Matrix

Ctrl+Alt+I create a chunk

A<-matrix(c(2,4,6,3,12,7,9,13,20,23),nrow=2, byrow=T)
A
     [,1] [,2] [,3] [,4] [,5]
[1,]    2    4    6    3   12
[2,]    7    9   13   20   23
rownames(A)<-c("Anna","Ben")
colnames(A)<- c("Var1","Var2","Var3","Var4","Var5")
A
     Var1 Var2 Var3 Var4 Var5
Anna    2    4    6    3   12
Ben     7    9   13   20   23
nrow(A)
[1] 2
ncol(A)
[1] 5
dim(A)
[1] 2 5
colnames(A)<-month.name[1:5]
A
     January February March April May
Anna       2        4     6     3  12
Ben        7        9    13    20  23
colnames(A)<-month.abb[1:5]
A
     Jan Feb Mar Apr May
Anna   2   4   6   3  12
Ben    7   9  13  20  23
colnames(A)<-LETTERS[1:5]
A
     A B  C  D  E
Anna 2 4  6  3 12
Ben  7 9 13 20 23
colnames(A)<-letters[1:5]
A
     a b  c  d  e
Anna 2 4  6  3 12
Ben  7 9 13 20 23
A[1,4]
[1] 3
A[1,]
 a  b  c  d  e 
 2  4  6  3 12 
A[2,c(1,2,5)]
 a  b  e 
 7  9 23 
A*2
      a  b  c  d  e
Anna  4  8 12  6 24
Ben  14 18 26 40 46
A %*% t(A)
     Anna  Ben
Anna  209  464
Ben   464 1228

A*x=b 2x+1y=3 5x-6y=0

A=matrix(c(2,1,5,-6),nrow = 2, byrow = T)
A
     [,1] [,2]
[1,]    2    1
[2,]    5   -6
b<-c(3,0)
solve(A,b)
[1] 1.0588235 0.8823529
diag(A)
[1]  2 -6
det(A)
[1] -17
a<-c(1,3,4,5,6,7)
b<-c("no","no","yes","no","no","yes")
Data_ab<-cbind(a,b)
Data_ab
     a   b    
[1,] "1" "no" 
[2,] "3" "no" 
[3,] "4" "yes"
[4,] "5" "no" 
[5,] "6" "no" 
[6,] "7" "yes"
Data_ab[4,]
   a    b 
 "5" "no" 
Data_ab[4,2]
   b 
"no" 

Dataframe

library(tibble)
df_ab<-data.frame(a,b)
df_ab

df_ab_tibble<-tibble(a,b)
df_ab_tibble
df_ab_tibble$a
[1] 1 3 4 5 6 7
df_ab_tibble[5,2]="YES"
df_ab_tibble
df_ab_tibble[1,1]=NA
df_ab_tibble
NA
data_1<-data.frame(state.abb,state.area,state.center,state.division)
head(data_1)
data_2<-data.frame(state.area,state.name,state.region)
head(data_2)

dlpyr

library(dplyr)
left_join(data_1,data_2,by="state.area")
right_join(data_1,data_2, by="state.area")
data_3<- data_1 %>% filter(state.area>=10000 & state.area<=100000)
data_3
dim(data_2)
[1] 50  3
dim(data_3)
[1] 34  5
left_join(data_2,data_3)
Joining, by = "state.area"
right_join(data_2,data_3)
Joining, by = "state.area"
data_4<-right_join(data_1,data_2, by="state.area")
data_4
NA
d5<-data_4 %>% filter(state.region=="West")
d5
table(data_4$state.region)

