Overview
1. Descriptive analyses
2. Results based on current analysis plan
3. Risk-factor analysis
4. Dementia vs. non-dementia analysis
5. Detrended analysis
6. Baseline exposure only analysis
Primary Results
Model 1 Results
Reduced Model
Cross-sectional: Entry Air Pollutant + Entry Age(linear)
Longitudinal: Air_Pollutant + Age over 85
m1 <- lmer(casi_irt ~ baseline_no2_05_yr +
age_centered +
time_since_entry +
(time_since_entry | SUBJECT) +
(age85:time_since_entry) +
(exp_avg_no2_05_yr:time_since_entry),
data = data6,
control = lmerControl(optimizer ="Nelder_Mead", optCtrl=list(maxfun=2e5)))
m1_5_tab
|
|
Model 1, PM 2.5
|
Model 1, NO2
|
|
Predictors
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
0.7199
|
0.6550 – 0.7848
|
<0.001
|
0.6400
|
0.5609 – 0.7191
|
<0.001
|
|
Baseline PM2.5 (5 year)
|
-0.0374
|
-0.0435 – -0.0312
|
<0.001
|
|
|
|
|
time_since_entry:exp_avg_pm25_05_yr
|
0.0099
|
0.0088 – 0.0111
|
<0.001
|
|
|
|
|
Baseline NO2 (5 year)
|
|
|
|
-0.0186
|
-0.0237 – -0.0135
|
<0.001
|
|
time_since_entry:exp_avg_no2_05_yr
|
|
|
|
0.0022
|
0.0017 – 0.0026
|
<0.001
|
|
Baseline Age (centered)
|
-0.0443
|
-0.0471 – -0.0415
|
<0.001
|
-0.0448
|
-0.0476 – -0.0420
|
<0.001
|
|
Time Since Entry
|
-0.1133
|
-0.1221 – -0.1044
|
<0.001
|
-0.0700
|
-0.0766 – -0.0633
|
<0.001
|
|
age85:time_since_entry
|
-0.0167
|
-0.0191 – -0.0143
|
<0.001
|
-0.0216
|
-0.0238 – -0.0193
|
<0.001
|
|
Random Effects
|
|
σ2
|
0.23
|
0.23
|
|
τ00
|
0.28 SUBJECT
|
0.28 SUBJECT
|
|
τ11
|
0.00 SUBJECT.time_since_entry
|
0.00 SUBJECT.time_since_entry
|
|
ρ01
|
-0.01 SUBJECT
|
0.01 SUBJECT
|
|
ICC
|
0.68
|
0.67
|
|
N
|
4903 SUBJECT
|
4906 SUBJECT
|
|
Observations
|
25541
|
25555
|
|
Marginal R2 / Conditional R2
|
0.202 / 0.746
|
0.193 / 0.732
|
Model 2 Results
A Priori Model
M1 +
Cross Sectional: gender + birth cohort + APOE e4 status
Longitudinal: birth cohort + APOE e4 status
m2 <- lmer(casi_irt ~ baseline_no2_05_yr +
age_centered +
birth_cohort_cat_updated +
apoe +
gender +
time_since_entry +
(time_since_entry | SUBJECT) +
(age85:time_since_entry) +
(exp_avg_no2_05_yr:time_since_entry) +
(birth_cohort_cat_updated:time_since_entry) +
(apoe:time_since_entry),
data = data6, weights = sw.apoe.karl,
control = lmerControl(optimizer ="Nelder_Mead", optCtrl=list(maxfun=2e5)))
m2_5_tab
|
|
Model 2, PM 2.5
|
Model 2, NO2
|
|
Predictors
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
0.9507
|
0.7494 – 1.1520
|
<0.001
|
0.7414
|
0.6395 – 0.8433
|
<0.001
|
|
Baseline PM2.5 (5 year)
|
-0.0467
|
-0.0633 – -0.0301
|
<0.001
|
|
|
|
|
time_since_entry:exp_avg_pm25_05_yr
|
0.0172
|
0.0159 – 0.0186
|
<0.001
|
|
|
|
|
Baseline NO2 (5 year)
|
|
|
|
-0.0177
|
-0.0235 – -0.0119
|
<0.001
|
|
time_since_entry:exp_avg_no2_05_yr
|
|
|
|
0.0039
|
0.0034 – 0.0045
|
<0.001
|
|
Baseline Age (centered)
|
-0.0454
|
-0.0526 – -0.0382
|
<0.001
|
-0.0371
|
-0.0417 – -0.0325
|
<0.001
|
|
Gender: Male
|
-0.1856
|
-0.2216 – -0.1496
|
<0.001
|
-0.1837
|
-0.2199 – -0.1475
|
<0.001
|
|
Time Since Entry
|
-0.1791
|
-0.1914 – -0.1669
|
<0.001
|
-0.1013
|
-0.1108 – -0.0918
|
<0.001
|
|
birth_cohort_cat_updated1890-1905
|
0.0938
|
-0.0593 – 0.2469
|
0.230
|
-0.0712
|
-0.1963 – 0.0538
|
0.264
|
|
Birth Cohort: 1910
|
0.0369
|
-0.0684 – 0.1421
|
0.492
|
-0.0735
|
-0.1625 – 0.0155
|
0.105
|
|
Birth Cohort: 1915
|
0.0354
|
-0.0361 – 0.1068
|
0.332
|
-0.0211
|
-0.0875 – 0.0453
|
0.533
|
|
Birth Cohort: 1925
|
-0.0841
|
-0.1506 – -0.0175
|
0.013
|
-0.0232
|
-0.0838 – 0.0374
|
0.453
|
|
Birth Cohort: 1930
|
-0.0917
|
-0.1915 – 0.0081
|
0.072
|
0.0358
|
-0.0353 – 0.1068
|
0.324
|
|
birth_cohort_cat_updated1935-1950
|
-0.1258
|
-0.2552 – 0.0036
|
0.057
|
0.0443
|
-0.0187 – 0.1074
|
0.168
|
|
APOE Status: + APOE e4
|
-0.0583
|
-0.1000 – -0.0167
|
0.006
|
-0.0629
|
-0.1049 – -0.0208
|
0.003
|
|
age85:time_since_entry
|
-0.0023
|
-0.0051 – 0.0005
|
0.101
|
-0.0131
|
-0.0157 – -0.0106
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1890-1905
|
-0.0712
|
-0.0914 – -0.0511
|
<0.001
|
-0.0477
|
-0.0674 – -0.0280
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1910
|
-0.0416
|
-0.0550 – -0.0283
|
<0.001
|
-0.0240
|
-0.0369 – -0.0111
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1915
|
-0.0244
|
-0.0337 – -0.0152
|
<0.001
|
-0.0157
|
-0.0247 – -0.0068
|
0.001
|
|
time_since_entry:birth_cohort_cat_updated1925
|
0.0206
|
0.0129 – 0.0284
|
<0.001
|
0.0137
|
0.0062 – 0.0211
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1930
|
0.0346
|
0.0250 – 0.0443
|
<0.001
|
0.0209
|
0.0116 – 0.0302
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1935-1950
|
0.0688
|
0.0599 – 0.0777
|
<0.001
|
0.0502
|
0.0417 – 0.0588
|
<0.001
|
|
time_since_entry:apoe+ APOE e4
|
-0.0279
|
-0.0341 – -0.0218
|
<0.001
|
-0.0266
|
-0.0326 – -0.0206
|
<0.001
|
|
Random Effects
|
|
σ2
|
0.22
|
0.23
|
|
τ00
|
0.26 SUBJECT
|
0.26 SUBJECT
|
|
τ11
|
0.00 SUBJECT.time_since_entry
|
0.00 SUBJECT.time_since_entry
|
|
ρ01
|
0.10 SUBJECT
|
0.07 SUBJECT
|
|
ICC
|
0.69
|
0.67
|
|
N
|
4287 SUBJECT
|
4289 SUBJECT
|
|
Observations
|
22935
|
22947
|
|
Marginal R2 / Conditional R2
|
0.263 / 0.770
|
0.247 / 0.751
|
Model 3 Results
Extended Model
M2 +
Cross Sectional: race/ethnicity + education + neighborhood SES + ACT reported income
m3 <- lmer(casi_irt ~ baseline_no2_05_yr +
age_centered + gender +
race_cat +
degree_cat_simp +
tr_med_inc_hshld_cat +
birth_cohort_cat_updated +
apoe +
time_since_entry +
(time_since_entry | SUBJECT) +
(age85:time_since_entry) +
(exp_avg_no2_05_yr:time_since_entry) +
