Setup

knitr::opts_knit$set(
  root.dir = ".")
library(dplyr)
library(dittoSeq)
library(ggrepel)
library(ggtree)
library(parallel)
library(plotly)  # 3D plot
library(Seurat)  # Idents()
library(SeuratDisk)  # SaveH5Seurat()
library(tibble)  # rownnames_to_column
library(harmony) # RunHarmony()
#options(mc.cores = detectCores() - 1)
library(gtools)

Read in object

pigs.merged <- readRDS("../../rObjects/brain_annotated.rds")
Idents(pigs.merged) <- pigs.merged$merged_clusters
DefaultAssay(pigs.merged) <- "RNA"
# natural-log
pigs.merged <- NormalizeData(pigs.merged, verbose = FALSE)
pigs.merged
## An object of class Seurat 
## 42056 features across 7277 samples within 2 assays 
## Active assay: RNA (21295 features, 0 variable features)
##  1 other assay present: SCT
##  3 dimensional reductions calculated: pca, harmony, umap

Annotated UMAP

# UMAP
u1 <- DimPlot(object = pigs.merged, 
              reduction = "umap",
              label = TRUE,
              label.box = TRUE,
              label.size = 4,
              repel = TRUE)
u1

Neurons before re-cluster

# subset
neuron <- subset(pigs.merged, merged_clusters == "Neuron")

# UMAP of neuron only 
neuron_colors <- c("gold")
u1 <- DimPlot(object = neuron, 
        reduction = "umap", 
        label = TRUE,
        label.box = TRUE,
        label.size = 4,
        repel = TRUE, 
        cols = neuron_colors) 
u1

# show neuron cells by treatment 
u2 <- DimPlot(object = neuron, 
        reduction = "umap", 
        label = TRUE,
        label.box = TRUE,
        label.size = 4,
        repel = TRUE, 
        group.by = "treatment",
        cols = treatment_colors) 
u2

## png 
##   2
## null device 
##           1
## pdf 
##   2
## null device 
##           1

Quality checks

Number of cells

# Visualize the number of cell counts per sample
data <- as.data.frame(table(neuron$sample))
colnames(data) <- c("sample","frequency")

ncells <- ggplot(data, aes(x = sample, y = frequency, fill = sample)) + 
  geom_col() +
  theme_classic() +
  geom_text(aes(label = frequency), 
            position=position_dodge(width=0.9), 
            vjust=-0.25) +
  scale_fill_manual(values = sample_colors) + 
 # scale_y_continuous(breaks = seq(0,30000, by = 5000), limits = c(0,30000)) +
  ggtitle("Cells per sample") +
  theme(legend.position =  "none") + 
  theme(axis.text.x = element_text(angle = 45, hjust=1))
ncells

## Top transcripts

df <- data.frame(row.names = rownames(neuron))
df$rsum <- rowSums(x = neuron, slot = "counts")
df$gene_name <- rownames(df)
df <- df[order(df$rsum,decreasing = TRUE),]
head(df, 10)
##             rsum gene_name
## KK-MALAT1 190976 KK-MALAT1
## NRXN3     133968     NRXN3
## RBFOX1    107400    RBFOX1
## KCNIP4    102889    KCNIP4
## OPCML      93144     OPCML
## CADM2      90168     CADM2
## DLG2       86279      DLG2
## DPP10      85054     DPP10
## PCDH9      82466     PCDH9
## NRG3       80680      NRG3

Top variable genes

# Identify the most variable genes
neuron <- FindVariableFeatures(neuron,
                                   selection.method = "vst",  # default vst
                                   nfeatures = 2000,  # default 2000
                                   verbose = FALSE)

# view top variable genes
top40 <- head(VariableFeatures(neuron), 40)
top40
##  [1] "RN18S"              "EYA1"               "GRIK1"             
##  [4] "NXPH1"              "RELN"               "SOX6"              
##  [7] "ADARB2"             "SST"                "ERBB4"             
## [10] "FOXP2"              "NELL1"              "ZNF536"            
## [13] "ENSSSCG00000044834" "TMEM132C"           "PDE1C"             
## [16] "IL1RAPL2"           "CDH13"              "ENSSSCG00000004511"
## [19] "HS3ST4"             "PTPRM"              "GRIN3A"            
## [22] "PTCHD4"             "SLC35F4"            "ANK1"              
## [25] "THSD7B"             "LUZP2"              "ENSSSCG00000008533"
## [28] "PLD5"               "SLC39A8"            "SDK1"              
## [31] "TRHDE"              "ZNF385D"            "ZFPM2"             
## [34] "HTR2C"              "CNR1"               "BTBD11"            
## [37] "KIAA1217"           "SORCS1"             "SEMA3E"            
## [40] "KCNC2"
# plot variable features with labels
VarFeatPlot <- VariableFeaturePlot(neuron, cols = c("gray47","red"))
VarFeatPlotLabel <- LabelPoints(plot = VarFeatPlot, 
                    points = top40, repel = TRUE, fontface="italic", 
                    xnudge = 0, ynudge = 0, max.overlaps = 12)
VarFeatPlotLabel

## Median absolute deviation

Remove outliers with log-library size greater than 3 median absolute deviations (MADs) or below the median log-library size.