    Northeast         South North Central          West 
            9            16            12            13 
d6<-data_4 %>% filter(state.region==c("West","South"))
d6
d7<-data_4 %>% filter(state.region %in% c("West","South"),state.area>=8000 & state.area<=100000)
d7
d8<- data_4 %>% select(state.area,state.name,state.region)
d8
d9<- data_4 %>% select(-c(1,3,5))
d9
head(data_4)
NA
d10<-data_4 %>% mutate(new_area=state.area/1000)
d10
YN<-sample(c("No","Yes"),nrow(data_4),replace = T)
d11<-d10 %>% mutate(new_YN=YN)
d11
IF<-ifelse(data_4$state.region=="West",1,0)
IF
 [1] 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
[27] 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1
d12<-d11 %>% mutate(new_IF=IF)
d12
NA
LS0tDQp0aXRsZTogIk1hdHJpeCBEYXRhZnJhbWUgYW5kIERQTFlSIg0KYXV0aG9yOiAiRXJhbGRhIEdqaWthIg0KZGF0ZTogIjI5IE1hcmNoIDIwMjIiDQpvdXRwdXQ6DQogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQNCiAgd29yZF9kb2N1bWVudDogZGVmYXVsdA0KLS0tDQoNCg0KDQojIE1hdHJpeA0KDQpDdHJsK0FsdCtJIGNyZWF0ZSBhIGNodW5rDQoNCg0KYGBge3J9DQpBPC1tYXRyaXgoYygyLDQsNiwzLDEyLDcsOSwxMywyMCwyMyksbnJvdz0yLCBieXJvdz1UKQ0KQQ0KYGBgDQoNCmBgYHtyfQ0Kcm93bmFtZXMoQSk8LWMoIkFubmEiLCJCZW4iKQ0KY29sbmFtZXMoQSk8LSBjKCJWYXIxIiwiVmFyMiIsIlZhcjMiLCJWYXI0IiwiVmFyNSIpDQpBDQpgYGANCg0KYGBge3J9DQpucm93KEEpDQpuY29sKEEpDQpkaW0oQSkNCmBgYA0KDQpgYGB7cn0NCmNvbG5hbWVzKEEpPC1tb250aC5uYW1lWzE6NV0NCkENCmNvbG5hbWVzKEEpPC1tb250aC5hYmJbMTo1XQ0KQQ0KDQpgYGANCg0KYGBge3J9DQpjb2xuYW1lcyhBKTwtTEVUVEVSU1sxOjVdDQpBDQpjb2xuYW1lcyhBKTwtbGV0dGVyc1sxOjVdDQpBDQpgYGANCg0KYGBge3J9DQpBWzEsNF0NCmBgYA0KDQpgYGB7cn0NCkFbMSxdDQpgYGANCg0KYGBge3J9DQpBWzIsYygxLDIsNSldDQpgYGANCg0KYGBge3J9DQpBKjINCmBgYA0KDQpgYGB7cn0NCkEgJSolIHQoQSkNCmBgYA0KQSp4PWINCjJ4KzF5PTMNCjV4LTZ5PTANCmBgYHtyfQ0KQT1tYXRyaXgoYygyLDEsNSwtNiksbnJvdyA9IDIsIGJ5cm93ID0gVCkNCkENCmI8LWMoMywwKQ0Kc29sdmUoQSxiKQ0KYGBgDQoNCmBgYHtyfQ0KZGlhZyhBKQ0KZGV0KEEpDQpgYGANCmBgYHtyfQ0KYTwtYygxLDMsNCw1LDYsNykNCmI8LWMoIm5vIiwibm8iLCJ5ZXMiLCJubyIsIm5vIiwieWVzIikNCkRhdGFfYWI8LWNiaW5kKGEsYikNCkRhdGFfYWINCkRhdGFfYWJbNCxdDQpEYXRhX2FiWzQsMl0NCmBgYA0KIyBEYXRhZnJhbWUNCmBgYHtyfQ0KbGlicmFyeSh0aWJibGUpDQpkZl9hYjwtZGF0YS5mcmFtZShhLGIpDQpkZl9hYg0KDQpkZl9hYl90aWJibGU8LXRpYmJsZShhLGIpDQpkZl9hYl90aWJibGUNCmBgYA0KDQoNCmBgYHtyfQ0KZGZfYWJfdGliYmxlJGENCmRmX2FiX3RpYmJsZVs1LDJdPSJZRVMiDQpkZl9hYl90aWJibGUNCmRmX2FiX3RpYmJsZVsxLDFdPU5BDQpkZl9hYl90aWJibGUNCg0KYGBgDQoNCmBgYHtyfQ0KZGF0YV8xPC1kYXRhLmZyYW1lKHN0YXRlLmFiYixzdGF0ZS5hcmVhLHN0YXRlLmNlbnRlcixzdGF0ZS5kaXZpc2lvbikNCmhlYWQoZGF0YV8xKQ0KYGBgDQoNCmBgYHtyfQ0KZGF0YV8yPC1kYXRhLmZyYW1lKHN0YXRlLmFyZWEsc3RhdGUubmFtZSxzdGF0ZS5yZWdpb24pDQpoZWFkKGRhdGFfMikNCmBgYA0KDQojIyBkbHB5ciANCmBgYHtyfQ0KbGlicmFyeShkcGx5cikNCmxlZnRfam9pbihkYXRhXzEsZGF0YV8yLGJ5PSJzdGF0ZS5hcmVhIikNCmBgYA0KDQpgYGB7cn0NCnJpZ2h0X2pvaW4oZGF0YV8xLGRhdGFfMiwgYnk9InN0YXRlLmFyZWEiKQ0KYGBgDQoNCmBgYHtyfQ0KZGF0YV8zPC0gZGF0YV8xICU+JSBmaWx0ZXIoc3RhdGUuYXJlYT49MTAwMDAgJiBzdGF0ZS5hcmVhPD0xMDAwMDApDQpkYXRhXzMNCmBgYA0KDQpgYGB7cn0NCmRpbShkYXRhXzIpDQpkaW0oZGF0YV8zKQ0KYGBgDQoNCmBgYHtyfQ0KbGVmdF9qb2luKGRhdGFfMixkYXRhXzMpDQpgYGANCg0KYGBge3J9DQpyaWdodF9qb2luKGRhdGFfMixkYXRhXzMpDQpgYGANCg0KYGBge3J9DQpkYXRhXzQ8LXJpZ2h0X2pvaW4oZGF0YV8xLGRhdGFfMiwgYnk9InN0YXRlLmFyZWEiKQ0KZGF0YV80DQoNCmBgYA0KDQpgYGB7cn0NCmQ1PC1kYXRhXzQgJT4lIGZpbHRlcihzdGF0ZS5yZWdpb249PSJXZXN0IikNCmQ1DQpgYGANCg0KYGBge3J9DQp0YWJsZShkYXRhXzQkc3RhdGUucmVnaW9uKQ0KYGBgDQoNCmBgYHtyfQ0KZDY8LWRhdGFfNCAlPiUgZmlsdGVyKHN0YXRlLnJlZ2lvbj09YygiV2VzdCIsIlNvdXRoIikpDQpkNg0KYGBgDQoNCmBgYHtyfQ0KZDc8LWRhdGFfNCAlPiUgZmlsdGVyKHN0YXRlLnJlZ2lvbiAlaW4lIGMoIldlc3QiLCJTb3V0aCIpLHN0YXRlLmFyZWE+PTgwMDAgJiBzdGF0ZS5hcmVhPD0xMDAwMDApDQpkNw0KYGBgDQoNCmBgYHtyfQ0KZDg8LSBkYXRhXzQgJT4lIHNlbGVjdChzdGF0ZS5hcmVhLHN0YXRlLm5hbWUsc3RhdGUucmVnaW9uKQ0KZDgNCmBgYA0KDQpgYGB7cn0NCmQ5PC0gZGF0YV80ICU+JSBzZWxlY3QoLWMoMSwzLDUpKQ0KZDkNCmhlYWQoZGF0YV80KQ0KDQpgYGANCg0KYGBge3J9DQpkMTA8LWRhdGFfNCAlPiUgbXV0YXRlKG5ld19hcmVhPXN0YXRlLmFyZWEvMTAwMCkNCmQxMA0KYGBgDQoNCmBgYHtyfQ0KWU48LXNhbXBsZShjKCJObyIsIlllcyIpLG5yb3coZGF0YV80KSxyZXBsYWNlID0gVCkNCmQxMTwtZDEwICU+JSBtdXRhdGUobmV3X1lOPVlOKQ0KZDExDQpgYGANCg0KYGBge3J9DQpJRjwtaWZlbHNlKGRhdGFfNCRzdGF0ZS5yZWdpb249PSJXZXN0IiwxLDApDQpJRg0KZDEyPC1kMTEgJT4lIG11dGF0ZShuZXdfSUY9SUYpDQpkMTINCg0KYGBgDQoNCg==