(birth_cohort_cat_updated:time_since_entry) +
(apoe:time_since_entry),
data = data6, weights = sw.apoe.karl,
control = lmerControl(optimizer ="Nelder_Mead", optCtrl=list(maxfun=2e5)))
m3_5_tab
|
|
Model 3, PM 2.5
|
Model 3, NO2
|
|
Predictors
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
0.1801
|
-0.0830 – 0.4432
|
0.180
|
0.0172
|
-0.1933 – 0.2276
|
0.873
|
|
Baseline PM2.5 (5 year)
|
-0.0326
|
-0.0486 – -0.0167
|
<0.001
|
|
|
|
|
time_since_entry:exp_avg_pm25_05_yr
|
0.0174
|
0.0160 – 0.0188
|
<0.001
|
|
|
|
|
Baseline NO2 (5 year)
|
|
|
|
-0.0116
|
-0.0174 – -0.0059
|
<0.001
|
|
time_since_entry:exp_avg_no2_05_yr
|
|
|
|
0.0040
|
0.0035 – 0.0045
|
<0.001
|
|
Baseline Age (centered)
|
-0.0433
|
-0.0502 – -0.0363
|
<0.001
|
-0.0394
|
-0.0439 – -0.0350
|
<0.001
|
|
Gender: Male
|
-0.2225
|
-0.2576 – -0.1874
|
<0.001
|
-0.2214
|
-0.2567 – -0.1860
|
<0.001
|
|
Race: White
|
0.2464
|
0.1891 – 0.3037
|
<0.001
|
0.2408
|
0.1830 – 0.2987
|
<0.001
|
|
Education: GED/HS
|
0.3568
|
0.2903 – 0.4232
|
<0.001
|
0.3606
|
0.2939 – 0.4274
|
<0.001
|
|
Education: Bachelor’s
|
0.5714
|
0.5000 – 0.6428
|
<0.001
|
0.5803
|
0.5087 – 0.6520
|
<0.001
|
|
Education: Master’s
|
0.5971
|
0.5193 – 0.6750
|
<0.001
|
0.6055
|
0.5275 – 0.6835
|
<0.001
|
|
Education: Doctorate
|
0.7433
|
0.6481 – 0.8385
|
<0.001
|
0.7523
|
0.6567 – 0.8479
|
<0.001
|
|
Education: Other
|
0.4871
|
0.4029 – 0.5713
|
<0.001
|
0.4921
|
0.4076 – 0.5766
|
<0.001
|
Neighborhood Median Household Income: 20,000 - 34,999
|
-0.0520
|
-0.2125 – 0.1085
|
0.525
|
-0.0284
|
-0.1900 – 0.1332
|
0.730
|
Neighborhood Median Household Income: 35,000 - 49,999
|
-0.0242
|
-0.1834 – 0.1350
|
0.766
|
0.0010
|
-0.1597 – 0.1617
|
0.990
|
Neighborhood Median Household Income: 50,000 - 74,999
|
-0.0094
|
-0.1683 – 0.1495
|
0.908
|
0.0145
|
-0.1463 – 0.1753
|
0.860
|
Neighborhood Median Household Income: > 75,000
|
0.0181
|
-0.1451 – 0.1814
|
0.828
|
0.0504
|
-0.1148 – 0.2155
|
0.550
|
|
birth_cohort_cat_updated1890-1905
|
0.0978
|
-0.0491 – 0.2446
|
0.192
|
0.0024
|
-0.1179 – 0.1227
|
0.969
|
|
Birth Cohort: 1910
|
0.0394
|
-0.0615 – 0.1404
|
0.444
|
-0.0255
|
-0.1111 – 0.0602
|
0.560
|
|
Birth Cohort: 1915
|
0.0402
|
-0.0282 – 0.1085
|
0.250
|
0.0051
|
-0.0585 – 0.0686
|
0.876
|
|
Birth Cohort: 1925
|
-0.0945
|
-0.1581 – -0.0309
|
0.004
|
-0.0571
|
-0.1151 – 0.0009
|
0.054
|
|
Birth Cohort: 1930
|
-0.1250
|
-0.2207 – -0.0292
|
0.011
|
-0.0567
|
-0.1257 – 0.0123
|
0.107
|
|
birth_cohort_cat_updated1935-1950
|
-0.1745
|
-0.2990 – -0.0501
|
0.006
|
-0.0850
|
-0.1483 – -0.0218
|
0.008
|
|
APOE Status: + APOE e4
|
-0.0563
|
-0.0961 – -0.0164
|
0.006
|
-0.0603
|
-0.1006 – -0.0201
|
0.003
|
|
Time Since Entry
|
-0.1801
|
-0.1924 – -0.1678
|
<0.001
|
-0.1017
|
-0.1112 – -0.0922
|
<0.001
|
|
age85:time_since_entry
|
-0.0020
|
-0.0048 – 0.0007
|
0.151
|
-0.0130
|
-0.0155 – -0.0104
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1890-1905
|
-0.0723
|
-0.0925 – -0.0521
|
<0.001
|
-0.0485
|
-0.0682 – -0.0288
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1910
|
-0.0417
|
-0.0550 – -0.0283
|
<0.001
|
-0.0238
|
-0.0368 – -0.0109
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1915
|
-0.0249
|
-0.0342 – -0.0156
|
<0.001
|
-0.0160
|
-0.0250 – -0.0071
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1925
|
0.0209
|
0.0132 – 0.0287
|
<0.001
|
0.0140
|
0.0065 – 0.0214
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1930
|
0.0351
|
0.0254 – 0.0449
|
<0.001
|
0.0214
|
0.0121 – 0.0308
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1935-1950
|
0.0690
|
0.0601 – 0.0779
|
<0.001
|
0.0502
|
0.0416 – 0.0588
|
<0.001
|
|
time_since_entry:apoe+ APOE e4
|
-0.0281
|
-0.0343 – -0.0219
|
<0.001
|
-0.0268
|
-0.0328 – -0.0208
|
<0.001
|
|
Random Effects
|
|
σ2
|
0.22
|
0.23
|
|
τ00
|
0.22 SUBJECT
|
0.23 SUBJECT
|
|
τ11
|
0.00 SUBJECT.time_since_entry
|
0.00 SUBJECT.time_since_entry
|
|
ρ01
|
0.09 SUBJECT
|
0.07 SUBJECT
|
|
ICC
|
0.67
|
0.65
|
|
N
|
4280 SUBJECT
|
4282 SUBJECT
|
|
Observations
|
22835
|
22847
|
|
Marginal R2 / Conditional R2
|
0.294 / 0.769
|
0.280 / 0.750
|
Model 4 Results
Mediation Model
M2 +
Cross Sectional: hypertension + diabetes + heart diseases + cardiovascular diseases + respiratory diseases + BMI + exercise level + cigarette smoking
Visit Specific (Uit): depression + exercise level + cigarette smoking
m4 <- lmer(casi_irt ~
baseline_no2_05_yr +
age_centered +
gender +
birth_cohort_cat_updated +
apoe +
hypertension +
diabetes +
heart_disease +
cv_dis +
resp_dis +
bmi +
exercise_reg +
smoke +
time_since_entry +
(time_since_entry | SUBJECT) +
(age85:time_since_entry) +
(exp_avg_no2_05_yr:time_since_entry) +
(birth_cohort_cat_updated:time_since_entry) +
(apoe:time_since_entry),
data = data6, weights = sw.apoe.karl,
control = lmerControl(optimizer ="Nelder_Mead", optCtrl=list(maxfun=2e5)))
m4_5_tab
|
|
Model 4, PM 2.5
|
Model 4, NO2
|
|
Predictors
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
0.8936
|
0.6717 – 1.1154
|
<0.001
|
0.6033
|
0.4678 – 0.7388
|
<0.001
|
|
Baseline PM2.5 (5 year)
|
-0.0449
|
-0.0619 – -0.0280
|
<0.001
|
|
|
|
|
time_since_entry:exp_avg_pm25_05_yr
|
0.0138
|
0.0123 – 0.0154
|
<0.001
|
|
|
|
|
Baseline NO2 (5 year)
|
|
|
|
-0.0137
|
-0.0195 – -0.0079
|
<0.001
|
|
time_since_entry:exp_avg_no2_05_yr
|
|
|
|
0.0023
|
0.0017 – 0.0029
|
<0.001
|
|
Baseline Age (centered)
|
-0.0427
|
-0.0502 – -0.0351
|
<0.001
|
-0.0330
|
-0.0377 – -0.0282
|
<0.001
|
|
Gender: Male
|
-0.1925
|
-0.2294 – -0.1557
|
<0.001
|
-0.1904
|
-0.2274 – -0.1535
|
<0.001
|
|