# MAD example
log.lib <- as.numeric(log10(neuron$nCount_RNA))
med <- median(log.lib)
abs.dev <- abs(log.lib - med)
mad <- median(abs.dev)
mad <- mad * 1.4826 # multiply by consistency cutoff
mad
## [1] 0.4298133
# stats function
mad <- mad(log.lib)
mad
## [1] 0.4298133
# remove outliers greater than 3 MADs
remove <- abs(log.lib - median(log.lib)) / mad(log.lib) > 3
table(remove)
## remove
## FALSE 
##  3708

Re-cluster

Split, transform

# split object by sample
Idents(neuron) <- neuron$sample
neuron.split <- SplitObject(neuron, split.by = "sample")

# SCTransform and regress percent.mt
neuron.split <- lapply(neuron.split, SCTransform, vars.to.regress = "percent.mt")
## Calculating cell attributes from input UMI matrix: log_umi
## Variance stabilizing transformation of count matrix of size 9679 by 124
## Model formula is y ~ log_umi
## Get Negative Binomial regression parameters per gene
## Using 2000 genes, 124 cells
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==================                                                    |  25%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |====================================================                  |  75%
  |                                                                            
  |======================================================================| 100%
## There are 1 estimated thetas smaller than 1e-07 - will be set to 1e-07
## Found 21 outliers - those will be ignored in fitting/regularization step
## Second step: Get residuals using fitted parameters for 9679 genes
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |====                                                                  |   5%
  |                                                                            
  |=======                                                               |  10%
  |                                                                            
  |==========                                                            |  15%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |==================                                                    |  25%
  |                                                                            
  |=====================                                                 |  30%
  |                                                                            
  |========================                                              |  35%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |================================                                      |  45%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |======================================                                |  55%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |==============================================                        |  65%
  |                                                                            
  |=================================================                     |  70%
  |                                                                            
  |====================================================                  |  75%
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |============================================================          |  85%
  |                                                                            
  |===============================================================       |  90%
  |                                                                            
  |==================================================================    |  95%
  |                                                                            
  |======================================================================| 100%
## Computing corrected count matrix for 9679 genes
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |====                                                                  |   5%
  |                                                                            
  |=======                                                               |  10%
  |                                                                            
  |==========                                                            |  15%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |==================                                                    |  25%
  |                                                                            
  |=====================                                                 |  30%
  |                                                                            
  |========================                                              |  35%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |================================                                      |  45%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |======================================                                |  55%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |==============================================                        |  65%
  |                                                                            
  |=================================================                     |  70%
  |                                                                            
  |====================================================                  |  75%
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |============================================================          |  85%
  |                                                                            
  |===============================================================       |  90%
  |                                                                            
  |==================================================================    |  95%
  |                                                                            
  |======================================================================| 100%
## Calculating gene attributes
## Wall clock passed: Time difference of 6.260121 secs
## Determine variable features
## Place corrected count matrix in counts slot
## Regressing out percent.mt
## Centering data matrix
## Set default assay to SCT
## Calculating cell attributes from input UMI matrix: log_umi
## Variance stabilizing transformation of count matrix of size 19494 by 3584
## Model formula is y ~ log_umi
## Get Negative Binomial regression parameters per gene
## Using 2000 genes, 3584 cells
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==================                                                    |  25%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |====================================================                  |  75%
  |                                                                            
  |======================================================================| 100%
## Found 78 outliers - those will be ignored in fitting/regularization step
## Second step: Get residuals using fitted parameters for 19494 genes
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |====                                                                  |   5%
  |                                                                            
  |=====                                                                 |   8%
  |                                                                            
  |=======                                                               |  10%
  |                                                                            
  |=========                                                             |  13%
  |                                                                            
  |===========                                                           |  15%
  |                                                                            
  |=============                                                         |  18%
  |                                                                            
  |==============                                                        |  21%
  |                                                                            
  |================                                                      |  23%
  |                                                                            
  |==================                                                    |  26%
  |                                                                            
  |====================                                                  |  28%
  |                                                                            
  |======================                                                |  31%
  |                                                                            
  |=======================                                               |  33%
  |                                                                            
  |=========================                                             |  36%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |================================                                      |  46%
  |                                                                            
  |==================================                                    |  49%
  |                                                                            
  |====================================                                  |  51%
  |                                                                            
  |======================================                                |  54%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |=============================================                         |  64%
  |                                                                            
  |===============================================                       |  67%
  |                                                                            
  |================================================                      |  69%
  |                                                                            
  |==================================================                    |  72%
  |                                                                            
  |====================================================                  |  74%
  |                                                                            
  |======================================================                |  77%
  |                                                                            
  |========================================================              |  79%
  |                                                                            
  |=========================================================             |  82%
  |                                                                            
  |===========================================================           |  85%
  |                                                                            
  |=============================================================         |  87%
  |                                                                            
  |===============================================================       |  90%
  |                                                                            
  |=================================================================     |  92%
  |                                                                            
  |==================================================================    |  95%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |======================================================================| 100%
## Computing corrected count matrix for 19494 genes
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |====                                                                  |   5%
  |                                                                            
  |=====                                                                 |   8%
  |                                                                            
  |=======                                                               |  10%
  |                                                                            
  |=========                                                             |  13%
  |                                                                            
  |===========                                                           |  15%
  |                                                                            
  |=============                                                         |  18%
  |                                                                            
  |==============                                                        |  21%
  |                                                                            
  |================                                                      |  23%
  |                                                                            
  |==================                                                    |  26%
  |                                                                            
  |====================                                                  |  28%
  |                                                                            
  |======================                                                |  31%
  |                                                                            
  |=======================                                               |  33%
  |                                                                            
  |=========================                                             |  36%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |================================                                      |  46%
  |                                                                            
  |==================================                                    |  49%
  |                                                                            
  |====================================                                  |  51%
  |                                                                            
  |======================================                                |  54%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |=============================================                         |  64%
  |                                                                            
  |===============================================                       |  67%
  |                                                                            
  |================================================                      |  69%
  |                                                                            
  |==================================================                    |  72%
  |                                                                            
  |====================================================                  |  74%
  |                                                                            
  |======================================================                |  77%
  |                                                                            
  |========================================================              |  79%
  |                                                                            
  |=========================================================             |  82%
  |                                                                            
  |===========================================================           |  85%
  |                                                                            
  |=============================================================         |  87%
  |                                                                            
  |===============================================================       |  90%
  |                                                                            
  |=================================================================     |  92%
  |                                                                            
  |==================================================================    |  95%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |======================================================================| 100%
## Calculating gene attributes
## Wall clock passed: Time difference of 1.694648 mins
## Determine variable features
## Place corrected count matrix in counts slot
## Regressing out percent.mt
## Centering data matrix
## Set default assay to SCT
# Choose the features to use when integrating multiple datasets. 
# will use nfeatures as 3000 as defined by running SCTransform above
var.features <- SelectIntegrationFeatures(object.list = neuron.split, 
                                          nfeatures = 3000)

