Bar Charts
The bar chart (BarChart) is a statistical graph that
allows us to represent the frequency distribution of discrete
qualitative and quantitative variables, our goal is to move from pencil
and paper to the use of R programming language and Python.

Data Set - mtcars
mtcars in a very popular data set that is
already preloaded in the R programming language, we will focus on the
variable cyl (cylinder) for the creation of the
statistical line graph mentioned above.
summary(mtcars)
## mpg cyl disp hp
## Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0
## 1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5
## Median :19.20 Median :6.000 Median :196.3 Median :123.0
## Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7
## 3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0
## Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0
## drat wt qsec vs
## Min. :2.760 Min. :1.513 Min. :14.50 Min. :0.0000
## 1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89 1st Qu.:0.0000
## Median :3.695 Median :3.325 Median :17.71 Median :0.0000
## Mean :3.597 Mean :3.217 Mean :17.85 Mean :0.4375
## 3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90 3rd Qu.:1.0000
## Max. :4.930 Max. :5.424 Max. :22.90 Max. :1.0000
## am gear carb
## Min. :0.0000 Min. :3.000 Min. :1.000
## 1st Qu.:0.0000 1st Qu.:3.000 1st Qu.:2.000
## Median :0.0000 Median :4.000 Median :2.000
## Mean :0.4062 Mean :3.688 Mean :2.812
## 3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :1.0000 Max. :5.000 Max. :8.000
summary(mtcars$cyl)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.000 4.000 6.000 6.188 8.000 8.000
Bar Charts - barplot()
La función barplot()
nos permite crear diagramas de
barras (Bar Charts) en el lenguaje de programación R,
como se muestra a continuación.
x <- table(mtcars$cyl)
colors <- c("orange","blue","purple")
barplot(x,xlab="Cylinders",ylab="Frequencies",main="Number of Cylinders",col=colors)

Bar Charts - ggplot2
The ggplot2 package allows us to create
high-quality statistical graphs in the R programming language, we will
use this library to create a Bar Chart using the data
set mtcars, as shown below.
library(ggplot2)
ggplot(mtcars,aes(cyl)) + geom_bar(fill=colors) + labs(x="Cylinders",y="Frequencies",title="Number of Cylinders") + theme_dark()

Bar Charts - lattice
Lattice is a package that allows us to create
high-quality statistical graphs in the R programming language. We will
use this package to create a Bar Chart.
library(lattice)
barchart(x,xlab="Cylinders",ylab="Frequencies",main="NUmber of Cylinders",col=colors,horizontal = FALSE)

Bar Charts - Matplotlib
Matplotlib is a Python library that allows us to
create high quality statistical plots, we will focus on the variable cyl
(cylinders) to create a bar plot.
import matplotlib.pyplot as plt
x_axis=[4,6,8]
y_axis=[11,7,14]
colors=['orange','blue','purple']
plt.bar(x_axis,height=y_axis,width=0.9,color=colors)
plt.title("Number of Cylinders")
plt.xlabel("Cylinders")
plt.ylabel("Frequencies")
plt.show()

