Nama : Novan Adi Nugroho
NIM : 211910848
Kelas : 3SE3
TUGAS ANALISIS PEUBAH GANDA PERTEMUAN 7
Import File
library(readxl)
dt <- read_xlsx("Tugas APG Pertemuan 7.xlsx")
colnames(dt) <- c("i","closed","open")
dt2 <- dt[,2:3]
Vektor rata-rata dari data asli
(cm <- colMeans(dt2))
## closed open
## 0.1283333 0.1638095
Menghitung matriks variance-covariance
(S <- cov(dt2))
## closed open
## closed 0.010053252 0.009535772
## open 0.009535772 0.016190012
Menghitung invers matriks variance-covariance
(solve(S))
## closed open
## closed 225.3893 -132.7523
## open -132.7523 139.9564
Membuat chi-square Plot
# calaculate the statistical square distances
(d <- apply(dt2,MARGIN = 1,function(dt2) +
t(dt2-cm) %*% solve(S) %*% (dt2-cm)))
## [1] 1.9182482 0.3424485 1.3293288 0.2707763 0.6257666 0.1873365
## [7] 0.3418183 0.6257666 0.3418183 0.2707763 0.5456976 1.1844913
## [13] 1.6346824 13.7969703 0.1199894 0.6364931 1.2294244 0.2707763
## [19] 1.6346824 11.8008871 0.1199894 0.6257666 1.0208562 0.8288197
## [25] 0.2119385 3.8013379 0.2119385 0.3424485 0.3418183 0.8972369
## [31] 0.2707763 2.9416357 0.3350118 3.0306589 1.6537157 0.5573147
## [37] 0.6523064 3.6845396 2.9329147 8.7828361 8.9074764 0.7404843
# construct a chi-square plot of the ordered distances
par(mfrow = c(1,1))
plot(qchisq((1:nrow(dt2)-1/2)/nrow(dt2),df=2), sort(d),
xlab = expression(paste(chi[2]^2, "Quantile")),
ylab = "Ordered Distances",
main = "Chi-square Plot for (Closed,Open)"); abline(a=0, b=1)
Terlihat bahwa data tidak berdistribusi normal bivariat, tidak berada pada garis lurus maka solusinya dilakukan transformasi
Transformasi berdasarkan soal
dtnew <- dt2^(1/4)
Vektor rata-rata dari data transformasi
(cmnew <- colMeans(dtnew))
## closed open
## 0.5642575 0.6029812
Menghitung matriks variance-covariance dari data transformasi
(Snew <- cov(dtnew))
## closed open
## closed 0.01435023 0.01171547
## open 0.01171547 0.01454530
invers S
solve(Snew)
## closed open
## closed 203.4981 -163.9069
## open -163.9069 200.7691
Membuat chi-square Plot dari data transformasi
# calaculate the statistical square distances in transformation data
(dnew <- apply(dtnew,MARGIN = 1,function(dtnew) +
t(dtnew-cmnew) %*% solve(Snew) %*% (dtnew-cmnew)))
## [1] 1.85004223 0.36916666 1.40305802 0.30680988 0.81362789 0.27683757
## [7] 0.23962769 0.81362789 0.23962769 0.30680988 0.63376962 2.57931130
## [13] 5.71246681 9.50831671 0.03341089 0.91023045 2.46903199 0.30680988
## [19] 5.71246681 5.29252541 0.03341089 0.81362789 1.54506989 1.20045883
## [25] 0.39311905 3.86069165 0.39311905 0.36916666 0.23962769 1.09984515
## [31] 0.30680988 3.94506381 0.51430566 2.16261800 6.35993678 0.83188830
## [37] 0.83738765 2.63136002 2.18040137 4.03149749 7.16362319 1.30939580
# construct a chi-square plot of the ordered distances
par(mfrow = c(1,1))
plot(qchisq((1:nrow(dtnew)-1/2)/nrow(dtnew),df=2), sort(dnew),
xlab = expression(paste(chi[2]^2, "Quantile")),
ylab = "Ordered Distances",
main = "Chi-square Plot for (Closed,Open) Transformation Data"); abline(a=0, b=1)
Scatter Plot Data Transformasi
plot(dtnew$closed,dtnew$open); abline(a=0, b=1)
Eigen value
ev <- eigen(Snew)
# extract components
(values <- ev$values)
## [1] 0.026163638 0.002731895
Vector eigen
ev$vectors
## [,1] [,2]
## [1,] 0.7041574 -0.7100439
## [2,] 0.7100439 0.7041574
Membuat Bivariat Ellips
# Make bivariat ellips
#install.packages("MVQuickGraphs")
library(MVQuickGraphs)
## Warning: package 'MVQuickGraphs' was built under R version 4.0.5
confidenceEllipse(X.mean = cmnew,
eig = ev,n = 42,p = 2,alpha = 0.05)
```