# Merge the split object
neuron.sct.merged <- merge(x = neuron.split[[1]],
                         y = c(neuron.split[[2]]),
                         project = "LPS Pigs Neurons")

# Define the variable features 
VariableFeatures(neuron.sct.merged) <- var.features

# Run PCA on the merged object
neuron.sct.merged <- RunPCA(object = neuron.sct.merged, assay = "SCT")
## PC_ 1 
## Positive:  TAFA1, KCNIP4, ARPP21, NRG1, LDB2, PDE1A, ST6GALNAC5, PTPRK, SLIT3, ENSSSCG00000011729 
##     GRM7, CUX2, PCSK2, DSCAM, GPC6, SV2B, RYR2, HS3ST4, ENSSSCG00000049709, DLG1 
##     ENSSSCG00000042224, RALYL, ENSSSCG00000014097, HS6ST3, KCNB2, KCNQ5, ENSSSCG00000035525, NELL2, CRACDL, GALNT17 
## Negative:  ERBB4, NXPH1, PTPRM, SOX6, ZNF536, KIAA1217, GALNTL6, KCNC2, ZNF385D, PTCHD4 
##     TMEM132C, BTBD11, INPP4B, ZNF804A, GAD2, SLC6A1, ZNF804B, ENSSSCG00000044043, SDK1, GRIP1 
##     ANK1, NHS, DNER, UBASH3B, NRXN3, ENSSSCG00000008533, GAD1, ENSSSCG00000004511, KCNIP1, LSAMP 
## PC_ 2 
## Positive:  HS3ST4, ZFPM2, DPP10, FOXP2, GRIK3, IL1RAPL2, KIAA1217, SEMA3E, LRP1B, CLSTN2 
##     SGCZ, SLC35F4, SORCS1, GALNT9, GRM3, TSPAN18, MCTP1, GRM8, RASGRP1, LSAMP 
##     PRKCB, KHDRBS3, TOX, FMNL2, XYLT1, RORA, TLE4, DCC, SLIT1, BCAR3 
## Negative:  CA10, RFX3, NPAS3, TAFA1, CALM1, GRIA4, ENC1, RASGRF2, SLIT2, HPCAL4 
##     FSTL5, ENSSSCG00000014097, HS6ST3, CCK, EPHA6, CNTN3, KCND2, UNC5D, ERBB4, CSMD3 
##     KCTD16, CUX2, CACNB2, STPG4, GALNT13, PDLIM5, STXBP6, SLIT3, PTPRK, GABRA2 
## PC_ 3 
## Positive:  SLC1A2, ZBTB20, PREX2, NOL11, SLC1A3, NHSL1, LRMDA, GLIS3, ENSSSCG00000044913, EYA2 
##     STAT1, ACSS3, TCF7L2, WWTR1, ENSSSCG00000017146, IRAG1, PARD3, PLEKHA7, CLIC4, GLI3 
##     LRIG1, FBXL7, ITGAV, CDC14A, POLR3B, EPS8, EGFR, FGFR2, BNC2, SVIL 
## Negative:  NXPH1, KCNC2, SOX6, TMEM132C, PTCHD4, KIAA1217, RBFOX1, IL1RAPL1, NRXN3, SPOCK3 
##     GABRG3, GRIA4, HS6ST3, ENSSSCG00000004511, ANK1, CDH9, ROBO1, TRHDE, SGCZ, GRIP1 
##     DLGAP1, INPP4B, CNTNAP5, ZNF385D, KCNQ3, SLIT2, ENSSSCG00000011729, CNTN4, FGF12, SLC24A2 
## PC_ 4 
## Positive:  ERBB4, ADARB2, ZNF536, ENSSSCG00000050221, HTR2C, SGCZ, SORCS1, SORCS3, KIT, RSPO2 
##     ZMAT4, KLHL13, SDK1, CNTN5, ENSSSCG00000051441, GPR158, SLC35F4, ASIC2, MACROD2, GALNTL6 
##     KCNG2, LUZP2, AMOTL1, PTPRO, NWD2, KAZN, CDH20, BTBD11, ZNF804A, NR3C2 
## Negative:  NXPH1, SOX6, PDE1C, KIAA1217, CACNA2D3, TRHDE, GRIK1, GRIN3A, GRIK3, CDH13 
##     TMCC3, UTRN, PARD3, SPOCK3, CDH9, BRINP3, ROBO2, SATB1, ROR1, EYA1 
##     NPAS3, SYNPR, KCNC2, THSD7B, ENSSSCG00000029771, RELN, RBMS1, ENSSSCG00000044043, ENSSSCG00000048562, COL19A1 
## PC_ 5 
## Positive:  GALNTL6, GRIK1, THSD7B, RELN, PDE1C, NELL1, TRHDE, CACNA2D3, GRIN3A, NRXN3 
##     RSPO2, ROBO2, PLCB4, ADARB2, UTRN, PTPRT, EYA1, ENSSSCG00000023627, GRIK2, SLC24A3 
##     TMCC3, BRINP3, DOCK10, FSTL5, CCDC85A, SYTL5, ENSSSCG00000050221, SORCS1, RIN2, GRID2 
## Negative:  ENSSSCG00000004511, VAV3, TMEM132C, ZNF385D, IL1RAPL1, ZNF804A, PTCHD4, IQGAP2, BTBD11, KCNC2 
##     ENSSSCG00000038066, PTPRM, DOCK4, KIAA1217, SDK1, GRIA4, ERBB4, SLIT2, HMCN1, ENSSSCG00000043464 
##     ROBO1, ANK1, PLCXD3, HTR4, ENSSSCG00000051588, NXPH1, ETV6, GABRG3, CNTNAP5, SEMA3E

