3 3 3 3 1 3 3 2 2 3 1 1 1
## [17461] 3 3 1 1 3 3 1 3 1 3 1 1 1 1 1 1 3 3 1 1 1 1 1 3 1 3 3 1 1 3 1 1 1 1 2 3
## [17497] 1 1 1 1 3 3 1 1 3 3 3 1 1 3 3 1 3 1 1 1 1 1 1 1 3 1 1 1 3 3 1 1 3 3 1 1
## [17533] 1 1 3 1 1 3 3 1 1 3 1 1 1 1 1 1 1 1 1 1 3 3 1 3 3 1 1 3 1 1 1 1 3 3 3 1
## [17569] 1 1 3 3 3 1 3 3 1 3 1 3 1 2 3 1 1 1 1 3 1 3 1 3 3 3 3 1 3 3 3 1 3 1 3 3
## [17605] 1 1 1 2 1 1 1 1 3 1 3 1 2 3 1 3 1 1 1 1 1 1 3 1 1 3 3 3 2 1 1 3 1 1 1 1
## [17641] 1 1 1 1 3 3 2 1 3 3 1 3 1 2 3 3 1 1 1 3 3 1 1 3 1 1 2 1 1 1 3 1 1 1 1 1
## [17677] 1 1 1 3 1 1 3 1 3 3 1 1 3 2 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 3 1 2 1
## [17713] 1 3 1 3 1 2 3 1 3 1 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1 3 1 1 1 1 3 1 3 1 3 1
## [17749] 1 1 1 1 1 2 3 1 3 3 1 1 1 3 1 1 1 1 1 3 3 1 1 3 1 2 1 1 3 1 1 1 1 1 3 3
## [17785] 1 1 3 3 1 1 1 3 1 3 3 1 3 2 3 1 1 1 1 1 3 1 1 3 1 3 2 1 1 1 1 3 1 1 1 3
## [17821] 3 1 1 1 3 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1
## [17857] 2 1 1 1 1 1 1 1 3 1 3 1 3 1 1 3 1 3 1 3 3 1 3 3 1 1 1 3 1 1 3 3 3 1 1 1
## [17893] 3 3 1 3 1 1 3 1 1 3 1 1 1 1 3 3 3 3 1 1 1 3 1 3 3 3 3 1 1 1 1 1 1 1 1 3
## [17929] 1 1 3 3 1 1 1 1 3 1 1 1 1 3 1 3 3 1 1 1 3 1 3 3 1 1 3 1 1 1 1 1 3 1 3 1
## [17965] 3 1 1 1 3 3 3 1 3 3 1 3 1 1 1 1 3 1 1 1 1 3 1 1 3 3 1 1 1 1 1 1 1 1 1 1
## [18001] 1 1 1 1 1 1 3 3 1 1 1 1 1 3 2 1 1 1 3 1 1 1 1 3 1 3 1 1 1 3 1 1 1 1 1 1
## [18037] 1 3 3 3 3 3 1 1 2 3 1 1 1 1 1 1 1 1 3 1 1 3 1 1 2 3 3 1 1 3 1 2 3 1 1 1
## [18073] 3 1 1 1 1 3 1 3 2 3 3 1 1 1 1 1 3 1 3 1 3 1 1 1 1 1 3 1 3 1 1 3 1 1 1 1
## [18109] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 3 2 1 1 1 1 1 3
## [18145] 1 1 1 1 1 1 1 1 1 1 1 3 3 3 1 3 1 1 1 1 1 3 2 1 1 1 1 1 1 1 1 1 3 3 1 3
## [18181] 1 1 1 3 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3 1 1 1
## [18217] 1 1 3 3 3 1 1 3 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1
## [18253] 1 3 1 1 1 1 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 3 1 1 1 1
## [18289] 2 2 3 1 1 1 3 1 3 1 3 1 1 1 1 1 1 3 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 3 1 1
## [18325] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 1 1 1 1 1 3 3 1 1 3 1 3 1 1 1 1 1 3
## [18361] 3 1 1 1 3 1 3 3 1 1 1 1 1 1 3 3 1 2 3 1 1 1 1 1 1 3 3 1 1 3 1 1 3 1 1 1
## [18397] 1 1 3 1 1 1 3 3 1 3 1 1 1 1 3 3 3 3 3 1 3 1 1 1 1 1 3 1 1 3 1 1 1 3 1 1
## [18433] 1 1 3 1 1 1 3 1 1 1 1 1 3 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1
## [18469] 1 3 1 3 1 1 1 3 1 1 1 1 1 3 1 3 3 3 1 1 1 1 3 1 1 3 1 1 1 3 1 1 1 1 1 3
## [18505] 1 3
#has another kid
uganda16$currentchildren<-uganda16$v202+uganda16$v203