birth_cohort_cat_updated1890-1905
|
0.0593
|
-0.0971 – 0.2157
|
0.457
|
-0.1216
|
-0.2469 – 0.0038
|
0.057
|
|
Birth Cohort: 1910
|
0.0083
|
-0.0980 – 0.1147
|
0.878
|
-0.1090
|
-0.1971 – -0.0208
|
0.015
|
|
Birth Cohort: 1915
|
0.0340
|
-0.0375 – 0.1054
|
0.352
|
-0.0282
|
-0.0937 – 0.0374
|
0.399
|
|
Birth Cohort: 1925
|
-0.0674
|
-0.1343 – -0.0006
|
0.048
|
0.0021
|
-0.0581 – 0.0622
|
0.946
|
|
Birth Cohort: 1930
|
-0.0967
|
-0.1983 – 0.0050
|
0.062
|
0.0579
|
-0.0133 – 0.1292
|
0.111
|
|
birth_cohort_cat_updated1935-1950
|
-0.1299
|
-0.2626 – 0.0028
|
0.055
|
0.0701
|
0.0056 – 0.1347
|
0.033
|
|
APOE Status: + APOE e4
|
-0.0691
|
-0.1111 – -0.0272
|
0.001
|
-0.0726
|
-0.1150 – -0.0302
|
0.001
|
|
Hypertension: Yes
|
-0.0074
|
-0.0350 – 0.0201
|
0.596
|
0.0023
|
-0.0254 – 0.0299
|
0.872
|
|
Diabetes: Yes
|
-0.0675
|
-0.1126 – -0.0224
|
0.003
|
-0.0685
|
-0.1136 – -0.0233
|
0.003
|
|
Heart Disease: Yes
|
-0.0282
|
-0.0635 – 0.0071
|
0.117
|
-0.0243
|
-0.0596 – 0.0111
|
0.178
|
Cardiovascular Disease: Yes
|
-0.1390
|
-0.1779 – -0.1002
|
<0.001
|
-0.1374
|
-0.1762 – -0.0986
|
<0.001
|
|
Respiratory Disease
|
0.0017
|
-0.0344 – 0.0379
|
0.925
|
0.0144
|
-0.0217 – 0.0505
|
0.435
|
|
BMI
|
0.0007
|
-0.0025 – 0.0039
|
0.666
|
0.0012
|
-0.0020 – 0.0044
|
0.467
|
|
Exercise Regularly: Yes
|
0.0354
|
0.0160 – 0.0549
|
<0.001
|
0.0361
|
0.0165 – 0.0558
|
<0.001
|
|
Smoking Status: Former
|
0.0490
|
0.0123 – 0.0856
|
0.009
|
0.0468
|
0.0100 – 0.0836
|
0.013
|
|
Smoking Status: Current
|
0.0380
|
-0.0308 – 0.1067
|
0.279
|
0.0222
|
-0.0471 – 0.0914
|
0.530
|
|
Time Since Entry
|
-0.1357
|
-0.1494 – -0.1221
|
<0.001
|
-0.0585
|
-0.0687 – -0.0482
|
<0.001
|
|
age85:time_since_entry
|
-0.0006
|
-0.0040 – 0.0029
|
0.741
|
-0.0133
|
-0.0164 – -0.0102
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1890-1905
|
-0.0345
|
-0.0557 – -0.0133
|
0.001
|
-0.0098
|
-0.0306 – 0.0109
|
0.354
|
|
time_since_entry:birth_cohort_cat_updated1910
|
-0.0209
|
-0.0338 – -0.0080
|
0.002
|
-0.0033
|
-0.0157 – 0.0092
|
0.606
|
|
time_since_entry:birth_cohort_cat_updated1915
|
-0.0118
|
-0.0204 – -0.0032
|
0.007
|
-0.0027
|
-0.0110 – 0.0056
|
0.526
|
|
time_since_entry:birth_cohort_cat_updated1925
|
0.0149
|
0.0078 – 0.0219
|
<0.001
|
0.0070
|
0.0002 – 0.0137
|
0.043
|
|
time_since_entry:birth_cohort_cat_updated1930
|
0.0308
|
0.0208 – 0.0408
|
<0.001
|
0.0123
|
0.0028 – 0.0218
|
0.011
|
|
time_since_entry:birth_cohort_cat_updated1935-1950
|
0.0471
|
0.0367 – 0.0575
|
<0.001
|
0.0268
|
0.0168 – 0.0368
|
<0.001
|
|
time_since_entry:apoe+ APOE e4
|
-0.0231
|
-0.0292 – -0.0170
|
<0.001
|
-0.0216
|
-0.0276 – -0.0157
|
<0.001
|
|
Random Effects
|
|
σ2
|
0.19
|
0.20
|
|
τ00
|
0.25 SUBJECT
|
0.25 SUBJECT
|
|
τ11
|
0.00 SUBJECT.time_since_entry
|
0.00 SUBJECT.time_since_entry
|
|
ρ01
|
0.10 SUBJECT
|
0.07 SUBJECT
|
|
ICC
|
0.65
|
0.63
|
|
N
|
4125 SUBJECT
|
4127 SUBJECT
|
|
Observations
|
17823
|
17832
|
|
Marginal R2 / Conditional R2
|
0.194 / 0.715
|
0.182 / 0.698
|
Model 5 Results
Interaction Model
M2 +
Cross Sectional: pollutant exposure at baseline x APOE
Longitudinal: pollutant exposure at baseline x APOE
m5 <- lmer(casi_irt ~
baseline_no2_05_yr +
age_centered +
gender +
birth_cohort_cat_updated +
apoe +
(baseline_no2_05_yr:apoe) +
time_since_entry +
(time_since_entry | SUBJECT) +
(age85:time_since_entry) +
(exp_avg_no2_05_yr:time_since_entry) +
(birth_cohort_cat_updated:time_since_entry) +
(apoe:time_since_entry) +
(exp_avg_no2_05_yr:time_since_entry):apoe,
data = data6, weights = sw.apoe.karl,
control = lmerControl(optimizer ="Nelder_Mead", optCtrl=list(maxfun=2e5)))
m5_5_tab
|
|
Model 5, PM 2.5
|
Model 5, NO2
|
|
Predictors
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
0.9329
|
0.7277 – 1.1380
|
<0.001
|
0.7754
|
0.6639 – 0.8869
|
<0.001
|
|
Baseline PM2.5 (5 year)
|
-0.0447
|
-0.0618 – -0.0277
|
<0.001
|
|
|
|
|
time_since_entry:exp_avg_pm25_05_yr
|
0.0168
|
0.0153 – 0.0183
|
<0.001
|
|
|
|
|
baseline_pm25_05_yr:apoe+ APOE e4
|
-0.0076
|
-0.0219 – 0.0067
|
0.297
|
|
|
|
|
apoe+ APOE e4 :time_since_entry:exp_avg_pm25_05_yr
|
0.0020
|
-0.0005 – 0.0045
|
0.120
|
|
|
|
|
Baseline NO2 (5 year)
|
|
|
|
-0.0199
|
-0.0264 – -0.0133
|
<0.001
|
|
time_since_entry:exp_avg_no2_05_yr
|
|
|
|
0.0037
|
0.0032 – 0.0043
|
<0.001
|
|
baseline_no2_05_yr:apoe+ APOE e4
|
|
|
|
0.0086
|
-0.0037 – 0.0208
|
0.169
|
|
apoe+ APOE e4 :time_since_entry:exp_avg_no2_05_yr
|
|
|
|
0.0009
|
-0.0001 – 0.0019
|
0.089
|
|
APOE Status: + APOE e4
|
0.0109
|
-0.1401 – 0.1619
|
0.888
|
-0.1972
|
-0.3846 – -0.0097
|
0.039
|
|
Baseline Age (centered)
|
-0.0453
|
-0.0525 – -0.0381
|
<0.001
|
-0.0371
|
-0.0417 – -0.0325
|
<0.001
|
|
Gender: Male
|
-0.1856
|
-0.2216 – -0.1496
|
<0.001
|
-0.1836
|
-0.2198 – -0.1474
|
<0.001
|
|
birth_cohort_cat_updated1890-1905
|
0.0922
|
-0.0609 – 0.2454
|
0.238
|
-0.0704
|
-0.1954 – 0.0546
|
0.270
|
|
Birth Cohort: 1910
|
0.0352
|
-0.0702 – 0.1405
|
0.513
|
-0.0723
|
-0.1613 – 0.0167
|
0.112
|
|
Birth Cohort: 1915
|
0.0354
|
-0.0361 – 0.1069
|
0.332
|
-0.0213
|
-0.0877 – 0.0450
|
0.528
|
|
Birth Cohort: 1925
|
-0.0836
|
-0.1502 – -0.0171
|
0.014
|
-0.0239
|
-0.0845 – 0.0366
|
0.438
|
|
Birth Cohort: 1930
|
-0.0918
|
-0.1916 – 0.0080
|
0.071
|
0.0353
|
-0.0357 – 0.1064
|
0.329
|
|
birth_cohort_cat_updated1935-1950
|
-0.1262
|
-0.2556 – 0.0032
|
0.056
|
0.0450
|
-0.0181 – 0.1081
|
0.162
|
|
Time Since Entry
|
-0.1762
|
-0.1891 – -0.1634
|
<0.001
|
-0.0987
|
-0.1087 – -0.0887
|
<0.001
|
|
age85:time_since_entry
|
-0.0023
|
-0.0050 – 0.0005
|
0.104
|
-0.0131
