Image by Gordon Johnson from Pixabay

Image by Gordon Johnson from Pixabay

Data Import

  1. Download flag.csv and flag.names to your working directory. Make sure to set your working directory appropriately!

  2. Let’s look at some information about this file. Open flag.names in RStudio by double clicking it in the files pane in bottom left. Read through this file.

library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.3
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.6     v dplyr   1.0.7
## v tidyr   1.1.4     v stringr 1.4.0
## v readr   2.1.1     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
getwd()
## [1] "C:/Users/natha/OneDrive/Documents/Data 101"
  1. Import the flag.csv data into R. Store it in a data.frame named flag_df.
setwd("~/Data 101")
flag_df <- read.csv("flag.csv")
library(tidyverse)
  1. Check to make sure the class of flag_df is data.frame. Then find the dimensions of flag_df.
class(flag_df)
## [1] "data.frame"
dim(flag_df)
## [1] 194  31
  1. Print out the first 5 lines and the last 5 lines of flag_df.
head(flag_df, 5)
##   X           name landmass zone area population language religion bars stripes
## 1 1    Afghanistan        5    1  648         16       10        2    0       3
## 2 2        Albania        3    1   29          3        6        6    0       0
## 3 3        Algeria        4    1 2388         20        8        2    2       0
## 4 4 American-Samoa        6    3    0          0        1        1    0       0
## 5 5        Andorra        3    1    0          0        6        0    3       0
##   colours red green blue gold white black orange mainhue circles crosses
## 1       5   1     1    0    1     1     1      0   green       0       0
## 2       3   1     0    0    1     0     1      0     red       0       0
## 3       3   1     1    0    0     1     0      0   green       0       0
## 4       5   1     0    1    1     1     0      1    blue       0       0
## 5       3   1     0    1    1     0     0      0    gold       0       0
##   saltires quarters sunstars crescent triangle icon animate text topleft
## 1        0        0        1        0        0    1       0    0   black
## 2        0        0        1        0        0    0       1    0     red
## 3        0        0        1        1        0    0       0    0   green
## 4        0        0        0        0        1    1       1    0    blue
## 5        0        0        0        0        0    0       0    0    blue
##   botright
## 1    green
## 2      red
## 3    white
## 4      red
## 5      red
  1. Print out the summary statistics of each variable of flag_df.
summary(flag_df)
##        X              name              landmass          zone      
##  Min.   :  1.00   Length:194         Min.   :1.000   Min.   :1.000  
##  1st Qu.: 49.25   Class :character   1st Qu.:3.000   1st Qu.:1.000  
##  Median : 97.50   Mode  :character   Median :4.000   Median :2.000  
##  Mean   : 97.50                      Mean   :3.572   Mean   :2.211  
##  3rd Qu.:145.75                      3rd Qu.:5.000   3rd Qu.:4.000  
##  Max.   :194.00                      Max.   :6.000   Max.   :4.000  
##       area           population         language        religion    
##  Min.   :    0.0   Min.   :   0.00   Min.   : 1.00   Min.   :0.000  
##  1st Qu.:    9.0   1st Qu.:   0.00   1st Qu.: 2.00   1st Qu.:1.000  
##  Median :  111.0   Median :   4.00   Median : 6.00   Median :1.000  
##  Mean   :  700.0   Mean   :  23.27   Mean   : 5.34   Mean   :2.191  
##  3rd Qu.:  471.2   3rd Qu.:  14.00   3rd Qu.: 9.00   3rd Qu.:4.000  
##  Max.   :22402.0   Max.   :1008.00   Max.   :10.00   Max.   :7.000  
##       bars           stripes          colours           red        
##  Min.   :0.0000   Min.   : 0.000   Min.   :1.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.: 0.000   1st Qu.:3.000   1st Qu.:1.0000  
##  Median :0.0000   Median : 0.000   Median :3.000   Median :1.0000  
##  Mean   :0.4536   Mean   : 1.552   Mean   :3.464   Mean   :0.7887  
##  3rd Qu.:0.0000   3rd Qu.: 3.000   3rd Qu.:4.000   3rd Qu.:1.0000  
##  Max.   :5.0000   Max.   :14.000   Max.   :8.000   Max.   :1.0000  
##      green             blue             gold            white       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:1.0000  
##  Median :0.0000   Median :1.0000   Median :0.0000   Median :1.0000  
##  Mean   :0.4691   Mean   :0.5103   Mean   :0.4691   Mean   :0.7526  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      black           orange        mainhue             circles      
##  Min.   :0.000   Min.   :0.000   Length:194         Min.   :0.0000  
##  1st Qu.:0.000   1st Qu.:0.000   Class :character   1st Qu.:0.0000  
##  Median :0.000   Median :0.000   Mode  :character   Median :0.0000  
##  Mean   :0.268   Mean   :0.134                      Mean   :0.1701  
##  3rd Qu.:1.000   3rd Qu.:0.000                      3rd Qu.:0.0000  
##  Max.   :1.000   Max.   :1.000                      Max.   :4.0000  
##     crosses          saltires          quarters         sunstars     
##  Min.   :0.0000   Min.   :0.00000   Min.   :0.0000   Min.   : 0.000  
##  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.: 0.000  
##  Median :0.0000   Median :0.00000   Median :0.0000   Median : 0.000  
##  Mean   :0.1495   Mean   :0.09278   Mean   :0.1495   Mean   : 1.387  
##  3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.: 1.000  
##  Max.   :2.0000   Max.   :1.00000   Max.   :4.0000   Max.   :50.000  
##     crescent         triangle           icon           animate     
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.000  
##  Mean   :0.0567   Mean   :0.1392   Mean   :0.2526   Mean   :0.201  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.7500   3rd Qu.:0.000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.000  
##       text           topleft            botright        
##  Min.   :0.00000   Length:194         Length:194        
##  1st Qu.:0.00000   Class :character   Class :character  
##  Median :0.00000   Mode  :character   Mode  :character  
##  Mean   :0.08247                                        
##  3rd Qu.:0.00000                                        
##  Max.   :1.00000
  1. Print out the structure of flag_df.
str(flag_df)
## 'data.frame':    194 obs. of  31 variables:
##  $ X         : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ name      : chr  "Afghanistan" "Albania" "Algeria" "American-Samoa" ...
##  $ landmass  : int  5 3 4 6 3 4 1 1 2 2 ...
##  $ zone      : int  1 1 1 3 1 2 4 4 3 3 ...
##  $ area      : int  648 29 2388 0 0 1247 0 0 2777 2777 ...
##  $ population: int  16 3 20 0 0 7 0 0 28 28 ...
##  $ language  : int  10 6 8 1 6 10 1 1 2 2 ...
##  $ religion  : int  2 6 2 1 0 5 1 1 0 0 ...
##  $ bars      : int  0 0 2 0 3 0 0 0 0 0 ...
##  $ stripes   : int  3 0 0 0 0 2 1 1 3 3 ...
##  $ colours   : int  5 3 3 5 3 3 3 5 2 3 ...
##  $ red       : int  1 1 1 1 1 1 0 1 0 0 ...
##  $ green     : int  1 0 1 0 0 0 0 0 0 0 ...
##  $ blue      : int  0 0 0 1 1 0 1 1 1 1 ...
##  $ gold      : int  1 1 0 1 1 1 0 1 0 1 ...
##  $ white     : int  1 0 1 1 0 0 1 1 1 1 ...
##  $ black     : int  1 1 0 0 0 1 0 1 0 0 ...
##  $ orange    : int  0 0 0 1 0 0 1 0 0 0 ...
##  $ mainhue   : chr  "green" "red" "green" "blue" ...
##  $ circles   : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ crosses   : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ saltires  : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ quarters  : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ sunstars  : int  1 1 1 0 0 1 0 1 0 1 ...
##  $ crescent  : int  0 0 1 0 0 0 0 0 0 0 ...
##  $ triangle  : int  0 0 0 1 0 0 0 1 0 0 ...
##  $ icon      : int  1 0 0 1 0 1 0 0 0 0 ...
##  $ animate   : int  0 1 0 1 0 0 1 0 0 0 ...
##  $ text      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ topleft   : chr  "black" "red" "green" "blue" ...
##  $ botright  : chr  "green" "red" "white" "red" ...

Data Cleaning/Management

We are going to use the dplyr package.