#decides on use
uganda16$decidecon<-car::Recode(uganda16$v632, recodes= "1='respondent'; 2='husband'; 3='joint'; else='NA'", as.factor=T)

#wife-beating
uganda16$wifebeat<-car::Recode(uganda16$v313, recodes= "0='No'; 1='Yes';else=;'NA'", as.factor=T)

#HIV testing
uganda16$HIVtest<-car::Recode(uganda16$v313, recodes= "0='No'; 1='Yes';else=;'NA'", as.factor=T)

#husbandwork
uganda16$huswork<-car::Recode(uganda16$v313, recodes= "0='did not work in the past 12 months'; 1='worked in the last 7 days '; 2= 'worked in the last 12 months';else=;'NA'", as.factor=T)

#regions
uganda16$region<-as.factor(uganda16$v024)
uganda16$regions<-car::Recode(uganda16$v024, recodes= "0='Kampala'; 1= 'South Buganda'; 2='North Buganda';3='Busoga';4='Bukedi'; 5='Bugisu'; 6='Teso';7='Karamoja'; 8='Lango'; 9='Acholi'; 10='West Nile'; 11='Bunyoro';12='Tooro'; 13='Ankole';14='Kigezi'; else='NA'", as.factor=T)

#Report the pattern of missingness among all of these variables

#get a summary of the distributions of each predictorvariable

summary(uganda16[, c( "idealnumchil", "huswork", "huseducationlevel", "wifebeat", "HIVtest"  )])
##     idealnumchil                                huswork     
##  4        :7329   did not work in the past 12 months:13088  
##  6 or more:5569   worked in the last 12 months      :  458  
##  5        :2115   worked in the last 7 days         :   46  
##  3        :1574   NA's                              : 4914  
##  2        :1187                                             
##  NA       : 467                                             
##  (Other)  : 265                                             
##            huseducationlevel wifebeat     HIVtest     
##  NA                 :7422    No  :13088   No  :13088  
##  none               : 882    Yes :   46   Yes :   46  
##  primary            :6006    NA's: 5372   NA's: 5372  
##  secondary and above:4196                             
##                                                       
##                                                       
## 

#Perform a mean (a mean for numeric data) or a modal imputation (for categorical data) of all values. Perform the analysis using this imputed data. What are your results?

#I will perform only modal imputation because I am working with factor variables.

#modal imputation for categorical: ideal number of children
table(uganda16$idealnumchil)
## 
##         0         1         2         3         4         5 6 or more        NA 
##       140       125      1187      1574      7329      2115      5569       467
ug.idealfam<-factor(names(which.max(table(uganda16$idealnumchil))), levels=levels(uganda16$idealnumchil))
view(ug.idealfam)

#impute the cases
uganda16$idealfam.imp<-as.factor(ifelse(is.na(uganda16$idealnumchil)==T, ug.idealfam, uganda16$idealnumchil))
levels(uganda16$idealfam.imp)<-levels(uganda16$idealnumchil)

prop.table(table(uganda16$idealnumchil))
## 
##           0           1           2           3           4           5 
## 0.007565114 0.006754566 0.064141360 0.085053496 0.396033719 0.114287258 
##   6 or more          NA 
## 0.300929428 0.025235059
prop.table(table(uganda16$idealfam.imp))
## 
##           0           1           2           3           4           5 
## 0.007565114 0.006754566 0.064141360 0.085053496 0.396033719 0.114287258 
##   6 or more          NA 
## 0.300929428 0.025235059
#modal imputation for categorical husband education level
table(uganda16$huseducationlevel)
## 
##                  NA                none             primary secondary and above 
##                7422                 882                6006                4196
ug.husedu<-factor(names(which.max(table(uganda16$huseducationlevel))), levels=levels(uganda16$huseducationlevel))
view(ug.husedu)