|
-0.0157 – -0.0106
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1890-1905
|
-0.0712
|
-0.0913 – -0.0510
|
<0.001
|
-0.0476
|
-0.0673 – -0.0279
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1910
|
-0.0415
|
-0.0549 – -0.0282
|
<0.001
|
-0.0239
|
-0.0369 – -0.0110
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1915
|
-0.0245
|
-0.0338 – -0.0153
|
<0.001
|
-0.0159
|
-0.0249 – -0.0070
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1925
|
0.0206
|
0.0129 – 0.0284
|
<0.001
|
0.0136
|
0.0062 – 0.0210
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1930
|
0.0348
|
0.0251 – 0.0445
|
<0.001
|
0.0208
|
0.0115 – 0.0302
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1935-1950
|
0.0690
|
0.0602 – 0.0779
|
<0.001
|
0.0503
|
0.0418 – 0.0589
|
<0.001
|
|
apoe+ APOE e4 :time_since_entry
|
-0.0413
|
-0.0592 – -0.0234
|
<0.001
|
-0.0376
|
-0.0517 – -0.0236
|
<0.001
|
|
Random Effects
|
|
σ2
|
0.22
|
0.23
|
|
τ00
|
0.26 SUBJECT
|
0.26 SUBJECT
|
|
τ11
|
0.00 SUBJECT.time_since_entry
|
0.00 SUBJECT.time_since_entry
|
|
ρ01
|
0.10 SUBJECT
|
0.07 SUBJECT
|
|
ICC
|
0.69
|
0.67
|
|
N
|
4287 SUBJECT
|
4289 SUBJECT
|
|
Observations
|
22935
|
22947
|
|
Marginal R2 / Conditional R2
|
0.263 / 0.771
|
0.248 / 0.751
|
Model 6 Results
Co-Pollutant Model
M2 +
Cross Sectional: co-pollutant exposure at baseline
Longitudinal: co-pollutant
m6 <- lmer(casi_irt ~
baseline_no2_05_yr +
(baseline_no2_05_yr:baseline_pm25_05_yr) +
age_centered +
gender +
birth_cohort_cat_updated +
apoe +
time_since_entry +
(time_since_entry | SUBJECT) +
(age85:time_since_entry) +
(exp_avg_no2_05_yr:time_since_entry) +
(birth_cohort_cat_updated:time_since_entry) +
(apoe:time_since_entry) +
(exp_avg_no2_05_yr:exp_avg_pm25_05_yr:time_since_entry),
data = data6, weights = sw.apoe.karl,
control = lmerControl(optimizer ="Nelder_Mead", optCtrl=list(maxfun=2e5)))
m6_5_tab
|
|
Model 6, PM 2.5
|
Model 6, NO2
|
|
Predictors
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
0.8884
|
0.6822 – 1.0947
|
<0.001
|
0.6765
|
0.5750 – 0.7780
|
<0.001
|
|
Baseline PM2.5 (5 year)
|
-0.0301
|
-0.0510 – -0.0092
|
0.005
|
|
|
|
|
time_since_entry:exp_avg_pm25_05_yr
|
0.0190
|
0.0161 – 0.0218
|
<0.001
|
|
|
|
|
baseline_pm25_05_yr:baseline_no2_05_yr
|
-0.0007
|
-0.0013 – -0.0002
|
0.011
|
|
|
|
|
time_since_entry:exp_avg_pm25_05_yr:exp_avg_no2_05_yr
|
-0.0001
|
-0.0002 – 0.0000
|
0.177
|
|
|
|
|
Baseline NO2 (5 year)
|
|
|
|
0.0099
|
-0.0029 – 0.0227
|
0.130
|
|
time_since_entry:exp_avg_no2_05_yr
|
|
|
|
-0.0067
|
-0.0080 – -0.0053
|
<0.001
|
|
baseline_no2_05_yr:baseline_pm25_05_yr
|
|
|
|
-0.0023
|
-0.0033 – -0.0013
|
<0.001
|
|
time_since_entry:exp_avg_no2_05_yr:exp_avg_pm25_05_yr
|
|
|
|
0.0010
|
0.0009 – 0.0011
|
<0.001
|
|
Baseline Age (centered)
|
-0.0437
|
-0.0510 – -0.0364
|
<0.001
|
-0.0425
|
-0.0491 – -0.0359
|
<0.001
|
|
Gender: Male
|
-0.1861
|
-0.2221 – -0.1501
|
<0.001
|
-0.1859
|
-0.2220 – -0.1499
|
<0.001
|
|
birth_cohort_cat_updated1890-1905
|
0.0722
|
-0.0815 – 0.2259
|
0.357
|
0.0531
|
-0.0937 – 0.1999
|
0.478
|
|
Birth Cohort: 1910
|
0.0223
|
-0.0834 – 0.1279
|
0.680
|
0.0098
|
-0.0918 – 0.1113
|
0.851
|
|
Birth Cohort: 1915
|
0.0290
|
-0.0426 – 0.1005
|
0.428
|
0.0193
|
-0.0509 – 0.0895
|
0.590
|
|
Birth Cohort: 1925
|
-0.0746
|
-0.1414 – -0.0079
|
0.028
|
-0.0618
|
-0.1267 – 0.0030
|
0.062
|
|
Birth Cohort: 1930
|
-0.0701
|
-0.1709 – 0.0306
|
0.173
|
-0.0454
|
-0.1388 – 0.0479
|
0.340
|
|
birth_cohort_cat_updated1935-1950
|
-0.1025
|
-0.2327 – 0.0277
|
0.123
|
-0.0703
|
-0.1782 – 0.0377
|
0.202
|
|
APOE Status: + APOE e4
|
-0.0579
|
-0.0995 – -0.0164
|
0.006
|
-0.0594
|
-0.1011 – -0.0178
|
0.005
|
|
Time Since Entry
|
-0.1852
|
-0.2002 – -0.1701
|
<0.001
|
-0.0631
|
-0.0738 – -0.0524
|
<0.001
|
|
age85:time_since_entry
|
-0.0022
|
-0.0050 – 0.0005
|
0.112
|
-0.0058
|
-0.0084 – -0.0031
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1890-1905
|
-0.0714
|
-0.0916 – -0.0513
|
<0.001
|
-0.0683
|
-0.0884 – -0.0483
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1910
|
-0.0416
|
-0.0549 – -0.0282
|
<0.001
|
-0.0394
|
-0.0527 – -0.0261
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1915
|
-0.0244
|
-0.0336 – -0.0151
|
<0.001
|
-0.0227
|
-0.0318 – -0.0135
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1925
|
0.0206
|
0.0129 – 0.0283
|
<0.001
|
0.0183
|
0.0106 – 0.0259
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1930
|
0.0346
|
0.0249 – 0.0443
|
<0.001
|
0.0295
|
0.0199 – 0.0390
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1935-1950
|
0.0687
|
0.0598 – 0.0776
|
<0.001
|
0.0606
|
0.0518 – 0.0693
|
<0.001
|
|
time_since_entry:apoe+ APOE e4
|
-0.0280
|
-0.0342 – -0.0218
|
<0.001
|
-0.0277
|
-0.0338 – -0.0216
|
<0.001
|
|
Random Effects
|
|
σ2
|
0.22
|
0.22
|
|
τ00
|
0.26 SUBJECT
|
0.26 SUBJECT
|
|
τ11
|
0.00 SUBJECT.time_since_entry
|
0.00 SUBJECT.time_since_entry
|
|
ρ01
|
0.10 SUBJECT
|
0.10 SUBJECT
|
|
ICC
|
0.69
|
0.68
|
|
N
|
4286 SUBJECT
|
4286 SUBJECT
|
|
Observations
|
22932
|
22932
|
|
Marginal R2 / Conditional R2
|
0.263 / 0.770
|
0.260 / 0.766
|
Risk Factor Analysis
The purpose of this analysis is to create simplified, minimally adjusted versions of the models to identify the association between a specific risk factor and cognition, one predictor at a time. We want to ensure that the associations between these predictors and the outcome are as we would expect them to be. If any predictors do not have the associations that we would predict, this may be a sign that there is an issue with the models.
