\(~\)
\(~\)
P(X = 1) = \(\frac{k^{n} - (k - 1)^n} {k^n}\)
P(X = 2) = \(\frac{(k - 2 + 1)^n - (k -2)^n}{k^n}\)
P(X = y) = \(\frac{(k - y + 1)^n - (k - y)^n} {k^n}\)
\(~\)
# Fail each year
P_Fail <- 1 / 10
# Not Fail each year
P_NFail <- 1 - P_Fail
# Expected Value
ev <- 1 / P_Fail
ev## [1] 10
# Standard Deviation
sd <- sqrt(P_NFail / (P_Fail ^ 2))
round(sd, 2)## [1] 9.49
# Modeling as geometric
P <- 1 - pgeom(8 - 1, P_Fail)
round(P, 2)## [1] 0.43
# Probability of Failing
P_eFailing <- exp(-1 * (8/10))
round(P_eFailing, 2)## [1] 0.45
# Expected Value using lambda
ev <- 10
ev## [1] 10
# Standard Deviation
sd_expected <- sqrt(1 / (.10 ^ 2))
sd_expected## [1] 10
n <- 8
p <- 1 /10
q <- 1 - p
k <- 0
# Probability of Machine Failing
p_Bin <- dbinom(k, n, p)
round(p_Bin, 2)## [1] 0.43
# Expected Value
ev <- n * p
ev## [1] 0.8
# Standard Deviation
sd <- sqrt(n * p * q)
round(sd, 2)## [1] 0.85
lambda <- 8 / 10
# Probability of machine Failing
p_Poisson <- ppois(0, lambda = 0.8)
p_Poisson## [1] 0.449329
# Expected Value
ev_Poisson <- lambda
ev_Poisson## [1] 0.8
# Standard Deviation
sd_Poisson <- sqrt(lambda)
round(sd_Poisson, 2)## [1] 0.89