\(~\)
\(~\)
From exercise 10: \(\frac{\mu}{n}\) where n is independent random variables with the exponential density and the mean \(\mu\).
Key: \(\mu\) = 1000 hours n = 100 lightbulbs
<- 1000 / 100
burnout burnout
## [1] 10
Solution: The expected time for the first of these bulbs to burn out is 10 hours.
\(~\)
\(f(x_1) = \lambda e ^{-\lambda x1}\)
\(f(x_2) = \lambda e ^{-\lambda x2}\)
\(f(x_1) * f(x_2) = \lambda 2e ^{-\lambda (x1+ x2)}\)
\(Z = x_1 - x_2\)
\(x_1 = Z + x_2\)
\(\lambda 2e - \lambda ((z + x2) + x2) = \lambda 2e = \lambda(z + 2x2)\)
\(\int \lambda 2e ^{\lambda(z + 2x_2)}dx = \frac{\lambda}{2}e^{\lambda z}\)
\(\int \lambda 2e ^{-\lambda(z + 2x2)}dx = \frac{\lambda}{2}e^{-\lambda |z|}\)
\((1 / 2)\lambda e ^ {-\lambda |z|}\)
\(~\)
# (a)
<- 2 / sqrt(100 / 3)
k round((1 / k^2), 3)
## [1] 8.333
Solution: Since the highest value of probability is 1, \(\therefore\) 8.333 \(\approx\) 1
\(~\)
# (b)
<- 5 / sqrt(100 / 3)
k round((1 / k^2), 3)
## [1] 1.333
Solution: Since the highest value of probability is 1, \(\therefore\) 1.333 \(\approx\) 1
\(~\)
# (c)
<- 9 / sqrt(100 / 3)
k round((1 / k^2), 3)
## [1] 0.412
Solution: upper bound is 0.412
\(~\)
# (d)
<- 20 / sqrt(100 / 3)
k round((1 / k^2), 3)
## [1] 0.083
Solution: upper bound is 0.083