Risk Factor Model: APOE
minimal_model_apoe <- lmer(casi_irt ~
(time_since_entry | SUBJECT) +
time_since_entry +
age_centered +
gender +
race_cat +
(apoe:time_since_entry) +
apoe,
data = data6, control = lmerControl(optimizer ="Nelder_Mead", optCtrl=list(maxfun=2e5)), weights = sw.apoe.karl)
min_model_apoe_tab
|
|
CASI Score (IRT)
|
|
Predictors
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
0.2546
|
0.1939 – 0.3153
|
<0.001
|
|
APOE Status: + APOE e4
|
-0.0772
|
-0.1198 – -0.0346
|
<0.001
|
|
time_since_entry:apoe+ APOE e4
|
-0.0203
|
-0.0260 – -0.0146
|
<0.001
|
|
Time Since Entry
|
-0.0492
|
-0.0521 – -0.0464
|
<0.001
|
|
Baseline Age (centered)
|
-0.0517
|
-0.0545 – -0.0488
|
<0.001
|
|
Gender: Male
|
-0.1798
|
-0.2160 – -0.1436
|
<0.001
|
|
Race: White
|
0.2735
|
0.2132 – 0.3338
|
<0.001
|
|
Random Effects
|
|
σ2
|
0.24
|
|
τ00 SUBJECT
|
0.27
|
|
τ11 SUBJECT.time_since_entry
|
0.00
|
|
ρ01 SUBJECT
|
0.03
|
|
ICC
|
0.63
|
|
N SUBJECT
|
4297
|
|
Observations
|
23062
|
|
Marginal R2 / Conditional R2
|
0.187 / 0.702
|
Risk Factor Model: Education
minimal_model_edu <- lmer(casi_irt ~ (time_since_entry | SUBJECT) +
time_since_entry +
age_centered +
gender +
race_cat +
(degree_cat_simp:time_since_entry) +
degree_cat_simp,
data = data6, control = lmerControl(optimizer ="Nelder_Mead", optCtrl=list(maxfun=2e5)))
min_model_edu_tab
|
|
CASI Score (IRT)
|
|
Predictors
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
-0.2380
|
-0.3133 – -0.1627
|
<0.001
|
|
Less than HS
|
Reference
|
|
|
|
GED/HS
|
0.3990
|
0.3333 – 0.4647
|
<0.001
|
|
Bachelor’s
|
0.5915
|
0.5220 – 0.6609
|
<0.001
|
|
Master’s
|
0.6210
|
0.5470 – 0.6951
|
<0.001
|
|
Doctorate
|
0.7422
|
0.6500 – 0.8343
|
<0.001
|
|
Other
|
0.5157
|
0.4339 – 0.5976
|
<0.001
|
|
time_since_entry:degree_cat_simpGED/HS
|
-0.0113
|
-0.0209 – -0.0018
|
0.020
|
|
time_since_entry:degree_cat_simpBachelor’s
|
0.0020
|
-0.0080 – 0.0120
|
0.699
|
|
time_since_entry:degree_cat_simpMaster’s
|
0.0081
|
-0.0026 – 0.0189
|
0.138
|
|
time_since_entry:degree_cat_simpDoctorate
|
0.0188
|
0.0057 – 0.0319
|
0.005
|
|
time_since_entry:degree_cat_simpOther
|
0.0007
|
-0.0113 – 0.0127
|
0.909
|
|
Time Since Entry
|
-0.0529
|
-0.0617 – -0.0441
|
<0.001
|
|
Baseline Age (centered)
|
-0.0451
|
-0.0478 – -0.0425
|
<0.001
|
|
Female
|
Reference
|
|
|
|
Male
|
-0.2115
|
-0.2449 – -0.1782
|
<0.001
|
|
Non-White
|
Reference
|
|
|
|
White
|
0.2748
|
0.2223 – 0.3273
|
<0.001
|
|
Random Effects
|
|
σ2
|
0.24
|
|
τ00 SUBJECT
|
0.24
|
|
τ11 SUBJECT.time_since_entry
|
0.00
|
|
ρ01 SUBJECT
|
0.02
|
|
ICC
|
0.61
|
|
N SUBJECT
|
4918
|
|
Observations
|
25686
|
|
Marginal R2 / Conditional R2
|
0.237 / 0.705
|
Risk Factor Model: Polygenic Risk Scores
minimal_model_prs <- lmer(casi_irt ~ (time_since_entry | SUBJECT) +
time_since_entry +
age_centered +
gender +
race_cat +
(ad_prs_withapoe:time_since_entry) +
ad_prs_withapoe,
data = data6, control = lmerControl(optimizer ="Nelder_Mead", optCtrl=list(maxfun=2e5)))
min_model_prs_tab
|
|
CASI Score (IRT)
|
|
Predictors
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
0.6986
|
0.4413 – 0.9558
|
<0.001
|
|
AD PRS Score
|
-0.0417
|
-0.0733 – -0.0101
|
0.010
|
|
time_since_entry:ad_prs_withapoe
|
-0.0142
|
-0.0185 – -0.0099
|
<0.001
|
|
Time Since Entry
|
-0.0525
|
-0.0553 – -0.0498
|
<0.001
|
|
Baseline Age (centered)
|
-0.0527
|
-0.0559 – -0.0496
|
<0.001
|
|
Gender: Male
|
-0.1921
|
-0.2320 – -0.1523
|
<0.001
|
|
Race: White
|
-0.1579
|
-0.4151 – 0.0993
|
0.229
|
|
Random Effects
|
|
σ2
|
0.25
|
|
τ00 SUBJECT
|
0.26
|
|
τ11 SUBJECT.time_since_entry
|
0.00
|
|
ρ01 SUBJECT
|
-0.01
|
|
ICC
|
0.61
|
|
N SUBJECT
|
3374
|
|
Observations
|
18427
|
|
Marginal R2 / Conditional R2
|
0.190 / 0.688
|
Risk Factor Model: SES
minimal_model_ses <- lmer(casi_irt ~ (time_since_entry | SUBJECT) +
time_since_entry +
age_centered +
gender +
race_cat +
(tr_med_inc_hshld_cat:time_since_entry) +
tr_med_inc_hshld_cat,
data = data6, control = lmerControl(optimizer ="Nelder_Mead", optCtrl=list(maxfun=2e5)))
min_model_ses_tab
|
|
CASI Score (IRT)
|
|
Predictors
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
0.300793
|
0.092212 – 0.509374
|
0.005
|
|
< 20,000
|
Reference
|
|
|
|
20,000 - 34,999
|
-0.099458
|
-0.306667 – 0.107750
|
0.347
|
|
35,000 - 49,999
|
-0.107379
|
-0.311494 – 0.096737
|
0.302
|
|
50,000 - 74,999
|
-0.121725
|
-0.325596 – 0.082146
|
0.242
|
75,000
|
-0.070616
|
-0.279113 – 0.137881
|
0.507
|
|
time_since_entry:tr_med_inc_hshld_cat20,000 - 34,999
|
0.013362
|
-0.011172 – 0.037897
|
0.286
|
|
time_since_entry:tr_med_inc_hshld_cat35,000 - 49,999
|
0.015529
|
-0.008650 – 0.039707
|
0.208
|
|
time_since_entry:tr_med_inc_hshld_cat50,000 - 74,999
|
0.025493
|
0.001364 – 0.049622
|
0.038
|
|
time_since_entry:tr_med_inc_hshld_cat> 75,000
|
0.027688
|
0.002879 – 0.052496
|
0.029
|
|
Time Since Entry
|
-0.075281
|
-0.099292 – -0.051270
|
<0.001
|
|
Baseline Age (centered)
|
-0.051338
|
-0.054048 – -0.048628
|
<0.001
|
|
Female
|
Reference
|
|
|
|
Male
|
-0.175369
|
-0.209638 – -0.141099
|
<0.001
|
|
Non-White
|
Reference
|
|
|
|
White
|
0.302854
|
0.247585 – 0.358123
|
<0.001
|
|
Random Effects
|
|
σ2
|
0.24
|
|
τ00 SUBJECT
|
0.27
|
|
τ11 SUBJECT.time_since_entry
|
0.00
|
|
ρ01 SUBJECT
|
0.01
|
|
ICC
|
0.64
|
|
N SUBJECT
|
4915
|
|
Observations
|
25571
|
|
Marginal R2 / Conditional R2
|
0.184 / 0.703
|
Risk Factor Model: Smoking
minimal_model_smoke <- lmer(casi_irt ~ (time_since_entry | SUBJECT) +
time_since_entry +
age_centered +
gender +
race_cat +
(smoke:time_since_entry) +
smoke,
data = data6, control = lmerControl(optimizer ="Nelder_Mead", optCtrl=list(maxfun=2e5)))
min_model_smoke_tab
|
|
CASI Score (IRT)
|
|
Predictors
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
0.1795
|
0.1240 – 0.2350
|
<0.001
|
|
Never
|
Reference
|
|
|
|
Former
|
0.0205
|
-0.0155 – 0.0565
|
0.265
|
|
Current
|
-0.0550
|
-0.1287 – 0.0188
|
0.144
|
|
time_since_entry:smokeCurrent
|
0.0080
|
-0.0042 – 0.0202
|
0.197
|
|
time_since_entry:smokeFormer
|
0.0000
|
-0.0046 – 0.0047
|
0.987
|
|
Time Since Entry
|
-0.0477
|
-0.0509 – -0.0444
|
<0.001
|
|
Baseline Age (centered)
|
-0.0504
|
-0.0531 – -0.0477
|
<0.001
|
|
Female
|
Reference
|
|
|
|
Male
|
-0.1768
|
-0.2112 – -0.1424
|
<0.001
|
|
Non-White
|
Reference
|
|
|
|
White
|
0.2987
|
0.2440 – 0.3533
|
<0.001
|
|
Random Effects
|
|
σ2
|
0.23
|
|
τ00 SUBJECT
|
0.27
|
|
τ11 SUBJECT.time_since_entry
|
0.00
|
|
ρ01 SUBJECT
|
-0.00
|
|
ICC
|
0.63
|
|
N SUBJECT
|
4910
|
|
Observations
|
24594
|
|
Marginal R2 / Conditional R2
|
0.173 / 0.692
|
Risk Factor Model: Air Pollution
minimal_model_ap <- lmer(casi_irt ~ (time_since_entry | SUBJECT) +
time_since_entry +
age_centered +
gender +
race_cat +
(exp_avg_pm25_05_yr:time_since_entry) +
baseline_pm25_05_yr,
data = data6, control = lmerControl(optimizer ="Nelder_Mead", optCtrl=list(maxfun=2e5)))
min_model_ap_tab
|
|
PM 2.5
|
NO2
|
|
Predictors
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
0.5692
|
0.4896 – 0.6488
|
<0.001
|
0.4770
|
0.3798 – 0.5741
|
<0.001
|
|
Baseline PM2.5 (5 year)
|
-0.0429
|
-0.0489 – -0.0369
|
<0.001
|
|
|
|
|
time_since_entry:exp_avg_pm25_05_yr
|
0.0139
|
0.0129 – 0.0149
|
<0.001
|
|
|
|
|
Baseline NO2 (5 year)
|
|
|
|
-0.0194
|
-0.0244 – -0.0143
|
<0.001
|
|
time_since_entry:exp_avg_no2_05_yr
|
|
|
|
0.0038
|
0.0033 – 0.0042
|
<0.001
|
|
Time Since Entry
|
-0.1501
|
-0.1575 – -0.1427
|
<0.001
|
-0.1024
|
-0.1083 – -0.0965
|
<0.001
|
|
Baseline Age (centered)
|
-0.0477
|
-0.0504 – -0.0450
|
<0.001
|
-0.0494
|
-0.0521 – -0.0466
|
<0.001
|
|
Gender: Male
|
-0.1763
|
-0.2101 – -0.1425
|
<0.001
|
-0.1731
|
-0.2072 – -0.1390
|
<0.001
|
|
Race: White
|
0.3110
|
0.2566 – 0.3653
|
<0.001
|
0.2891
|
0.2341 – 0.3441
|
<0.001
|
|
Random Effects
|
|
σ2
|
0.23
|
0.23
|
|
τ00
|
0.26 SUBJECT
|
0.27 SUBJECT
|
|
τ11
|
0.00 SUBJECT.time_since_entry
|
0.00 SUBJECT.time_since_entry
|
|
ρ01
|
-0.01 SUBJECT
|
-0.00 SUBJECT
|
|
ICC
|
0.68
|
0.67
|
|
N
|
4897 SUBJECT
|
4900 SUBJECT
|
|
Observations
|
25510
|
25524
|
|
Marginal R2 / Conditional R2
|
0.201 / 0.747
|
0.185 / 0.728
|
Dementia vs. Non-dementia analysis
The plot below depicts the cognitive trajectories for participants up until they are censored from the study (at time 0 on the far right). Each line represents the trajectories for groups of individuals based on their reason for being censored. They key takeaway from this figure is that the cognition of those who are censored due to a dementia diagnosis have a significant drop in CASI score before censoring. This pattern makes sense as a drop in cognition would prompt an investigation into a possible dementia diagnosis, but it shows how much of the drop in CASI score that we observe is tied to the drop in cognition from soon-to-be demented individuals.