No integration

# get significant PCs
stdv <- neuron.sct.merged[["pca"]]@stdev
sum.stdv <- sum(neuron.sct.merged[["pca"]]@stdev)
percent.stdv <- (stdv / sum.stdv) * 100
cumulative <- cumsum(percent.stdv)
co1 <- which(cumulative > 90 & percent.stdv < 5)[1]
co2 <- sort(which((percent.stdv[1:length(percent.stdv) - 1] - 
                       percent.stdv[2:length(percent.stdv)]) > 0.1), 
              decreasing = T)[1] + 1
min.pc <- min(co1, co2)
min.pc
## [1] 16
# run umap
neuron.nointergration <- RunUMAP(neuron.sct.merged, dims = 1:min.pc, reduction = "pca")
## Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
## To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
## This message will be shown once per session
## 15:41:13 UMAP embedding parameters a = 0.9922 b = 1.112
## 15:41:13 Read 3708 rows and found 16 numeric columns
## 15:41:13 Using Annoy for neighbor search, n_neighbors = 30
## 15:41:13 Building Annoy index with metric = cosine, n_trees = 50
## 0%   10   20   30   40   50   60   70   80   90   100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 15:41:14 Writing NN index file to temp file /tmp/RtmprlGalq/file4074e302e465c
## 15:41:14 Searching Annoy index using 1 thread, search_k = 3000
## 15:41:15 Annoy recall = 100%
## 15:41:16 Commencing smooth kNN distance calibration using 1 thread
## 15:41:18 Initializing from normalized Laplacian + noise
## 15:41:18 Commencing optimization for 500 epochs, with 157952 positive edges
## 15:41:30 Optimization finished
# cluster
neuron.nointergration <- FindNeighbors(object = neuron.nointergration, dims = 1:min.pc)                     
## Computing nearest neighbor graph
## Computing SNN
# Determine the clusters for various resolutions                                
neuron.nointergration <- FindClusters(object = neuron.nointergration,resolution = seq(0.1,0.8,by=0.1))
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 3708
## Number of edges: 123929
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9518
## Number of communities: 9
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 3708
## Number of edges: 123929
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9277
## Number of communities: 10
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 3708
## Number of edges: 123929
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9106
## Number of communities: 11
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 3708
## Number of edges: 123929
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8951
## Number of communities: 12
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 3708
## Number of edges: 123929
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8803
## Number of communities: 13
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 3708
## Number of edges: 123929
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8667
## Number of communities: 14
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 3708
## Number of edges: 123929
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8570
## Number of communities: 15
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 3708
## Number of edges: 123929
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8475
## Number of communities: 16
## Elapsed time: 0 seconds
Idents(neuron.nointergration) <- "SCT_snn_res.0.1"
neuron.nointergration$seurat_clusters <- neuron.nointergration$SCT_snn_res.0.1

UMAP no integration

u1 <- dittoDimPlot(object = neuron.nointergration,
             var = "seurat_clusters",
             reduction.use = "umap",
             do.label = TRUE,
             labels.highlight = FALSE)
u1

u2 <- dittoDimPlot(object = neuron.nointergration,
             var = "seurat_clusters",
             reduction.use = "umap",
             do.label = TRUE,
             split.by = "treatment",
             labels.highlight = FALSE)
u2

# show neuron cells by treatment 
u3 <- DimPlot(object = neuron.nointergration, 
        reduction = "umap", 
        label = FALSE,
        repel = TRUE, 
        group.by = "treatment",
        cols = treatment_colors) 
u3

# show neuron cells by treatment 

remove(u1,u2,u3)

Cells per cluster

# Cells per treatment per cluster
treatment_ncells <- FetchData(neuron.nointergration, 
                     vars = c("ident", "treatment")) %>%
  dplyr::count(ident,treatment) %>%
  tidyr::spread(ident, n)
treatment_ncells
##   treatment    0   1   2   3   4   5   6  7  8
## 1       LPS 1653 796 274 245 200 178 138 72 28
## 2    Saline   83  13  NA   4   1   5  NA 18 NA
# Cells per sample per cluster
sample_ncells <- FetchData(neuron.nointergration, 
                     vars = c("ident", "sample")) %>%
  dplyr::count(ident,sample) %>%
  tidyr::spread(ident, n)
sample_ncells
##       sample    0   1   2   3   4   5   6  7  8
## 1     12.LPS 1653 796 274 245 200 178 138 72 28
## 2 4.R.Saline   83  13  NA   4   1   5  NA 18 NA
# treatment
b1 <- neuron.nointergration@meta.data %>%
  group_by(seurat_clusters, treatment) %>%
  dplyr::count() %>%
  group_by(seurat_clusters) %>%
  dplyr::mutate(percent = 100*n/sum(n)) %>%
  ungroup() %>%
  ggplot(aes(x=seurat_clusters,y=percent, fill=treatment)) +
  geom_col() +
  scale_fill_manual(values = treatment_colors) +
  ggtitle("Percentage of treatment per cluster")
b1