  1. Load the tidyverse and convert the type of flag_df to tibble.
library(tidyverse)

flag_df<-as_tibble(flag_df)
  1. Find the variable (column) names of flag_df.
flag_df %>%  select(name)
## # A tibble: 194 x 1
##    name           
##    <chr>          
##  1 Afghanistan    
##  2 Albania        
##  3 Algeria        
##  4 American-Samoa 
##  5 Andorra        
##  6 Angola         
##  7 Anguilla       
##  8 Antigua-Barbuda
##  9 Argentina      
## 10 Argentine      
## # ... with 184 more rows

Something should look strange about the first column name. Let’s investigate this.

  1. Print out the first column.
flag_df %>%  select(1)
## # A tibble: 194 x 1
##        X
##    <int>
##  1     1
##  2     2
##  3     3
##  4     4
##  5     5
##  6     6
##  7     7
##  8     8
##  9     9
## 10    10
## # ... with 184 more rows
  1. Delete the first column of flag_df.
select(flag_df , -X) 
## # A tibble: 194 x 30
##    name  landmass  zone  area population language religion  bars stripes colours
##    <chr>    <int> <int> <int>      <int>    <int>    <int> <int>   <int>   <int>
##  1 Afgh~        5     1   648         16       10        2     0       3       5
##  2 Alba~        3     1    29          3        6        6     0       0       3
##  3 Alge~        4     1  2388         20        8        2     2       0       3
##  4 Amer~        6     3     0          0        1        1     0       0       5
##  5 Ando~        3     1     0          0        6        0     3       0       3
##  6 Ango~        4     2  1247          7       10        5     0       2       3
##  7 Angu~        1     4     0          0        1        1     0       1       3
##  8 Anti~        1     4     0          0        1        1     0       1       5
##  9 Arge~        2     3  2777         28        2        0     0       3       2
## 10 Arge~        2     3  2777         28        2        0     0       3       3
## # ... with 184 more rows, and 20 more variables: red <int>, green <int>,
## #   blue <int>, gold <int>, white <int>, black <int>, orange <int>,
## #   mainhue <chr>, circles <int>, crosses <int>, saltires <int>,
## #   quarters <int>, sunstars <int>, crescent <int>, triangle <int>, icon <int>,
## #   animate <int>, text <int>, topleft <chr>, botright <chr>
  1. Verify that there are no missing values in flag_df.
flag_df
## # A tibble: 194 x 31
##        X name    landmass  zone  area population language religion  bars stripes
##    <int> <chr>      <int> <int> <int>      <int>    <int>    <int> <int>   <int>
##  1     1 Afghan~        5     1   648         16       10        2     0       3
##  2     2 Albania        3     1    29          3        6        6     0       0
##  3     3 Algeria        4     1  2388         20        8        2     2       0
##  4     4 Americ~        6     3     0          0        1        1     0       0
##  5     5 Andorra        3     1     0          0        6        0     3       0
##  6     6 Angola         4     2  1247          7       10        5     0       2
##  7     7 Anguil~        1     4     0          0        1        1     0       1
##  8     8 Antigu~        1     4     0          0        1        1     0       1
##  9     9 Argent~        2     3  2777         28        2        0     0       3
## 10    10 Argent~        2     3  2777         28        2        0     0       3
## # ... with 184 more rows, and 21 more variables: colours <int>, red <int>,
## #   green <int>, blue <int>, gold <int>, white <int>, black <int>,
## #   orange <int>, mainhue <chr>, circles <int>, crosses <int>, saltires <int>,
## #   quarters <int>, sunstars <int>, crescent <int>, triangle <int>, icon <int>,
## #   animate <int>, text <int>, topleft <chr>, botright <chr>
sum(is.na(flag_df))
## [1] 0

At this point, we know there are no missing values in the dataset so we will use dplyr to make the dataset a bit more readable to us. Look at the flag.names file again. Under “Attribute Information” look at the variables landmass, zone, language, religion.

Instead of encoding these categories using numbers, we would like to just use the categories in the variables. For example, in the zone column, we want our data to be “NE”, “SE”, “SW”, “NW”, instead of 1, 2, 3, 4.