Identifying the effect of aging
The table below shows the effect of 1 year of aging (with only time as a predictor and in minimally adjusted models) using datasets where all participants are included and where patients who develop dementia are removed from the analysis. This table shows that the effect of 1 year of aging is essentially cut in half when only looking at data for those who do not develop dementia.
|
|
All Data
|
All Data
|
Incident Dementia Removed
|
Incident Dementia Removed
|
|
Predictors
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
0.4499
|
0.4304 – 0.4695
|
<0.001
|
0.4633
|
0.4404 – 0.4861
|
<0.001
|
0.5283
|
0.5080 – 0.5486
|
<0.001
|
0.5229
|
0.4983 – 0.5474
|
<0.001
|
|
Time Since Entry
|
-0.0569
|
-0.0593 – -0.0545
|
<0.001
|
-0.0546
|
-0.0570 – -0.0522
|
<0.001
|
-0.0265
|
-0.0286 – -0.0244
|
<0.001
|
-0.0265
|
-0.0286 – -0.0244
|
<0.001
|
|
Baseline Age (centered)
|
|
|
|
-0.0507
|
-0.0534 – -0.0480
|
<0.001
|
|
|
|
-0.0408
|
-0.0437 – -0.0380
|
<0.001
|
|
Gender: Male
|
|
|
|
-0.1709
|
-0.2055 – -0.1364
|
<0.001
|
|
|
|
-0.1611
|
-0.1962 – -0.1260
|
<0.001
|
|
Random Effects
|
|
σ2
|
0.24
|
0.24
|
0.19
|
0.19
|
|
τ00
|
0.37 SUBJECT
|
0.28 SUBJECT
|
0.29 SUBJECT
|
0.23 SUBJECT
|
|
τ11
|
0.00 SUBJECT.time_since_entry
|
0.00 SUBJECT.time_since_entry
|
0.00 SUBJECT.time_since_entry
|
0.00 SUBJECT.time_since_entry
|
|
ρ01
|
0.18 SUBJECT
|
0.02 SUBJECT
|
-0.05 SUBJECT
|
-0.13 SUBJECT
|
|
ICC
|
0.71
|
0.64
|
0.64
|
0.58
|
|
N
|
4926 SUBJECT
|
4926 SUBJECT
|
3593 SUBJECT
|
3593 SUBJECT
|
|
Observations
|
25728
|
25728
|
18426
|
18426
|
|
Marginal R2 / Conditional R2
|
0.098 / 0.736
|
0.172 / 0.702
|
0.036 / 0.649
|
0.127 / 0.633
|
Model results with and without incident dementia
|
|
PM2.5
|
PM2.5, Dementia Removed
|
NO2
|
NO2, Dementia Removed
|
|
Predictors
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
0.9507
|
0.7494 – 1.1520
|
<0.001
|
1.0195
|
0.8101 – 1.2289
|
<0.001
|
0.7414
|
0.6395 – 0.8433
|
<0.001
|
0.7833
|
0.6763 – 0.8903
|
<0.001
|
|
Baseline PM2.5 (5 year)
|
-0.0467
|
-0.0633 – -0.0301
|
<0.001
|
-0.0484
|
-0.0655 – -0.0313
|
<0.001
|
|
|
|
|
|
|
|
time_since_entry:exp_avg_pm25_05_yr
|
0.0172
|
0.0159 – 0.0186
|
<0.001
|
0.0112
|
0.0098 – 0.0127
|
<0.001
|
|
|
|
|
|
|
|
Baseline NO2 (5 year)
|
|
|
|
|
|
|
-0.0177
|
-0.0235 – -0.0119
|
<0.001
|
-0.0186
|
-0.0245 – -0.0126
|
<0.001
|
|
time_since_entry:exp_avg_no2_05_yr
|
|
|
|
|
|
|
0.0039
|
0.0034 – 0.0045
|
<0.001
|
0.0025
|
0.0020 – 0.0030
|
<0.001
|
|
Baseline Age (centered)
|
-0.0454
|
-0.0526 – -0.0382
|
<0.001
|
-0.0401
|
-0.0473 – -0.0329
|
<0.001
|
-0.0371
|
-0.0417 – -0.0325
|
<0.001
|
-0.0302
|
-0.0350 – -0.0253
|
<0.001
|
|
Gender: Male
|
-0.1856
|
-0.2216 – -0.1496
|
<0.001
|
-0.1672
|
-0.2043 – -0.1301
|
<0.001
|
-0.1837
|
-0.2199 – -0.1475
|
<0.001
|
-0.1661
|
-0.2032 – -0.1290
|
<0.001
|
|
Time Since Entry
|
-0.1791
|
-0.1914 – -0.1669
|
<0.001
|
-0.1040
|
-0.1166 – -0.0915
|
<0.001
|
-0.1013
|
-0.1108 – -0.0918
|
<0.001
|
-0.0534
|
-0.0625 – -0.0442
|
<0.001
|
|
birth_cohort_cat_updated1890-1905
|
0.0938
|
-0.0593 – 0.2469
|
0.230
|
0.1201
|
-0.0431 – 0.2833
|
0.149
|
-0.0712
|
-0.1963 – 0.0538
|
0.264
|
-0.0591
|
-0.1979 – 0.0797
|
0.404
|
|
Birth Cohort: 1910
|
0.0369
|
-0.0684 – 0.1421
|
0.492
|
0.0363
|
-0.0804 – 0.1531
|
0.542
|
-0.0735
|
-0.1625 – 0.0155
|
0.105
|
-0.0781
|
-0.1820 – 0.0257
|
0.140
|
|
Birth Cohort: 1915
|
0.0354
|
-0.0361 – 0.1068
|
0.332
|
0.0597
|
-0.0212 – 0.1406
|
0.148
|
-0.0211
|
-0.0875 – 0.0453
|
0.533
|
-0.0002
|
-0.0764 – 0.0761
|
0.997
|
|
Birth Cohort: 1925
|
-0.0841
|
-0.1506 – -0.0175
|
0.013
|
-0.0560
|
-0.1294 – 0.0175
|
0.135
|
-0.0232
|
-0.0838 – 0.0374
|
0.453
|
0.0114
|
-0.0564 – 0.0791
|
0.742
|
|
Birth Cohort: 1930
|
-0.0917
|
-0.1915 – 0.0081
|
0.072
|
-0.0707
|
-0.1754 – 0.0339
|
0.185
|
0.0358
|
-0.0353 – 0.1068
|
0.324
|
0.0827
|
0.0071 – 0.1583
|
0.032
|
|
birth_cohort_cat_updated1935-1950
|
-0.1258
|
-0.2552 – 0.0036
|
0.057
|
-0.1505
|
-0.2843 – -0.0168
|
0.027
|
0.0443
|
-0.0187 – 0.1074
|
0.168
|
0.0536
|
-0.0129 – 0.1202
|
0.114
|
|
APOE Status: + APOE e4
|
-0.0583
|
-0.1000 – -0.0167
|
0.006
|
0.0045
|
-0.0415 – 0.0506
|
0.847
|
-0.0629
|
-0.1049 – -0.0208
|
0.003
|
0.0053
|
-0.0411 – 0.0517
|
0.823
|
|
age85:time_since_entry
|
-0.0023
|
-0.0051 – 0.0005
|
0.101
|
-0.0007
|
-0.0037 – 0.0023
|
0.645
|
-0.0131
|
-0.0157 – -0.0106
|
<0.001
|
-0.0079
|
-0.0106 – -0.0052
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1890-1905
|
-0.0712
|
-0.0914 – -0.0511
|
<0.001
|
-0.0432
|
-0.0623 – -0.0240
|
<0.001
|
-0.0477
|
-0.0674 – -0.0280
|
<0.001
|
-0.0286
|
-0.0476 – -0.0097
|
0.003
|
|
time_since_entry:birth_cohort_cat_updated1910
|
-0.0416
|
-0.0550 – -0.0283
|
<0.001
|
-0.0230
|
-0.0365 – -0.0095
|
0.001
|
-0.0240
|
-0.0369 – -0.0111
|
<0.001
|
-0.0123
|
-0.0257 – 0.0010
|
0.069
|
|
time_since_entry:birth_cohort_cat_updated1915
|
-0.0244
|
-0.0337 – -0.0152
|
<0.001
|
-0.0122
|
-0.0207 – -0.0037
|
0.005
|
-0.0157
|
-0.0247 – -0.0068
|
0.001
|
-0.0067
|
-0.0151 – 0.0016
|
0.115
|
|
time_since_entry:birth_cohort_cat_updated1925
|
0.0206
|
0.0129 – 0.0284
|
<0.001
|
0.0090
|
0.0024 – 0.0156
|
0.008
|
0.0137
|
0.0062 – 0.0211
|
<0.001
|
0.0047
|
-0.0018 – 0.0112
|
0.153
|
|
time_since_entry:birth_cohort_cat_updated1930
|
0.0346
|
0.0250 – 0.0443
|
<0.001
|
0.0148
|