# sample
b2 <- neuron.nointergration@meta.data %>%
  group_by(seurat_clusters, sample) %>%
  dplyr::count() %>%
  group_by(seurat_clusters) %>%
  dplyr::mutate(percent = 100*n/sum(n)) %>%
  ungroup() %>%
  ggplot(aes(x=seurat_clusters,y=percent, fill=sample)) +
  geom_col() +
  #scale_fill_manual(values = sample_colors) +
  ggtitle("Percentage of sample per cluster")
b2

remove(b1, b2)

Integrate with harmony

# Run harmony to harmonize over samples 
neuron.integrated <- RunHarmony(object = neuron.sct.merged, 
                              group.by.vars = "sample", 
                              assay.use = "SCT",
                              reduction = "pca", 
                              plot_convergence = TRUE)
## Harmony 1/10
## Harmony 2/10
## Harmony converged after 2 iterations
## Warning: Invalid name supplied, making object name syntactically valid. New
## object name is Seurat..ProjectDim.SCT.harmony; see ?make.names for more details
## on syntax validity

Find significant PCs

First metric

# Determine percent of variation associated with each PC
stdv <- neuron.integrated[["pca"]]@stdev
sum.stdv <- sum(neuron.integrated[["pca"]]@stdev)
percent.stdv <- (stdv / sum.stdv) * 100

# Calculate cumulative percents for each PC
cumulative <- cumsum(percent.stdv)

# Determine which PC exhibits cumulative percent greater than 90% and
# and % variation associated with the PC as less than 5
co1 <- which(cumulative > 90 & percent.stdv < 5)[1]
co1
## [1] 42

Second metric

# Determine the difference between variation of PC and subsequent PC
co2 <- sort(which(
  (percent.stdv[1:length(percent.stdv) - 1] - 
     percent.stdv[2:length(percent.stdv)]) > 0.1), 
  decreasing = T)[1] + 1

# last point where change of % of variation is more than 0.1%.
co2
## [1] 16

Usually, we would choose the minimum of these two metrics as the PCs covering the majority of the variation in the data.

# Minimum of the two calculation
min.pc <- min(co1, co2)
min.pc
## [1] 16

Use min.pc we just calculated to generate the clusters. We can plot the elbow plot again and overlay the information determined using our metrics:

# Create a dataframe with values
plot_df <- data.frame(pct = percent.stdv, 
           cumu = cumulative, 
           rank = 1:length(percent.stdv))

# Elbow plot to visualize 
  ggplot(plot_df, aes(cumulative, percent.stdv, label = rank, color = rank > min.pc)) + 
  geom_text() + 
  geom_vline(xintercept = 90, color = "grey") + 
  geom_hline(yintercept = min(percent.stdv[percent.stdv > 5]), color = "grey") +
  theme_bw()

Run UMAP and Cluster

# Run UMAP
neuron.integrated <- RunUMAP(neuron.integrated,
                           dims = 1:min.pc,
                           reduction = "pca",
                           n.components = 3) # set to 3 to use with VR
## 15:41:44 UMAP embedding parameters a = 0.9922 b = 1.112
## 15:41:44 Read 3708 rows and found 16 numeric columns
## 15:41:44 Using Annoy for neighbor search, n_neighbors = 30
## 15:41:44 Building Annoy index with metric = cosine, n_trees = 50
## 0%   10   20   30   40   50   60   70   80   90   100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 15:41:44 Writing NN index file to temp file /tmp/RtmprlGalq/file4074e13bfb133
## 15:41:44 Searching Annoy index using 1 thread, search_k = 3000
## 15:41:45 Annoy recall = 100%
## 15:41:46 Commencing smooth kNN distance calibration using 1 thread
## 15:41:48 Initializing from normalized Laplacian + noise
## 15:41:48 Commencing optimization for 500 epochs, with 157952 positive edges
## 15:42:01 Optimization finished
# Determine the K-nearest neighbor graph
neuron.integrated <- FindNeighbors(object = neuron.integrated,dims = 1:min.pc)
## Computing nearest neighbor graph
## Computing SNN
# Determine the clusters for various resolutions                                
neuron.unannotated <- FindClusters(object = neuron.integrated,resolution = seq(0.1,0.8,by=0.1))
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 3708
## Number of edges: 123929
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9518
## Number of communities: 9
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 3708
## Number of edges: 123929
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9277
## Number of communities: 10
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 3708
## Number of edges: 123929
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9106
## Number of communities: 11
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 3708
## Number of edges: 123929
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8951
## Number of communities: 12
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 3708
## Number of edges: 123929
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8803
## Number of communities: 13
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 3708
## Number of edges: 123929
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8667
## Number of communities: 14
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 3708
## Number of edges: 123929
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8570
## Number of communities: 15
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 3708
## Number of edges: 123929
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8475
## Number of communities: 16
## Elapsed time: 0 seconds
Idents(neuron.unannotated) <- "SCT_snn_res.0.1"

# save
saveRDS(neuron.unannotated,"../../rObjects/neuron_unannotated.rds")

Neurons after re-cluster

UMAP

DefaultAssay(neuron.unannotated) <- "RNA"
#neuron.unannotated <- NormalizeData(neuron.unannotated, verbose = FALSE)
neuron.unannotated$seurat_clusters <- neuron.unannotated$SCT_snn_res.0.1

u1 <- dittoDimPlot(object = neuron.unannotated,
             var = "seurat_clusters",
             reduction.use = "umap",
             do.label = TRUE,
             labels.highlight = FALSE)
u1

u2 <- dittoDimPlot(object = neuron.unannotated,
             var = "seurat_clusters",
             reduction.use = "umap",
             do.label = TRUE,
             split.by = "treatment",
             labels.highlight = FALSE)
u2