  1. Change each of the columns landmass, zone, language, and religion to hold their actual categorical data (not their encoded numbers). The type of each of these columns should be Factor.
flag_df$landmass<-as.character(flag_df$landmass)
flag_df$landmass[flag_df$landmass == "1"]<- "NE" 
flag_df$landmass[flag_df$landmass == "2"]<- "SE" 
flag_df$landmass[flag_df$landmass == "3"]<- "SW" 
flag_df$landmass[flag_df$landmass == "4"]<- "NW" 

flag_df$zone<-as.character(flag_df$zone)
flag_df$zone[flag_df$zone == "1"]<- "NE" 
flag_df$zone[flag_df$zone == "2"]<- "SE" 
flag_df$zone[flag_df$zone == "3"]<- "SW" 
flag_df$zone[flag_df$zone == "4"]<- "NW" 

flag_df$language<-as.character(flag_df$language)
flag_df$language[flag_df$language == "1"]<- "NE"
flag_df$language[flag_df$language== "2"]<- "SE" 
flag_df$language[flag_df$language== "3"]<- "SW" 
flag_df$language[flag_df$language== "4"]<- "NW" 


flag_df$religion<-as.character(flag_df$religion)
flag_df$religion[flag_df$religion== "1"]<- "NE" 
flag_df$religion[flag_df$religion== "2"]<- "SE" 
flag_df$religion[flag_df$religion== "3"]<- "SW" 
flag_df$religion[flag_df$religion== "4"]<- "NW" 

flag_df$landmass<-as.factor(flag_df$landmass)
flag_df$zone<-as.factor(flag_df$zone)
flag_df$language<-as.factor(flag_df$language)
flag_df$religion<-as.factor(flag_df$religion)

Notice from our earlier structure command that the data types for columns red, green, blue, gold, white, black, orange, crescent, triangle, icon, animate, text are all integer. Looking at flag.names these integer variables are really just an encoding for true (1) or false (0). We don’t want to compute with these 1s and 0s (for example find a mean). So we should change these to logicals.

  1. Change the column type to logical for the following columns: red, green, blue, gold, white, black, orange, crescent, triangle, icon, animate, and text.
flag_df$red<-as.logical(flag_df$red)
flag_df$green<-as.logical(flag_df$green)
flag_df$blue<-as.logical(flag_df$blue)
flag_df$gold<-as.logical(flag_df$gold)
flag_df$white<-as.logical(flag_df$white)
flag_df$black<-as.logical(flag_df$black)
flag_df$orange<-as.logical(flag_df$orange)
flag_df$crescent<-as.logical(flag_df$crescent)
flag_df$triangle<-as.logical(flag_df$triangle)
flag_df$icon<-as.logical(flag_df$icon)
flag_df$animate<-as.logical(flag_df$animate)
flag_df$text<-as.logical(flag_df$text)



str(flag_df)
## tibble [194 x 31] (S3: tbl_df/tbl/data.frame)
##  $ X         : int [1:194] 1 2 3 4 5 6 7 8 9 10 ...
##  $ name      : chr [1:194] "Afghanistan" "Albania" "Algeria" "American-Samoa" ...
##  $ landmass  : Factor w/ 6 levels "5","6","NE","NW",..: 1 6 4 2 6 4 3 3 5 5 ...
##  $ zone      : Factor w/ 4 levels "NE","NW","SE",..: 1 1 1 4 1 3 2 2 4 4 ...
##  $ area      : int [1:194] 648 29 2388 0 0 1247 0 0 2777 2777 ...
##  $ population: int [1:194] 16 3 20 0 0 7 0 0 28 28 ...
##  $ language  : Factor w/ 10 levels "10","5","6","7",..: 1 3 5 7 3 1 7 7 9 9 ...
##  $ religion  : Factor w/ 8 levels "0","5","6","7",..: 7 3 7 5 1 2 5 5 1 1 ...
##  $ bars      : int [1:194] 0 0 2 0 3 0 0 0 0 0 ...
##  $ stripes   : int [1:194] 3 0 0 0 0 2 1 1 3 3 ...
##  $ colours   : int [1:194] 5 3 3 5 3 3 3 5 2 3 ...
##  $ red       : logi [1:194] TRUE TRUE TRUE TRUE TRUE TRUE ...
##  $ green     : logi [1:194] TRUE FALSE TRUE FALSE FALSE FALSE ...
##  $ blue      : logi [1:194] FALSE FALSE FALSE TRUE TRUE FALSE ...
##  $ gold      : logi [1:194] TRUE TRUE FALSE TRUE TRUE TRUE ...
##  $ white     : logi [1:194] TRUE FALSE TRUE TRUE FALSE FALSE ...
##  $ black     : logi [1:194] TRUE TRUE FALSE FALSE FALSE TRUE ...
##  $ orange    : logi [1:194] FALSE FALSE FALSE TRUE FALSE FALSE ...
##  $ mainhue   : chr [1:194] "green" "red" "green" "blue" ...
##  $ circles   : int [1:194] 0 0 0 0 0 0 0 0 0 0 ...
##  $ crosses   : int [1:194] 0 0 0 0 0 0 0 0 0 0 ...
##  $ saltires  : int [1:194] 0 0 0 0 0 0 0 0 0 0 ...
##  $ quarters  : int [1:194] 0 0 0 0 0 0 0 0 0 0 ...
##  $ sunstars  : int [1:194] 1 1 1 0 0 1 0 1 0 1 ...
##  $ crescent  : logi [1:194] FALSE FALSE TRUE FALSE FALSE FALSE ...
##  $ triangle  : logi [1:194] FALSE FALSE FALSE TRUE FALSE FALSE ...
##  $ icon      : logi [1:194] TRUE FALSE FALSE TRUE FALSE TRUE ...
##  $ animate   : logi [1:194] FALSE TRUE FALSE TRUE FALSE FALSE ...
##  $ text      : logi [1:194] FALSE FALSE FALSE FALSE FALSE FALSE ...
##  $ topleft   : chr [1:194] "black" "red" "green" "blue" ...
##  $ botright  : chr [1:194] "green" "red" "white" "red" ...