0.0067 – 0.0228
|
<0.001
|
0.0209
|
0.0116 – 0.0302
|
<0.001
|
0.0065
|
-0.0013 – 0.0144
|
0.102
|
|
time_since_entry:birth_cohort_cat_updated1935-1950
|
0.0688
|
0.0599 – 0.0777
|
<0.001
|
0.0313
|
0.0236 – 0.0389
|
<0.001
|
0.0502
|
0.0417 – 0.0588
|
<0.001
|
0.0203
|
0.0128 – 0.0277
|
<0.001
|
|
time_since_entry:apoe+ APOE e4
|
-0.0279
|
-0.0341 – -0.0218
|
<0.001
|
-0.0129
|
-0.0183 – -0.0075
|
<0.001
|
-0.0266
|
-0.0326 – -0.0206
|
<0.001
|
-0.0129
|
-0.0183 – -0.0076
|
<0.001
|
|
Random Effects
|
|
σ2
|
0.22
|
0.19
|
0.23
|
0.19
|
|
τ00
|
0.26 SUBJECT
|
0.22 SUBJECT
|
0.26 SUBJECT
|
0.22 SUBJECT
|
|
τ11
|
0.00 SUBJECT.time_since_entry
|
0.00 SUBJECT.time_since_entry
|
0.00 SUBJECT.time_since_entry
|
0.00 SUBJECT.time_since_entry
|
|
ρ01
|
0.10 SUBJECT
|
-0.03 SUBJECT
|
0.07 SUBJECT
|
-0.07 SUBJECT
|
|
ICC
|
0.69
|
0.59
|
0.67
|
0.58
|
|
N
|
4287 SUBJECT
|
3099 SUBJECT
|
4289 SUBJECT
|
3100 SUBJECT
|
|
Observations
|
22935
|
16291
|
22947
|
16297
|
|
Marginal R2 / Conditional R2
|
0.263 / 0.770
|
0.172 / 0.663
|
0.247 / 0.751
|
0.165 / 0.653
|
Detrended Analysis
AP exposure trends with raw 5 year averages

AP exposure trends with detrended 5 year averages

Understanding the detreneded exposures with the effects package
The following figures were generated using the “effects” package in R. The purpose of this package is to visualize the effect of single predictor on an outcome from a linear regression model, adjusting for the effects of other predictors in the same model. The plot below serves as an example of how this package can be used. The visualization shows the effect of baseline NO2 exposure on CASI IRT taken from model 2, the a prioi model.

The following two plots display the effect of the interaction between time-varying NO2 exposure and CASI IRT score also taken from model 2. The only difference between the two is that the second figures uses the detrended NO2 exposures as opposed to the raw exposures. Each line represents the effect of NO2 on CASI IRT for the subset of data at each visit number. Notice how the lines have positive slopes in the first figure and flat/slightly negative slopes in the second figure.


The following two plots display the effect of the interaction between time-varying PM2.5 exposure and CASI IRT score also taken from model 2. Again, the first figures uses raw exposure values and the second plot uses detrended exposure values.


Detrended Models
|
|
Model 2, PM 2.5
|
Model 2, NO2
|
|
Predictors
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
0.4764
|
0.4316 – 0.5213
|
<0.001
|
0.4767
|
0.4319 – 0.5216
|
<0.001
|
Baseline PM2.5 Exposure (5 year, detrended)
|
-0.0387
|
-0.0719 – -0.0055
|
0.022
|
|
|
|
|
time_since_entry:pm25_loess_detrended
|
-0.0077
|
-0.0114 – -0.0039
|
<0.001
|
|
|
|
Baseline NO2 Exposure (5 year, detrended)
|
|
|
|
-0.0084
|
-0.0146 – -0.0022
|
0.008
|
|
time_since_entry:no2_loess_detrended
|
|
|
|
-0.0002
|
-0.0008 – 0.0005
|
0.565
|
|
Baseline Age (centered)
|
-0.0370
|
-0.0416 – -0.0323
|
<0.001
|
-0.0372
|
-0.0419 – -0.0326
|
<0.001
|
|
Gender: Male
|
-0.1869
|
-0.2233 – -0.1505
|
<0.001
|
-0.1835
|
-0.2198 – -0.1471
|
<0.001
|
|
Time Since Entry
|
-0.0427
|
-0.0482 – -0.0372
|
<0.001
|
-0.0426
|
-0.0481 – -0.0371
|
<0.001
|
|
birth_cohort_cat_updated1890-1905
|
-0.0888
|
-0.2143 – 0.0366
|
0.165
|
-0.0849
|
-0.2104 – 0.0405
|
0.185
|
|
Birth Cohort: 1910
|
-0.0907
|
-0.1800 – -0.0014
|
0.047
|
-0.0894
|
-0.1787 – -0.0000
|
0.050
|
|
Birth Cohort: 1915
|
-0.0396
|
-0.1062 – 0.0271
|
0.244
|
-0.0359
|
-0.1026 – 0.0307
|
0.290
|
|
Birth Cohort: 1925
|
-0.0092
|
-0.0700 – 0.0516
|
0.767
|
-0.0103
|
-0.0711 – 0.0505
|
0.740
|
|
Birth Cohort: 1930
|
0.0496
|
-0.0217 – 0.1210
|
0.173
|
0.0471
|
-0.0241 – 0.1184
|
0.195
|
|
birth_cohort_cat_updated1935-1950
|
0.0940
|
0.0336 – 0.1544
|
0.002
|
0.0918
|
0.0314 – 0.1522
|
0.003
|
|
APOE Status: + APOE e4
|
-0.0666
|
-0.1089 – -0.0243
|
0.002
|
-0.0671
|
-0.1094 – -0.0248
|
0.002
|
|
age85:time_since_entry
|
-0.0216
|
-0.0239 – -0.0193
|
<0.001
|
-0.0215
|
-0.0238 – -0.0192
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1890-1905
|
-0.0352
|
-0.0545 – -0.0159
|
<0.001
|
-0.0354
|
-0.0547 – -0.0162
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1910
|
-0.0114
|
-0.0239 – 0.0011
|
0.074
|
-0.0120
|
-0.0245 – 0.0005
|
0.059
|
|
time_since_entry:birth_cohort_cat_updated1915
|
-0.0081
|
-0.0167 – 0.0005
|
0.066
|
-0.0083
|
-0.0168 – 0.0003
|
0.059
|
|
time_since_entry:birth_cohort_cat_updated1925
|
0.0079
|
0.0008 – 0.0150
|
0.030
|
0.0079
|
0.0009 – 0.0150
|
0.027
|
|
time_since_entry:birth_cohort_cat_updated1930
|
0.0088
|
-0.0001 – 0.0177
|
0.052
|
0.0089
|
0.0001 – 0.0177
|
0.049
|
|
time_since_entry:birth_cohort_cat_updated1935-1950
|
0.0310
|
0.0231 – 0.0390
|
<0.001
|
0.0308
|
0.0228 – 0.0387
|
<0.001
|
|
time_since_entry:apoe+ APOE e4
|
-0.0255
|
-0.0313 – -0.0197
|
<0.001
|
-0.0254
|
-0.0312 – -0.0196
|
<0.001
|
|
Random Effects
|
|
σ2
|
0.23
|
0.23
|
|
τ00
|
0.27 SUBJECT
|
0.27 SUBJECT
|
|
τ11
|
0.00 SUBJECT.time_since_entry
|
0.00 SUBJECT.time_since_entry
|
|
ρ01
|
0.09 SUBJECT
|
0.09 SUBJECT
|
|
ICC
|
0.66
|
0.65
|
|
N
|
4287 SUBJECT
|
4289 SUBJECT
|
|
Observations
|
22935
|
22947
|
|
Marginal R2 / Conditional R2
|
0.236 / 0.737
|
0.236 / 0.735
|
Model with calender year added
|
|
Model 2, PM 2.5
|
Model 2, NO2
|
|