# show neuron cells by treatment 
u3 <- DimPlot(object = neuron.unannotated, 
        reduction = "umap", 
        label = FALSE,
        repel = TRUE, 
        group.by = "treatment",
        cols = treatment_colors) 
u3

remove(u1,u2,u3)

Cluster tree

cluster_colors <- c("gold","firebrick1","dodgerblue","green",
                    "cyan","chocolate4","gray40","purple", "blue")

neuron.unannotated <- BuildClusterTree(object = neuron.unannotated,
                                     dims = 1:min.pc,
                                     reorder = FALSE,
                                     reorder.numeric = FALSE)

tree <- neuron.unannotated@tools$BuildClusterTree
tree$tip.label <- paste0("Cluster ", tree$tip.label)

p <- ggtree::ggtree(tree, aes(x, y)) +
  scale_y_reverse() +
  ggtree::geom_tree() +
  ggtree::theme_tree() +
  ggtree::geom_tiplab(offset = 1) +
  ggtree::geom_tippoint(color = cluster_colors[1:length(tree$tip.label)], shape = 16, size = 5) +
  coord_cartesian(clip = 'off') +
  theme(plot.margin = unit(c(0,2.5,0,0), 'cm'))
## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.
p

Cells per cluster

# Cells per treatment per cluster
treatment_ncells <- FetchData(neuron.unannotated, 
                     vars = c("ident", "treatment")) %>%
  dplyr::count(ident,treatment) %>%
  tidyr::spread(ident, n)
treatment_ncells
##   treatment    0   1   2   3   4   5   6  7  8
## 1       LPS 1653 796 274 245 200 178 138 72 28
## 2    Saline   83  13  NA   4   1   5  NA 18 NA
# Cells per sample per cluster
sample_ncells <- FetchData(neuron.unannotated, 
                     vars = c("ident", "sample")) %>%
  dplyr::count(ident,sample) %>%
  tidyr::spread(ident, n)
sample_ncells
##       sample    0   1   2   3   4   5   6  7  8
## 1     12.LPS 1653 796 274 245 200 178 138 72 28
## 2 4.R.Saline   83  13  NA   4   1   5  NA 18 NA
# treatment
b1 <- neuron.unannotated@meta.data %>%
  group_by(seurat_clusters, treatment) %>%
  dplyr::count() %>%
  group_by(seurat_clusters) %>%
  dplyr::mutate(percent = 100*n/sum(n)) %>%
  ungroup() %>%
  ggplot(aes(x=seurat_clusters,y=percent, fill=treatment)) +
  geom_col() +
  scale_fill_manual(values = treatment_colors) +
  ggtitle("Percentage of treatment per cluster")
b1

# sample
b2 <- neuron.unannotated@meta.data %>%
  group_by(seurat_clusters, sample) %>%
  dplyr::count() %>%
  group_by(seurat_clusters) %>%
  dplyr::mutate(percent = 100*n/sum(n)) %>%
  ungroup() %>%
  ggplot(aes(x=seurat_clusters,y=percent, fill=sample)) +
  geom_col() +
  #scale_fill_manual(values = sample_colors) +
  ggtitle("Percentage of sample per cluster")
b2

remove(b1, b2)

Conserved markers

# set levels
neuron.unannotated$treatment <- factor(neuron.unannotated$treatment,
                                       levels = c("LPS","Saline"))
neuron.unannotated$SCT_snn_res.0.1 <- factor(neuron.unannotated$SCT_snn_res.0.1)
# initialize df
conserved.markers <- data.frame()
all.clusters <- unique(neuron.unannotated$SCT_snn_res.0.1)

# loop through each cluster
for (i in all.clusters) {
  
  # print the cluster you're on
  print(i)
  
  # find conserved marker in cluster vs all other clusters
  markers <- FindConservedMarkers(neuron.unannotated,
                                  ident.1 = i, # subset to single cluster
                                  grouping.var = "treatment", # compare by treatment
                                  only.pos = TRUE, # only positive markers
                                  min.pct = 0.1, # default
                                  logfc.threshold = 0.25, # default
                                  test.use = "MAST"
                                  )
  