#impute the cases
uganda16$husedu.imp<-as.factor(ifelse(is.na(uganda16$huseducationlevel)==T, ug.husedu, uganda16$huseducationlevel))
levels(uganda16$husedu.imp)<-levels(uganda16$huseducationlevel)

prop.table(table(uganda16$huseducationlevel))
## 
##                  NA                none             primary secondary and above 
##          0.40105912          0.04766022          0.32454339          0.22673727
prop.table(table(uganda16$husedu.imp))
## 
##                  NA                none             primary secondary and above 
##          0.40105912          0.04766022          0.32454339          0.22673727
#modal imputation for categorical: husband occupation 
table(uganda16$huswork)
## 
## did not work in the past 12 months       worked in the last 12 months 
##                              13088                                458 
##         worked in the last 7 days  
##                                 46
ug.huswork<-factor(names(which.max(table(uganda16$huswork))), levels=levels(uganda16$huswork))
view(ug.huswork)

#impute the cases
uganda16$huswork.imp<-as.factor(ifelse(is.na(uganda16$huswork)==T, ug.huswork, uganda16$huswork))
levels(uganda16$huswork.imp)<-levels(uganda16$huswork)

prop.table(table(uganda16$huswork))
## 
## did not work in the past 12 months       worked in the last 12 months 
##                        0.962919364                        0.033696292 
##         worked in the last 7 days  
##                        0.003384344
prop.table(table(uganda16$huswork.imp))
## 
## did not work in the past 12 months       worked in the last 12 months 
##                         0.97276559                         0.02474873 
##         worked in the last 7 days  
##                         0.00248568
#modal imputation for categorical: received HIV test

table(uganda16$HIVtest)
## 
##    No   Yes 
## 13088    46
ug.HIVtest<-factor(names(which.max(table(uganda16$HIVtest))), levels=levels(uganda16$HIVtest))
view(ug.HIVtest)

#impute the cases
uganda16$HIVtest.imp<-as.factor(ifelse(is.na(uganda16$HIVtest)==T, ug.HIVtest, uganda16$HIVtest))
levels(uganda16$idealfam.imp)<-levels(uganda16$idealnumchil)

prop.table(table(uganda16$HIVtest))
## 
##         No        Yes 
## 0.99649764 0.00350236
prop.table(table(uganda16$HIVtest.imp))
## 
##          1          2 
## 0.99751432 0.00248568
#modal imputation for categorical: feelings about wife-beating

table(uganda16$wifebeat)
## 
##    No   Yes 
## 13088    46
ug.wifebeat<-factor(names(which.max(table(uganda16$wifebeat))), levels=levels(uganda16$wifebeat))
view(ug.idealfam)

#impute the cases
uganda16$wifebeat.imp<-as.factor(ifelse(is.na(uganda16$wifebeat)==T, ug.wifebeat, uganda16$wifebeat))
levels(uganda16$wifebeat.imp)<-levels(uganda16$wifebeat)

prop.table(table(uganda16$wifebeat))
## 
##         No        Yes 
## 0.99649764 0.00350236
prop.table(table(uganda16$wifebeat.imp))
## 
##         No        Yes 
## 0.99751432 0.00248568
#analysis with modal imputations
model1<-glm(wantanotherchild ~ huswork.imp + wifebeat.imp + husedu.imp+ idealfam.imp,
            family = binomial, data = uganda16)