Tutorial - YouTube
A continuación, presentamos un tutorial tomado de YouTube que muestra la configuración
de Python en un documento RMarkdown
embed_url("https://www.youtube.com/watch?v=gn8oJ8FMSWY&t=93s") %>%
use_align("center")
LS0tDQp0aXRsZTogIkJhciBDaGFydHMiDQphdXRob3I6ICJSZW56byBDw6FjZXJlcyBSb3NzaSINCmRhdGU6ICIyMDIyLzAzLzMwIg0Kc3VidGl0bGU6IFJNYXJrZG93biAtIFIgJiBQeXRob24NCm91dHB1dDoNCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQotLS0NCg0KYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9DQoNCmxpYnJhcnkoZ2dwbG90MikNCg0KbGlicmFyeShsYXR0aWNlKQ0KDQpsaWJyYXJ5KHZlbWJlZHIpDQoNCmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkNCmBgYA0KDQojIyBCYXIgQ2hhcnRzDQoNClRoZSBiYXIgY2hhcnQgKCoqQmFyQ2hhcnQqKikgaXMgYSBzdGF0aXN0aWNhbCBncmFwaCB0aGF0IGFsbG93cyB1cyB0byByZXByZXNlbnQgdGhlIGZyZXF1ZW5jeSBkaXN0cmlidXRpb24gb2YgZGlzY3JldGUgcXVhbGl0YXRpdmUgYW5kIHF1YW50aXRhdGl2ZSB2YXJpYWJsZXMsIG91ciBnb2FsIGlzIHRvIG1vdmUgZnJvbSBwZW5jaWwgYW5kIHBhcGVyIHRvIHRoZSB1c2Ugb2YgIFIgcHJvZ3JhbW1pbmcgbGFuZ3VhZ2UgYW5kIFB5dGhvbi4gDQoNCjxjZW50ZXI+DQoNCiFbXShoYW5kX21hZGVfYmFyY2hhcnQuanBnKXt3aWR0aD00MDB9DQoNCjwvY2VudGVyPg0KDQoNCiMjIERhdGEgU2V0IC0gbXRjYXJzDQoNCioqKm10Y2FycyoqKiBpbiBhIHZlcnkgcG9wdWxhciBkYXRhIHNldCB0aGF0IGlzIGFscmVhZHkgcHJlbG9hZGVkIGluIHRoZSBSIHByb2dyYW1taW5nIGxhbmd1YWdlLCB3ZSB3aWxsIGZvY3VzIG9uIHRoZSB2YXJpYWJsZSBjeWwgKCoqY3lsaW5kZXIqKikgZm9yIHRoZSBjcmVhdGlvbiBvZiB0aGUgc3RhdGlzdGljYWwgbGluZSBncmFwaCBtZW50aW9uZWQgYWJvdmUuDQoNCmBgYHtyIG10Y2Fyc30NCnN1bW1hcnkobXRjYXJzKQ0KDQpzdW1tYXJ5KG10Y2FycyRjeWwpDQoNCmBgYA0KDQoNCiMjIEJhciBDaGFydHMgLSBiYXJwbG90KCkNCg0KTGEgZnVuY2nDs24gYGJhcnBsb3QoKWAgbm9zIHBlcm1pdGUgY3JlYXIgZGlhZ3JhbWFzIGRlIGJhcnJhcyAoKipCYXIgQ2hhcnRzKiopIGVuIGVsIGxlbmd1YWplIGRlIHByb2dyYW1hY2nDs24gUiwgY29tbyBzZSBtdWVzdHJhIGEgY29udGludWFjacOzbi4NCg0KYGBge3IgYmFycGxvdCxmaWcuYWxpZ249J2NlbnRlcid9DQp4IDwtIHRhYmxlKG10Y2FycyRjeWwpDQoNCmNvbG9ycyA8LSBjKCJvcmFuZ2UiLCJibHVlIiwicHVycGxlIikNCg0KYmFycGxvdCh4LHhsYWI9IkN5bGluZGVycyIseWxhYj0iRnJlcXVlbmNpZXMiLG1haW49Ik51bWJlciBvZiBDeWxpbmRlcnMiLGNvbD1jb2xvcnMpDQoNCg0KYGBgDQoNCiMjIEJhciBDaGFydHMgLSBnZ3Bsb3QyDQoNClRoZSAqKipnZ3Bsb3QyKioqIHBhY2thZ2UgYWxsb3dzIHVzIHRvIGNyZWF0ZSBoaWdoLXF1YWxpdHkgc3RhdGlzdGljYWwgZ3JhcGhzIGluIHRoZSBSIHByb2dyYW1taW5nIGxhbmd1YWdlLCB3ZSB3aWxsIHVzZSB0aGlzIGxpYnJhcnkgdG8gY3JlYXRlIGEgKipCYXIgQ2hhcnQqKiAgdXNpbmcgdGhlIGRhdGEgc2V0ICoqbXRjYXJzKiosIGFzIHNob3duIGJlbG93Lg0KDQpgYGB7ciBnZ3Bsb3QsZmlnLmFsaWduPSdjZW50ZXInfQ0KDQpsaWJyYXJ5KGdncGxvdDIpDQoNCmdncGxvdChtdGNhcnMsYWVzKGN5bCkpICsgZ2VvbV9iYXIoZmlsbD1jb2xvcnMpICsgbGFicyh4PSJDeWxpbmRlcnMiLHk9IkZyZXF1ZW5jaWVzIix0aXRsZT0iTnVtYmVyIG9mIEN5bGluZGVycyIpICsgdGhlbWVfZGFyaygpDQoNCmBgYA0KDQojIyBCYXIgQ2hhcnRzIC0gbGF0dGljZQ0KDQoqKkxhdHRpY2UqKiBpcyBhIHBhY2thZ2UgdGhhdCBhbGxvd3MgdXMgdG8gY3JlYXRlIGhpZ2gtcXVhbGl0eSBzdGF0aXN0aWNhbCBncmFwaHMgaW4gdGhlIFIgcHJvZ3JhbW1pbmcgbGFuZ3VhZ2UuIFdlIHdpbGwgdXNlIHRoaXMgcGFja2FnZSB0byBjcmVhdGUgYSAqKkJhciBDaGFydCoqLiANCg0KYGBge3IgbGF0dGljZSxmaWcuYWxpZ249J2NlbnRlcid9DQoNCmxpYnJhcnkobGF0dGljZSkNCg0KYmFyY2hhcnQoeCx4bGFiPSJDeWxpbmRlcnMiLHlsYWI9IkZyZXF1ZW5jaWVzIixtYWluPSJOVW1iZXIgb2YgQ3lsaW5kZXJzIixjb2w9Y29sb3JzLGhvcml6b250YWwgPSBGQUxTRSkNCmBgYA0KDQojIyBCYXIgQ2hhcnRzIC0gIE1hdHBsb3RsaWINCg0KKipNYXRwbG90bGliKiogaXMgYSBQeXRob24gbGlicmFyeSB0aGF0IGFsbG93cyB1cyB0byBjcmVhdGUgaGlnaCBxdWFsaXR5IHN0YXRpc3RpY2FsIHBsb3RzLCB3ZSB3aWxsIGZvY3VzIG9uIHRoZSB2YXJpYWJsZSBjeWwgKCoqY3lsaW5kZXJzKiopIHRvIGNyZWF0ZSBhIGJhciBwbG90Lg0KDQpgYGB7cHl0aG9uIG1hdHBsb3RsaWIsIHJlc3VsdHM9J2hpZGUnLGNvbGxhcHNlPVRSVUUsZmlnLmFsaWduPSJjZW50ZXIifQ0KaW1wb3J0IG1hdHBsb3RsaWIucHlwbG90IGFzIHBsdA0KDQp4X2F4aXM9WzQsNiw4XQ0KDQp5X2F4aXM9WzExLDcsMTRdDQoNCmNvbG9ycz1bJ29yYW5nZScsJ2JsdWUnLCdwdXJwbGUnXQ0KDQpwbHQuYmFyKHhfYXhpcyxoZWlnaHQ9eV9heGlzLHdpZHRoPTAuOSxjb2xvcj1jb2xvcnMpDQoNCg0KcGx0LnRpdGxlKCJOdW1iZXIgb2YgQ3lsaW5kZXJzIikNCg0KcGx0LnhsYWJlbCgiQ3lsaW5kZXJzIikNCg0KcGx0LnlsYWJlbCgiRnJlcXVlbmNpZXMiKQ0KDQpwbHQuc2hvdygpDQpgYGANCg0KDQojIyBUdXRvcmlhbCAtIFlvdVR1YmUNCg0KQSBjb250aW51YWNpw7NuLCBwcmVzZW50YW1vcyB1biB0dXRvcmlhbCB0b21hZG8gZGUgW1lvdVR1YmVdKGh0dHBzOi8vd3d3LnlvdXR1YmUuY29tKSBxdWUgbXVlc3RyYSBsYSBjb25maWd1cmFjacOzbiBkZSBQeXRob24gZW4gdW4gZG9jdW1lbnRvIFJNYXJrZG93bg0KDQpgYGB7cn0NCmVtYmVkX3VybCgiaHR0cHM6Ly93d3cueW91dHViZS5jb20vd2F0Y2g/dj1nbjhvSjhGTVNXWSZ0PTkzcyIpICU+JSANCiAgdXNlX2FsaWduKCJjZW50ZXIiKQ0KYGBgDQoNCjxkaXYgY2xhc3M9InRvY2lmeS1leHRlbmQtcGFnZSIgZGF0YS11bmlxdWU9InRvY2lmeS1leHRlbmQtcGFnZSIgc3R5bGU9ImhlaWdodDogMDsiPjwvZGl2Pg0K