  # skip if none
  if(nrow(markers) == 0) {
    next
  }
  
  # make rownames a column
  markers <- rownames_to_column(markers, var = "gene")
  
  # make cluster number a column
  markers$cluster <- i
  
  # add to final table
  conserved.markers <- smartbind(conserved.markers, markers)
}
## [1] "1"
## Testing group Saline: (1) vs (5, 3, 7, 0, 4)
## 
## Done!
## Combining coefficients and standard errors
## Calculating log-fold changes
## Calculating likelihood ratio tests
## Refitting on reduced model...
## 
## Done!
## Testing group LPS: (1) vs (3, 4, 2, 6, 0, 5, 7, 8)
## 
## Done!
## Combining coefficients and standard errors
## Calculating log-fold changes
## Calculating likelihood ratio tests
## Refitting on reduced model...
## 
## Done!
## [1] "5"
## Testing group Saline: (5) vs (1, 3, 7, 0, 4)
## 
## Done!
## Combining coefficients and standard errors
## Calculating log-fold changes
## Calculating likelihood ratio tests
## Refitting on reduced model...
## 
## Done!
## Testing group LPS: (5) vs (3, 4, 2, 1, 6, 0, 7, 8)
## 
## Done!
## Combining coefficients and standard errors
## Calculating log-fold changes
## Calculating likelihood ratio tests
## Refitting on reduced model...
## 
## Done!
## [1] "3"
## Testing group Saline: (3) vs (1, 5, 7, 0, 4)
## 
## Done!
## Combining coefficients and standard errors
## Calculating log-fold changes
## Calculating likelihood ratio tests
## Refitting on reduced model...
## 
## Done!
## Testing group LPS: (3) vs (4, 2, 1, 6, 0, 5, 7, 8)
## 
## Done!
## Combining coefficients and standard errors
## Calculating log-fold changes
## Calculating likelihood ratio tests
## Refitting on reduced model...
## 
## Done!
## [1] "7"
## Testing group Saline: (7) vs (1, 5, 3, 0, 4)
## 
## Done!
## Combining coefficients and standard errors
## Calculating log-fold changes
## Calculating likelihood ratio tests
## Refitting on reduced model...
## 
## Done!
## Testing group LPS: (7) vs (3, 4, 2, 1, 6, 0, 5, 8)
## 
## Done!
## Combining coefficients and standard errors
## Calculating log-fold changes
## Calculating likelihood ratio tests
## Refitting on reduced model...
## 
## Done!
## [1] "0"
## Testing group Saline: (0) vs (1, 5, 3, 7, 4)
## 
## Done!
## Combining coefficients and standard errors
## Calculating log-fold changes
## Calculating likelihood ratio tests
## Refitting on reduced model...
## 
## Done!
## Testing group LPS: (0) vs (3, 4, 2, 1, 6, 5, 7, 8)
## 
## Done!
## Combining coefficients and standard errors
## Calculating log-fold changes
## Calculating likelihood ratio tests
## Refitting on reduced model...
## 
## Done!
## [1] "4"
## Warning: Saline has fewer than 3 cells in Identity: 4. Skipping Saline
## Testing group LPS: (4) vs (3, 2, 1, 6, 0, 5, 7, 8)
## 
## Done!
## Combining coefficients and standard errors
## Calculating log-fold changes
## Calculating likelihood ratio tests
## Refitting on reduced model...
## 
## Done!
## Warning: Only a single group was tested
## [1] "2"
## Warning: Identity: 2 not present in group Saline. Skipping Saline
## Testing group LPS: (2) vs (3, 4, 1, 6, 0, 5, 7, 8)
## 
## Done!
## Combining coefficients and standard errors
## Calculating log-fold changes
## Calculating likelihood ratio tests
## Refitting on reduced model...
## 
## Done!
## Warning: Only a single group was tested
## [1] "6"
## Warning: Identity: 6 not present in group Saline. Skipping Saline
## Testing group LPS: (6) vs (3, 4, 2, 1, 0, 5, 7, 8)
## 
## Done!
## Combining coefficients and standard errors
## Calculating log-fold changes
## Calculating likelihood ratio tests
## Refitting on reduced model...
## 
## Done!
## Warning: Only a single group was tested
## [1] "8"
## Warning: Identity: 8 not present in group Saline. Skipping Saline
## Testing group LPS: (8) vs (3, 4, 2, 1, 6, 0, 5, 7)
## 
## Done!
## Combining coefficients and standard errors
## Calculating log-fold changes
## Calculating likelihood ratio tests
## Refitting on reduced model...
## 
## Done!
## Warning: Only a single group was tested
# create delta_pct
conserved.markers$Saline_delta_pct <- abs(conserved.markers$Saline_pct.1 - 
                                         conserved.markers$Saline_pct.2)
conserved.markers$LPS_delta_pct <- abs(conserved.markers$LPS_pct.1 - 
                                            conserved.markers$LPS_pct.2)
  
# more stringent filtering
markers.strict <- conserved.markers[
  conserved.markers$Saline_delta_pct > summary(conserved.markers$Saline_delta_pct)[5],]
markers.strict <- conserved.markers[
  conserved.markers$LPS_delta_pct > summary(conserved.markers$LPS_delta_pct)[5],]
markers.strict$gene_name <- markers.strict$gene
markers.strict$row.num <- 1:nrow(markers.strict)

# compare 
table(conserved.markers$cluster)
## 
##    0    1    2    3    4    5    6    7    8 
##   73  259  519  523  664  394  751  640 2351
table(markers.strict$cluster)
## 
##   0   1   2   3   4   5   6   7   8 
##   3 142 268 229 216 120 330  31 205
saveRDS(conserved.markers, paste0("../../rObjects/brain_conserved_markers_", cell, ".rds"))
#conserved.markers <- readRDS(paste0("../../rObjects/brain_conserved_markers_", cell, ".rds"))
# create delta_pct
conserved.markers$Saline_delta_pct <- abs(conserved.markers$Saline_pct.1 - 
                                         conserved.markers$Saline_pct.2)
conserved.markers$LPS_delta_pct <- abs(conserved.markers$LPS_pct.1 - 
                                            conserved.markers$LPS_pct.2)
  
# more stringent filtering
markers.strict <- conserved.markers[
  conserved.markers$Saline_delta_pct > summary(conserved.markers$Saline_delta_pct)[5],]
markers.strict <- conserved.markers[
  conserved.markers$LPS_delta_pct > summary(conserved.markers$LPS_delta_pct)[5],]
markers.strict$gene_name <- markers.strict$gene
markers.strict$row.num <- 1:nrow(markers.strict)
# subset
cluster0 <- markers.strict[markers.strict$cluster == 0,]
cluster1 <- markers.strict[markers.strict$cluster == 1,]
cluster2 <- markers.strict[markers.strict$cluster == 2,]
cluster3 <- markers.strict[markers.strict$cluster == 3,]
cluster4 <- markers.strict[markers.strict$cluster == 4,]
cluster5 <- markers.strict[markers.strict$cluster == 5,]
cluster6 <- markers.strict[markers.strict$cluster == 6,]
cluster7 <- markers.strict[markers.strict$cluster == 7,]
cluster8 <- markers.strict[markers.strict$cluster == 8,]

Cluster Annotations

Cluster 0

VlnPlot(neuron.unannotated, 
        features = cluster0$gene[1:2],
        split.by = "seurat_clusters",
        cols = cluster_colors,
        flip = TRUE,
        stack = TRUE)
## The default behaviour of split.by has changed.
## Separate violin plots are now plotted side-by-side.
## To restore the old behaviour of a single split violin,
## set split.plot = TRUE.
##       
## This message will be shown once per session.

