Ctrl+Alt+I create a chunk
A<-matrix(c(2,4,6,3,12,7,9,13,20,23),nrow=2, byrow=T)
A
[,1] [,2] [,3] [,4] [,5]
[1,] 2 4 6 3 12
[2,] 7 9 13 20 23
rownames(A)<-c("Anna","Ben")
colnames(A)<- c("Var1","Var2","Var3","Var4","Var5")
A
Var1 Var2 Var3 Var4 Var5
Anna 2 4 6 3 12
Ben 7 9 13 20 23
nrow(A)
[1] 2
ncol(A)
[1] 5
dim(A)
[1] 2 5
colnames(A)<-month.name[1:5]
A
January February March April May
Anna 2 4 6 3 12
Ben 7 9 13 20 23
colnames(A)<-month.abb[1:5]
A
Jan Feb Mar Apr May
Anna 2 4 6 3 12
Ben 7 9 13 20 23
colnames(A)<-LETTERS[1:5]
A
A B C D E
Anna 2 4 6 3 12
Ben 7 9 13 20 23
colnames(A)<-letters[1:5]
A
a b c d e
Anna 2 4 6 3 12
Ben 7 9 13 20 23
A[1,4]
[1] 3
A[1,]
a b c d e
2 4 6 3 12
A[2,c(1,2,5)]
a b e
7 9 23
A*2
a b c d e
Anna 4 8 12 6 24
Ben 14 18 26 40 46
A %*% t(A)
Anna Ben
Anna 209 464
Ben 464 1228
A*x=b 2x+1y=3 5x-6y=0
A=matrix(c(2,1,5,-6),nrow = 2, byrow = T)
A
[,1] [,2]
[1,] 2 1
[2,] 5 -6
b<-c(3,0)
solve(A,b)
[1] 1.0588235 0.8823529
diag(A)
[1] 2 -6
det(A)
[1] -17
a<-c(1,3,4,5,6,7)
b<-c("no","no","yes","no","no","yes")
Data_ab<-cbind(a,b)
Data_ab
a b
[1,] "1" "no"
[2,] "3" "no"
[3,] "4" "yes"
[4,] "5" "no"
[5,] "6" "no"
[6,] "7" "yes"
Data_ab[4,]
a b
"5" "no"
Data_ab[4,2]
b
"no"
library(tibble)
df_ab<-data.frame(a,b)
df_ab
df_ab_tibble<-tibble(a,b)
df_ab_tibble
df_ab_tibble$a
[1] 1 3 4 5 6 7
df_ab_tibble[5,2]="YES"
df_ab_tibble
df_ab_tibble[1,1]=NA
df_ab_tibble
NA
data_1<-data.frame(state.abb,state.area,state.center,state.division)
head(data_1)
data_2<-data.frame(state.area,state.name,state.region)
head(data_2)
library(dplyr)
left_join(data_1,data_2,by="state.area")
right_join(data_1,data_2, by="state.area")
data_3<- data_1 %>% filter(state.area>=10000 & state.area<=100000)
data_3
dim(data_2)
[1] 50 3
dim(data_3)
[1] 34 5
left_join(data_2,data_3)
Joining, by = "state.area"
right_join(data_2,data_3)
Joining, by = "state.area"
data_4<-right_join(data_1,data_2, by="state.area")
data_4
NA
d5<-data_4 %>% filter(state.region=="West")
d5
table(data_4$state.region)
Northeast South North Central West
9 16 12 13
d6<-data_4 %>% filter(state.region==c("West","South"))
d6
d7<-data_4 %>% filter(state.region %in% c("West","South"),state.area>=8000 & state.area<=100000)
d7
d8<- data_4 %>% select(state.area,state.name,state.region)
d8
d9<- data_4 %>% select(-c(1,3,5))
d9
head(data_4)
NA
d10<-data_4 %>% mutate(new_area=state.area/1000)
d10
YN<-sample(c("No","Yes"),nrow(data_4),replace = T)
d11<-d10 %>% mutate(new_YN=YN)
d11
IF<-ifelse(data_4$state.region=="West",1,0)
IF
[1] 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
[27] 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1
d12<-d11 %>% mutate(new_IF=IF)
d12
NA