summary(model1)
## 
## Call:
## glm(formula = wantanotherchild ~ huswork.imp + wifebeat.imp + 
##     husedu.imp + idealfam.imp, family = binomial, data = uganda16)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7071  -1.2633   0.7709   0.9577   1.9475  
## 
## Coefficients: (1 not defined because of singularities)
##                                         Estimate Std. Error z value Pr(>|z|)
## (Intercept)                             -1.08584    0.20498  -5.297 1.17e-07
## huswork.impworked in the last 12 months  0.01002    0.09907   0.101 0.919425
## huswork.impworked in the last 7 days    -1.25103    0.32816  -3.812 0.000138
## wifebeat.impYes                               NA         NA      NA       NA
## husedu.impnone                          -0.50822    0.07453  -6.819 9.14e-12
## husedu.impprimary                       -0.64794    0.03767 -17.200  < 2e-16
## husedu.impsecondary and above           -0.34182    0.04165  -8.207 2.27e-16
## idealfam.imp1                            0.92654    0.27407   3.381 0.000723
## idealfam.imp2                            1.83819    0.21369   8.602  < 2e-16
## idealfam.imp3                            2.27785    0.21263  10.713  < 2e-16
## idealfam.imp4                            2.14721    0.20664  10.391  < 2e-16
## idealfam.imp5                            2.03198    0.21027   9.664  < 2e-16
## idealfam.imp6 or more                    1.62734    0.20720   7.854 4.03e-15
## idealfam.impNA                           0.85047    0.22714   3.744 0.000181
##                                            
## (Intercept)                             ***
## huswork.impworked in the last 12 months    
## huswork.impworked in the last 7 days    ***
## wifebeat.impYes                            
## husedu.impnone                          ***
## husedu.impprimary                       ***
## husedu.impsecondary and above           ***
## idealfam.imp1                           ***
## idealfam.imp2                           ***
## idealfam.imp3                           ***
## idealfam.imp4                           ***
## idealfam.imp5                           ***
## idealfam.imp6 or more                   ***
## idealfam.impNA                          ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 24573  on 18505  degrees of freedom
## Residual deviance: 23637  on 18493  degrees of freedom
## AIC: 23663
## 
## Number of Fisher Scoring iterations: 4
#analysis w/0 imputations
model2<-glm(wantanotherchild ~ huswork + wifebeat + huseducationlevel+ idealnumchil,
            family = binomial, data = uganda16)

summary(model2)
## 
## Call:
## glm(formula = wantanotherchild ~ huswork + wifebeat + huseducationlevel + 
##     idealnumchil, family = binomial, data = uganda16)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7292  -1.3073   0.7541   0.9443   1.9893  
## 
## Coefficients: (1 not defined because of singularities)
##                                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                          -1.22960    0.23008  -5.344 9.08e-08 ***
## husworkworked in the last 7 days     -1.34911    0.32794  -4.114 3.89e-05 ***
## wifebeatYes                                NA         NA      NA       NA    
## huseducationlevelnone                -0.30001    0.08546  -3.511 0.000447 ***
## huseducationlevelprimary             -0.60021    0.04477 -13.405  < 2e-16 ***
## huseducationlevelsecondary and above -0.27638    0.05215  -5.300 1.16e-07 ***
## idealnumchil1                         1.04311    0.30482   3.422 0.000621 ***
## idealnumchil2                         2.16345    0.24187   8.945  < 2e-16 ***
## idealnumchil3                         2.47071    0.23987  10.300  < 2e-16 ***
## idealnumchil4                         2.34163    0.23234  10.078  < 2e-16 ***
## idealnumchil5                         2.29791    0.23710   9.692  < 2e-16 ***
## idealnumchil6 or more                 1.80615    0.23299   7.752 9.05e-15 ***
## idealnumchilNA                        1.06048    0.25414   4.173 3.01e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 17056  on 13133  degrees of freedom
## Residual deviance: 16367  on 13122  degrees of freedom
##   (5372 observations deleted due to missingness)
## AIC: 16391
## 
## Number of Fisher Scoring iterations: 4

#Perform a multiple imputation of all values. Perform the analysis using this imputed data set. What are your results?

#check for patterns
library(mice)
## 
## Attaching package: 'mice'
## The following object is masked from 'package:stats':
## 
##     filter
## The following objects are masked from 'package:base':
## 
##     cbind, rbind
md.pattern(uganda16[,c("idealnumchil", "huseducationlevel", "huswork","HIVtest","wifebeat")])