### Cluster 1

VlnPlot(neuron.unannotated, 
        features = cluster1$gene[1:20],
        split.by = "seurat_clusters",
        cols = cluster_colors,
        flip = TRUE,
        stack = TRUE)

VlnPlot(neuron.unannotated, 
        features = cluster1$gene[21:40],
        split.by = "seurat_clusters",
        cols = cluster_colors,
        flip = TRUE,
        stack = TRUE)

### Cluster 2

VlnPlot(neuron.unannotated, 
        features = cluster2$gene[1:20],
        split.by = "seurat_clusters",
        cols = cluster_colors,
        flip = TRUE,
        stack = TRUE)

VlnPlot(neuron.unannotated, 
        features = cluster2$gene[21:41],
        split.by = "seurat_clusters",
        cols = cluster_colors,
        flip = TRUE,
        stack = TRUE)

Cluster 3

VlnPlot(neuron.unannotated, 
        features = cluster3$gene[1:21],
        split.by = "seurat_clusters",
        cols = cluster_colors,
        flip = TRUE,
        stack = TRUE)

VlnPlot(neuron.unannotated, 
        features = cluster3$gene[21:40],
        split.by = "seurat_clusters",
        cols = cluster_colors,
        flip = TRUE,
        stack = TRUE)

### Cluster 4

VlnPlot(neuron.unannotated, 
        features = cluster4$gene[1:20],
        split.by = "seurat_clusters",
        cols = cluster_colors,
        flip = TRUE,
        stack = TRUE)

VlnPlot(neuron.unannotated, 
        features = cluster4$gene[21:40],
        split.by = "seurat_clusters",
        cols = cluster_colors,
        flip = TRUE,
        stack = TRUE)

### Cluster 5

VlnPlot(neuron.unannotated, 
        features = cluster5$gene[1:20],
        split.by = "seurat_clusters",
        cols = cluster_colors,
        flip = TRUE,
        stack = TRUE)

VlnPlot(neuron.unannotated, 
        features = cluster5$gene[21:40],
        split.by = "seurat_clusters",
        cols = cluster_colors,
        flip = TRUE,
        stack = TRUE)

Cluster 6

VlnPlot(neuron.unannotated, 
        features = cluster6$gene[1:20],
        split.by = "seurat_clusters",
        cols = cluster_colors,
        flip = TRUE,
        stack = TRUE)

VlnPlot(neuron.unannotated, 
        features = cluster6$gene[21:40],
        split.by = "seurat_clusters",
        cols = cluster_colors,
        flip = TRUE,
        stack = TRUE)

Cluster 7

VlnPlot(neuron.unannotated, 
        features = cluster7$gene[1:20],
        split.by = "seurat_clusters",
        cols = cluster_colors,
        flip = TRUE,
        stack = TRUE)

VlnPlot(neuron.unannotated, 
        features = cluster7$gene[21:29],
        split.by = "seurat_clusters",
        cols = cluster_colors,
        flip = TRUE,
        stack = TRUE)

### Cluster 8

VlnPlot(neuron.unannotated, 
        features = cluster8$gene[1:20],
        split.by = "seurat_clusters",
        cols = cluster_colors,
        flip = TRUE,
        stack = TRUE)

VlnPlot(neuron.unannotated, 
        features = cluster8$gene[21:40],
        split.by = "seurat_clusters",
        cols = cluster_colors,
        flip = TRUE,
        stack = TRUE)

# Neuron markers

# Interneuron

Annotation

# umap with annotations 

Differential expression

LPS vs Saline within each cluster

cell_types <- unique(neuron.unannotated$SCT_snn_res.0.1)
neuron.unannotated$cell_type <- neuron.unannotated$SCT_snn_res.0.1
DE.df <- data.frame()

for (i in cell_types) {
  print(i)
  cluster <- subset(neuron.unannotated, cell_type == i)
  Idents(cluster) <- cluster$treatment
  markers <- FindMarkers(object = cluster,
                         ident.1 = "LPS",
                         ident.2 = "Saline",
                         only.pos = FALSE, # default
                         min.pct = 0.10,  # default
                         test.use = "MAST",
                         verbose = TRUE,
                         assay = "RNA")
  if(nrow(markers) == 0) {
    next
  }
  markers$cluster <- i
  DE.df <- smartbind(DE.df, markers)
}

# change column names
colnames(DE.df)[c(3,4)] <- c("percent_LPS","percent_Saline")
# add gene name column
DE.df$gene <- rownames(DE.df)
# change row names
rownames(DE.df) <- 1:nrow(DE.df)
# calculate percent difference
DE.df$percent_difference <- abs(DE.df$percent_LPS - DE.df$percent_Saline)
# reorder columns
DE.df <- DE.df[,c(6,7,1,5,2,3,4,8)]
# write table
write.table(DE.df, "../../results/recluster/neuron/LPS_vs_Saline_DEGs.tsv", sep = "\t",
            quote = FALSE, row.names = FALSE)

Shiny App

Cleanup object

metadata <- neuron.unannotated@meta.data
neuron.unannotated@meta.data <- metadata
neuron.unannotated@assays$SCT@meta.features <- metadata
neuron.unannotated@assays$RNA@meta.features <- metadata

Output folder

# load libraries
library(ShinyCell)

# make shiny folder
DefaultAssay(neuron.unannotated) <- "RNA"
Idents(neuron.unannotated) <- "merged_clusters"
sc.config <- createConfig(neuron.unannotated)
makeShinyApp(neuron.unannotated, sc.config, gene.mapping = TRUE,
             shiny.title = "recluster neuron - two good pigs")