data=read.csv("ble.csv",sep = ";")
head(data,5)
attach(data)
str(data)
## 'data.frame': 80 obs. of 4 variables:
## $ parcelle: int 1 2 3 4 5 6 7 8 9 10 ...
## $ variete : chr "V1" "V1" "V1" "V1" ...
## $ phyto : chr "Avec" "Avec" "Avec" "Avec" ...
## $ rdt : int 5652 5583 5612 5735 5704 5544 5563 5610 5641 5637 ...
summary(data)
## parcelle variete phyto rdt
## Min. : 1.00 Length:80 Length:80 Min. :5268
## 1st Qu.:20.75 Class :character Class :character 1st Qu.:5482
## Median :40.50 Mode :character Mode :character Median :5606
## Mean :40.50 Mean :5609
## 3rd Qu.:60.25 3rd Qu.:5718
## Max. :80.00 Max. :5947
library(ggplot2)
## Warning: le package 'ggplot2' a été compilé avec la version R 4.1.2
figure1=ggplot(data,aes(variete,rdt,fill=variete))+geom_boxplot()
figure1
library(ggplot2)
figure2=ggplot(data,aes(phyto ,rdt,fill=phyto ))+geom_boxplot()
figure2
## REMARQUE: on remarque que pour le facteur variété, les boîtes n’ont pas les mêmes hauteurs. ## Alors que pour la variable phyto les hauteurs sont pres que égales.
modele1=aov(rdt~variete, data=data)
modele1
## Call:
## aov(formula = rdt ~ variete, data = data)
##
## Terms:
## variete Residuals
## Sum of Squares 851844.5 1051387.0
## Deg. of Freedom 3 76
##
## Residual standard error: 117.6182
## Estimated effects may be unbalanced
summary(modele1)
## Df Sum Sq Mean Sq F value Pr(>F)
## variete 3 851845 283948 20.52 7.67e-10 ***
## Residuals 76 1051387 13834
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
modele2=aov(rdt~phyto, data=data)
modele2
## Call:
## aov(formula = rdt ~ phyto, data = data)
##
## Terms:
## phyto Residuals
## Sum of Squares 1008.2 1902223.3
## Deg. of Freedom 1 78
##
## Residual standard error: 156.1649
## Estimated effects may be unbalanced
summary(modele2)
## Df Sum Sq Mean Sq F value Pr(>F)
## phyto 1 1008 1008 0.041 0.839
## Residuals 78 1902223 24387
modele3=anova(lm(rdt~variete,data = data))
modele3
modele4=anova(lm(rdt~phyto,data = data))
modele4
library(ggplot2)
head(Dat,5)
## sec
## v1 v2 v3 v4 v5
## 8 8 8 8 8
## mach
## v1 v2 v3 v4
## 10 10 10 10
fig1=ggplot(Dat,aes(sec,mpm,fill=sec))+geom_boxplot()
fig1
fig2=ggplot(Dat,aes(mach,mpm,fill=mach))+geom_boxplot()
fig2
mod=anova(lm(mpm~mach+sec+mpm:sec,data=Dat))
## Warning in anova.lm(lm(mpm ~ mach + sec + mpm:sec, data = Dat)): ANOVA F-tests
## on an essentially perfect fit are unreliable
mod
mod1=anova(lm(mpm~mach,data=Dat))
mod1
mod2=anova(lm(mpm~sec,data=Dat))
mod2