Now that our data is clean, let’s answer some questions about it!

Data Investigation

  1. Print out how many countries have each “mainhue” category.
table(flag_df$mainhue)
## 
##  black   blue  brown   gold  green orange    red  white 
##      5     40      2     19     31      4     71     22
  1. How many countries have the three colors red, white, and blue in their flags? How many countries have ONLY the three colors red, white, and blue in their flags?
library(dplyr)
RWB_ <- flag_df %>%
filter(red==TRUE|blue==TRUE|white==TRUE&black==FALSE&gold==FALSE&green==FALSE&orange==FALSE)
dim(RWB_)
## [1] 182  31

182 countries have three colors red, white, and blue in their flags

RWB <- flag_df %>%
filter(red==TRUE&blue==TRUE&white==TRUE&black==FALSE&gold==FALSE&green==FALSE&orange==FALSE)
dim(RWB)
## [1] 27 31

27 countries have ONLY three colors red, white, and blue in their flags

library(dplyr)
RWB_ <- flag_df %>%
filter(red==TRUE&blue==TRUE&white==TRUE&black==FALSE&gold==FALSE&green==FALSE&orange==FALSE)
dim(RWB_)
## [1] 27 31
  1. Print out the data observations for the 10 countries with the largest populations. The 10 data observations should be printed out in descending order according to population.
arrange(flag_df,desc(population)) %>%
  head(10)
## # A tibble: 10 x 31
##        X name    landmass zone   area population language religion  bars stripes
##    <int> <chr>   <fct>    <fct> <int>      <int> <fct>    <fct>    <int>   <int>
##  1    38 China   5        NE     9561       1008 7        6            0       0
##  2    82 India   5        NE     3268        684 6        NW           0       3
##  3   185 USSR    5        NE    22402        274 5        6            0       0
##  4   184 USA     NE       NW     9363        231 NE       NE           0      13
##  5    83 Indone~ 6        SE     1904        157 10       SE           0       2
##  6    24 Brazil  SE       SW     8512        119 6        0            0       0
##  7    91 Japan   5        NE      372        118 9        7            0       0
##  8    15 Bangla~ 5        NE      143         90 6        SE           0       0
##  9   133 Pakist~ 5        NE      804         84 6        SE           1       0
## 10   113 Mexico  NE       NW     1973         77 SE       0            3       0
## # ... with 21 more variables: colours <int>, red <lgl>, green <lgl>,
## #   blue <lgl>, gold <lgl>, white <lgl>, black <lgl>, orange <lgl>,
## #   mainhue <chr>, circles <int>, crosses <int>, saltires <int>,
## #   quarters <int>, sunstars <int>, crescent <lgl>, triangle <lgl>, icon <lgl>,
## #   animate <lgl>, text <lgl>, topleft <chr>, botright <chr>

Let’s see if we can find any patterns in the data.

