library(forecast)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library(fma)
library(fpp2)
## ── Attaching packages ────────────────────────────────────────────── fpp2 2.4 ──
## ✓ ggplot2 3.3.5 ✓ expsmooth 2.3
##
library(readxl)
crudeoil <- read_excel("~/Desktop/BC 22Spr/crudeoil.xlsx",
sheet = "Sheet1 (3)")
View(crudeoil)
str(crudeoil)
## tibble [145 × 2] (S3: tbl_df/tbl/data.frame)
## $ time : chr [1:145] "2009 01" "2009 02" "2009 03" "2009 04" ...
## $ crudeOilImport: num [1:145] 317275 262339 303897 285934 281147 ...
#convert it to a time serie and plot
myts=ts(crudeoil$crudeOilImport,frequency=12,start=c(2009,1))
plot(myts)

#ANN
mye=ets(myts,model="ANN")
plot(mye)

mye
## ETS(A,N,N)
##
## Call:
## ets(y = myts, model = "ANN")
##
## Smoothing parameters:
## alpha = 0.3651
##
## Initial states:
## l = 294004.805
##
## sigma: 15407.75
##
## AIC AICc BIC
## 3521.974 3522.144 3530.904
fe=forecast(mye)
accuracy(mye)
## ME RMSE MAE MPE MAPE MASE
## Training set -2231.259 15301.12 11431.29 -1.318732 4.877614 0.6395479
## ACF1
## Training set -0.1031853
plot(fe,main="ANN")

#AAN
mye1=ets(myts,model="AAN")
plot(mye1)

mye1
## ETS(A,A,N)
##
## Call:
## ets(y = myts, model = "AAN")
##
## Smoothing parameters:
## alpha = 0.3352
## beta = 1e-04
##
## Initial states:
## l = 297256.9026
## b = -446.2055
##
## sigma: 15375.29
##
## AIC AICc BIC
## 3523.320 3523.752 3538.204
fe=forecast(mye1)
accuracy(mye1)
## ME RMSE MAE MPE MAPE MASE
## Training set -1167.603 15161.74 11379.31 -0.8698161 4.834512 0.6366398
## ACF1
## Training set -0.0686389
plot(fe,main="AAN")

#AAA
mye2=ets(myts,model="AAA")
plot(mye2)

mye2
## ETS(A,A,A)
##
## Call:
## ets(y = myts, model = "AAA")
##
## Smoothing parameters:
## alpha = 0.5274
## beta = 0.0049
## gamma = 1e-04
##
## Initial states:
## l = 290409.3179
## b = 40.464
## s = 1152.286 -7879.056 -3658.849 -3310.959 10409.33 10768.57
## 3950.87 8748.941 -3127.875 5073.291 -26515.41 4388.867
##
## sigma: 10784.21
##
## AIC AICc BIC
## 3431.566 3436.385 3482.170
fe=forecast(mye2)
accuracy(mye2)
## ME RMSE MAE MPE MAPE MASE
## Training set -975.2868 10171.84 7996.505 -0.5523848 3.412448 0.4473815
## ACF1
## Training set -0.06320921
plot(fe,main="AAA")