##       idealnumchil huseducationlevel huswork HIVtest wifebeat      
## 13134            1                 1       1       1        1     0
## 458              1                 1       1       0        0     2
## 4914             1                 1       0       0        0     3
##                  0                 0    4914    5372     5372 15658
#basic imputation
imp<-mice(data=uganda16[,c("idealnumchil", "huseducationlevel", "huswork","HIVtest","wifebeat", "wantanotherchild")], seed=27, m=10)
## 
##  iter imp variable
##   1   1  huswork
##   1   2  huswork
##   1   3  huswork
##   1   4  huswork
##   1   5  huswork
##   1   6  huswork
##   1   7  huswork
##   1   8  huswork
##   1   9  huswork
##   1   10  huswork
##   2   1  huswork
##   2   2  huswork
##   2   3  huswork
##   2   4  huswork
##   2   5  huswork
##   2   6  huswork
##   2   7  huswork
##   2   8  huswork
##   2   9  huswork
##   2   10  huswork
##   3   1  huswork
##   3   2  huswork
##   3   3  huswork
##   3   4  huswork
##   3   5  huswork
##   3   6  huswork
##   3   7  huswork
##   3   8  huswork
##   3   9  huswork
##   3   10  huswork
##   4   1  huswork
##   4   2  huswork
##   4   3  huswork
##   4   4  huswork
##   4   5  huswork
##   4   6  huswork
##   4   7  huswork
##   4   8  huswork
##   4   9  huswork
##   4   10  huswork
##   5   1  huswork
##   5   2  huswork
##   5   3  huswork
##   5   4  huswork
##   5   5  huswork
##   5   6  huswork
##   5   7  huswork
##   5   8  huswork
##   5   9  huswork
##   5   10  huswork
## Warning: Number of logged events: 2
print(imp)
## Class: mids
## Number of multiple imputations:  10 
## Imputation methods:
##      idealnumchil huseducationlevel           huswork           HIVtest 
##                ""                ""         "polyreg"                "" 
##          wifebeat  wantanotherchild 
##                ""                "" 
## PredictorMatrix:
##                   idealnumchil huseducationlevel huswork HIVtest wifebeat
## idealnumchil                 0                 1       1       0        0
## huseducationlevel            1                 0       1       0        0
## huswork                      1                 1       0       0        0
## HIVtest                      0                 0       0       0        0
## wifebeat                     0                 0       0       0        0
## wantanotherchild             1                 1       1       0        0
##                   wantanotherchild
## idealnumchil                     1
## huseducationlevel                1
## huswork                          1
## HIVtest                          0
## wifebeat                         0
## wantanotherchild                 0
## Number of logged events:  2 
##   it im dep      meth      out
## 1  0  0     collinear  HIVtest
## 2  0  0     collinear wifebeat
dat.imp<-complete(imp, action=1)
#analysis with multiple imputation

model2<-glm(wantanotherchild ~ huswork + wifebeat + huseducationlevel+ idealnumchil,
            family = binomial, data = dat.imp)

summary(model2)
## 
## Call:
## glm(formula = wantanotherchild ~ huswork + wifebeat + huseducationlevel + 
##     idealnumchil, family = binomial, data = dat.imp)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7292  -1.3073   0.7541   0.9443   1.9893  
## 
## Coefficients: (1 not defined because of singularities)
##                                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                          -1.22960    0.23008  -5.344 9.08e-08 ***
## husworkworked in the last 7 days     -1.34911    0.32794  -4.114 3.89e-05 ***
## wifebeatYes                                NA         NA      NA       NA    
## huseducationlevelnone                -0.30001    0.08546  -3.511 0.000447 ***
## huseducationlevelprimary             -0.60021    0.04477 -13.405  < 2e-16 ***
## huseducationlevelsecondary and above -0.27638    0.05215  -5.300 1.16e-07 ***
## idealnumchil1                         1.04311    0.30482   3.422 0.000621 ***
## idealnumchil2                         2.16345    0.24187   8.945  < 2e-16 ***
## idealnumchil3                         2.47071    0.23987  10.300  < 2e-16 ***
## idealnumchil4                         2.34163    0.23234  10.078  < 2e-16 ***
## idealnumchil5                         2.29791    0.23710   9.692  < 2e-16 ***
## idealnumchil6 or more                 1.80615    0.23299   7.752 9.05e-15 ***
## idealnumchilNA                        1.06048    0.25414   4.173 3.01e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 17056  on 13133  degrees of freedom
## Residual deviance: 16367  on 13122  degrees of freedom
##   (5372 observations deleted due to missingness)
## AIC: 16391
## 
## Number of Fisher Scoring iterations: 4

#Were the results similar between the mean/modal and multiply imputed data sets? How do the results compare to the results from the model fit with the data source with missing values? #After looking at the binary logistic regression results using no imputation, modal imputation, and multiple imputation I find the overall difference that imputation added to be insignificant. The modal imputation is wrong because it inflates the modal values. The multiple imputation results pretty much the same as the results with no imputation.

#I am also puzzled because the modal imputations did not seem to work for a few of my variables: ideal number of children and husband education level.