Predictors
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
0.2080
|
-0.1632 – 0.5792
|
0.272
|
0.4999
|
0.3836 – 0.6162
|
<0.001
|
|
Baseline PM2.5 (5 year)
|
0.0024
|
-0.0247 – 0.0296
|
0.861
|
|
|
|
|
time_since_entry:exp_avg_pm25_05_yr
|
0.0125
|
0.0102 – 0.0148
|
<0.001
|
|
|
|
|
Baseline NO2 (5 year)
|
|
|
|
-0.0187
|
-0.0246 – -0.0128
|
<0.001
|
|
time_since_entry:exp_avg_no2_05_yr
|
|
|
|
0.0021
|
0.0015 – 0.0027
|
<0.001
|
|
Baseline Age (centered)
|
-0.0528
|
-0.0608 – -0.0448
|
<0.001
|
-0.0577
|
-0.0656 – -0.0498
|
<0.001
|
|
Gender: Male
|
-0.1832
|
-0.2194 – -0.1471
|
<0.001
|
-0.1829
|
-0.2192 – -0.1466
|
<0.001
|
|
Time Since Entry
|
-0.1778
|
-0.1958 – -0.1597
|
<0.001
|
-0.1135
|
-0.1259 – -0.1011
|
<0.001
|
|
birth_cohort_cat_updated1890-1905
|
0.2172
|
0.0557 – 0.3787
|
0.008
|
0.3032
|
0.1429 – 0.4635
|
<0.001
|
|
Birth Cohort: 1910
|
0.1130
|
0.0031 – 0.2229
|
0.044
|
0.1644
|
0.0551 – 0.2737
|
0.003
|
|
Birth Cohort: 1915
|
0.0744
|
0.0010 – 0.1479
|
0.047
|
0.0992
|
0.0257 – 0.1727
|
0.008
|
|
Birth Cohort: 1925
|
-0.1306
|
-0.1995 – -0.0617
|
<0.001
|
-0.1546
|
-0.2235 – -0.0857
|
<0.001
|
|
Birth Cohort: 1930
|
-0.2189
|
-0.3284 – -0.1095
|
<0.001
|
-0.3046
|
-0.4122 – -0.1969
|
<0.001
|
|
birth_cohort_cat_updated1935-1950
|
-0.3327
|
-0.4896 – -0.1757
|
<0.001
|
-0.4083
|
-0.5652 – -0.2514
|
<0.001
|
|
APOE Status: + APOE e4
|
-0.0570
|
-0.0986 – -0.0154
|
0.007
|
-0.0606
|
-0.1025 – -0.0187
|
0.005
|
|
cal_year: cal_year1995
|
0.0417
|
-0.0176 – 0.1010
|
0.168
|
0.0588
|
0.0022 – 0.1154
|
0.042
|
|
cal_year: cal_year1996
|
0.0957
|
0.0347 – 0.1567
|
0.002
|
0.1849
|
0.1349 – 0.2348
|
<0.001
|
|
cal_year: cal_year1997
|
0.1919
|
0.1118 – 0.2721
|
<0.001
|
0.3038
|
0.2429 – 0.3646
|
<0.001
|
|
cal_year: cal_year1998
|
0.2986
|
0.2126 – 0.3847
|
<0.001
|
0.4275
|
0.3679 – 0.4871
|
<0.001
|
|
cal_year: cal_year1999
|
0.3822
|
0.2783 – 0.4861
|
<0.001
|
0.5133
|
0.4423 – 0.5842
|
<0.001
|
|
cal_year: cal_year2000
|
0.3378
|
0.2257 – 0.4499
|
<0.001
|
0.4739
|
0.4008 – 0.5471
|
<0.001
|
|
cal_year: cal_year2001
|
0.3726
|
0.2442 – 0.5009
|
<0.001
|
0.5098
|
0.4279 – 0.5918
|
<0.001
|
|
cal_year: cal_year2002
|
0.3314
|
0.1952 – 0.4675
|
<0.001
|
0.4558
|
0.3701 – 0.5415
|
<0.001
|
|
cal_year: cal_year2003
|
0.3455
|
0.1943 – 0.4967
|
<0.001
|
0.4822
|
0.3883 – 0.5761
|
<0.001
|
|
cal_year: cal_year2004
|
0.3589
|
0.1955 – 0.5223
|
<0.001
|
0.4986
|
0.3979 – 0.5993
|
<0.001
|
|
cal_year: cal_year2005
|
0.4794
|
0.3044 – 0.6543
|
<0.001
|
0.6095
|
0.5010 – 0.7180
|
<0.001
|
|
cal_year: cal_year2006
|
0.4719
|
0.2872 – 0.6565
|
<0.001
|
0.5940
|
0.4796 – 0.7084
|
<0.001
|
|
cal_year: cal_year2007
|
0.4947
|
0.2983 – 0.6912
|
<0.001
|
0.6105
|
0.4881 – 0.7329
|
<0.001
|
|
cal_year: cal_year2008
|
0.4871
|
0.2826 – 0.6915
|
<0.001
|
0.5830
|
0.4552 – 0.7107
|
<0.001
|
|
cal_year: cal_year2009
|
0.5203
|
0.3059 – 0.7347
|
<0.001
|
0.5933
|
0.4582 – 0.7285
|
<0.001
|
|
cal_year: cal_year2010
|
0.5553
|
0.3339 – 0.7767
|
<0.001
|
0.6108
|
0.4711 – 0.7505
|
<0.001
|
|
cal_year: cal_year2011
|
0.5683
|
0.3399 – 0.7966
|
<0.001
|
0.5778
|
0.4315 – 0.7241
|
<0.001
|
|
cal_year: cal_year2012
|
0.5837
|
0.3466 – 0.8208
|
<0.001
|
0.5829
|
0.4307 – 0.7350
|
<0.001
|
|
cal_year: cal_year2013
|
0.6204
|
0.3754 – 0.8655
|
<0.001
|
0.5932
|
0.4348 – 0.7516
|
<0.001
|
|
cal_year: cal_year2014
|
0.6332
|
0.3793 – 0.8871
|
<0.001
|
0.5884
|
0.4239 – 0.7528
|
<0.001
|
|
cal_year: cal_year2015
|
0.5842
|
0.3202 – 0.8482
|
<0.001
|
0.5354
|
0.3637 – 0.7072
|
<0.001
|
|
cal_year: cal_year2016
|
0.6089
|
0.3354 – 0.8825
|
<0.001
|
0.5425
|
0.3642 – 0.7209
|
<0.001
|
|
cal_year: cal_year2017
|
0.6107
|
0.3299 – 0.8914
|
<0.001
|
0.5215
|
0.3369 – 0.7061
|
<0.001
|
|
cal_year: cal_year2018
|
0.5634
|
0.2723 – 0.8545
|
<0.001
|
0.4608
|
0.2686 – 0.6529
|
<0.001
|
|
cal_year: cal_year2019
|
0.4207
|
0.1199 – 0.7215
|
0.006
|
0.3177
|
0.1181 – 0.5173
|
0.002
|
|
cal_year: cal_year2020
|
0.4066
|
0.0845 – 0.7287
|
0.013
|
0.2965
|
0.0705 – 0.5225
|
0.010
|
|
age85:time_since_entry
|
-0.0003
|
-0.0031 – 0.0025
|
0.858
|
-0.0034
|
-0.0061 – -0.0007
|
0.015
|
|
time_since_entry:birth_cohort_cat_updated1890-1905
|
-0.0791
|
-0.0994 – -0.0588
|
<0.001
|
-0.0746
|
-0.0947 – -0.0544
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1910
|
-0.0469
|
-0.0604 – -0.0334
|
<0.001
|
-0.0430
|
-0.0564 – -0.0297
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1915
|
-0.0266
|
-0.0360 – -0.0172
|
<0.001
|
-0.0247
|
-0.0340 – -0.0154
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1925
|
0.0232
|
0.0153 – 0.0311
|
<0.001
|
0.0222
|
0.0145 – 0.0300
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1930
|
0.0489
|
0.0382 – 0.0596
|
<0.001
|
0.0540
|
0.0436 – 0.0644
|
<0.001
|
|
time_since_entry:birth_cohort_cat_updated1935-1950
|
0.0983
|
0.0873 – 0.1094
|
<0.001
|
0.1024
|
0.0917 – 0.1131
|
<0.001
|
|
time_since_entry:apoe+ APOE e4
|
-0.0290
|
-0.0353 – -0.0227
|
<0.001
|
-0.0289
|
-0.0351 – -0.0227
|
<0.001
|
|
Random Effects
|
|
σ2
|
0.22
|
0.22
|
|
τ00
|
0.26 SUBJECT
|
0.26 SUBJECT
|
|
τ11
|
0.00 SUBJECT.time_since_entry
|
0.00 SUBJECT.time_since_entry
|
|
ρ01
|
0.10 SUBJECT
|
0.10 SUBJECT
|
|
ICC
|
0.70
|
0.70
|
|
N
|
4287 SUBJECT
|
4289 SUBJECT
|
|
Observations
|
22935
|
22947
|
|
Marginal R2 / Conditional R2
|
0.270 / 0.782
|
0.267 / 0.778
|