  1. Group the flags by landmass and find the following for each group:
  • the mode mainhue
  • the median number of sun or star symbols
  • the number of flags with animate images
  • the percentage of flags with animate images

Your output should be a data frame with each row corresponding to a group. There will be five columns.

Repeat this process except group by zone, language, and religion.

# You may find this function useful (ie. you should call this function in your code)!  It calculates the mode of a factor.

cat_mode <- function(cat_var){
  mode_idx <- which.max(table(cat_var))
  levels(cat_var)[mode_idx]
}

# fill in your code here

flag_df %>%
  group_by(landmass) %>%
  summarise(ModeMainhue=cat_mode(mainhue),MedianLandmass=median(sunstars),animateLandmass=sum(animate), animateLandmassPercent=animateLandmass/(length(animate))*100)
## # A tibble: 6 x 4
##   landmass MedianLandmass animateLandmass animateLandmassPercent
##   <fct>             <dbl>           <int>                  <dbl>
## 1 5                   1                 6                   15.4
## 2 6                   2.5               6                   30  
## 3 NE                  0                13                   41.9
## 4 NW                  0                 7                   13.5
## 5 SE                  0                 3                   17.6
## 6 SW                  0                 4                   11.4
flag_df %>%
  group_by(zone) %>%
  summarise(ModeZone=cat_mode(mainhue),MedianZone=median(sunstars),animateZone=sum(animate), animateZonePercent=animateZone/(length(animate))*100)
## # A tibble: 4 x 4
##   zone  MedianZone animateZone animateZonePercent
##   <fct>      <dbl>       <int>              <dbl>
## 1 NE             0          14               15.4
## 2 NW             0          15               25.9
## 3 SE             0           7               24.1
## 4 SW             1           3               18.8
flag_df %>%
  group_by(language) %>%
  summarise(ModeLang=cat_mode(mainhue),MedianLang=median(sunstars),animateLang=sum(animate), animateLangPercent=animateLang/(length(animate))*100)
## # A tibble: 10 x 4
##    language MedianLang animateLang animateLangPercent
##    <fct>         <dbl>       <int>              <dbl>
##  1 10              0             9               19.6
##  2 5               0.5           1               25  
##  3 6               0             5               16.7
##  4 7               3             1               25  
##  5 8               0             2               10.5
##  6 9               0.5           0                0  
##  7 NE              0            18               41.9
##  8 NW              0             0                0  
##  9 SE              0             3               14.3
## 10 SW              0             0                0
flag_df %>%
  group_by(religion) %>%
  summarise(ModeReligion=cat_mode(mainhue),MedianReligion=median(sunstars),animateReligion=sum(animate), animateReligionPercent=animateReligion/(length(animate))*100)
## # A tibble: 8 x 4
##   religion MedianReligion animateReligion animateReligionPercent
##   <fct>             <dbl>           <int>                  <dbl>
## 1 0                     0               4                  10   
## 2 5                     0               6                  22.2 
## 3 6                     1               3                  20   
## 4 7                     1               0                   0   
## 5 NE                    0              19                  31.7 
## 6 NW                    0               0                   0   
## 7 SE                    0               3                   8.33
## 8 SW                    0               4                  50

Do you see any patterns in flag mainhue, sun or star symbols, and animate images? If so, describe these patterns. (Hint: you should see patterns! Look at the trends when grouping by landmass, zone, language, and religion.) Write a paragraph to answer this question.

FILL IN YOUR ANSWER HERE

When grouping by landmass, zone, language and religion, most of the NE zones have the highest number of animate objects and the highest percentage. Another pattern is that when there are sun or star symbols present, the number of animate objects go down.

flag_df %>%
  group_by(zone) %>%
  summarise(Modesunstar=cat_mode(mainhue),Mediansunstar=median(sunstars),animatesunstar=sum(animate), animatesunstarPercent=animatesunstar/(length(animate))*100)
## # A tibble: 4 x 4
##   zone  Mediansunstar animatesunstar animatesunstarPercent
##   <fct>         <dbl>          <int>                 <dbl>
## 1 NE                0             14                  15.4
## 2 NW                0             15                  25.9
## 3 SE                0              7                  24.1
## 4 SW                1              3                  18.8