\(~\)
\(~\)
P(X = 1) = \(\frac{k^{n} - (k - 1)^n} {k^n}\)
P(X = 2) = \(\frac{(k - 2 + 1)^n - (k -2)^n}{k^n}\)
P(X = y) = \(\frac{(k - y + 1)^n - (k - y)^n} {k^n}\)
\(~\)
# Fail each year
<- 1 / 10
P_Fail
# Not Fail each year
<- 1 - P_Fail
P_NFail
# Expected Value
<- 1 / P_Fail
ev ev
## [1] 10
# Standard Deviation
<- sqrt(P_NFail / (P_Fail ^ 2))
sd round(sd, 2)
## [1] 9.49
# Modeling as geometric
<- 1 - pgeom(8 - 1, P_Fail)
P round(P, 2)
## [1] 0.43
# Probability of Failing
<- exp(-1 * (8/10))
P_eFailing round(P_eFailing, 2)
## [1] 0.45
# Expected Value using lambda
<- 10
ev ev
## [1] 10
# Standard Deviation
<- sqrt(1 / (.10 ^ 2))
sd_expected sd_expected
## [1] 10
<- 8
n <- 1 /10
p <- 1 - p
q <- 0
k
# Probability of Machine Failing
<- dbinom(k, n, p)
p_Bin round(p_Bin, 2)
## [1] 0.43
# Expected Value
<- n * p
ev ev
## [1] 0.8
# Standard Deviation
<- sqrt(n * p * q)
sd round(sd, 2)
## [1] 0.85
<- 8 / 10
lambda
# Probability of machine Failing
<- ppois(0, lambda = 0.8)
p_Poisson p_Poisson
## [1] 0.449329
# Expected Value
<- lambda
ev_Poisson ev_Poisson
## [1] 0.8
# Standard Deviation
<- sqrt(lambda)
sd_Poisson round(sd_Poisson, 2)
## [1] 0.89