The price of one share of stock in the Pilsdorff Beer Company (see Exercise 8.2.12) is given by \(Y_n\) on the _n_th day of the year. Finn observes that the differences \(X_n = Y_{n + 1} - Y_n\) appear to be independent random variables with a common distribution having mean \(\mu = 0\) and variance \(\sigma = 1 / 4\). If \(Y_1\) = 100, estimate the probability that \(Y_{365}\) is:
\(\ge 100\)
\(\ge 110\)
\(\ge 120\)
Solutions:
# greater than or equal to 100
1 - pnorm((100 - 100) / (0.5 * sqrt(365 - 1)))
## [1] 0.5
# greater than or equal to 110
1 - pnorm((110 - 100) / (0.5 * sqrt(365 - 1)))
## [1] 0.1472537
# greater than or equal to 120
1 - pnorm((120 - 100) / (0.5 * sqrt(365 - 1)))
## [1] 0.01801584
Probability that \(Y_365\) for \(\ge 100\) is 0.5, for \(\ge 110\) it’s 0.147 and for \(\ge 120\) it’s 0.0180.
The moment generating function (MGF) is: \(M_z (t) = Expected(e^{tx})\)
The binomial probability mass function (PMF) is: \(P_x = \binom{n}{x}p^x (1 - p)^{n - x}\)
The combination of MGF and PMF is: \(M_z (t) = \sum_{x = 0}^{n} e^{tx} * \binom{n}{x}p^x (1 - p)^{n - x}\)
Simplified when t is a real number: M(t) = \((pe^t + 1 - p)^n\)
First instant of expected value: M’(t) = \(npe^t(pe^t - p + 1)^{n-1}\)
At 0 we get this expected value: M’(0) = \(npe^0(pe^0 - p + 1)^{n-1} = np(p - p + 1)^{n - 1} = np(1)^{n - 1} = np\)
For the variance:
\(M^n(t) = npe^t(pe^t - p + 1)^{n-2}(npe^t -p +1)\)
\(M^n(0) = npe^0(pe^0 - p + 1)^{n-2}(npe^0 -p +1) = np(np - p + 1)\)
Therefore the expected binomial distribution is np and the variance is np(np - p + 1).
The exponential distribution: \(\lambda e^{-\lambda x}\) when x \(\ge 0\)
\(M(t)=\int^\inf_0e^{tx}*\lambda e^{-\lambda x}=-\frac{\lambda}{t-\lambda}\)
The expected value evaluated at 0: \(M'(t) = \dfrac{\lambda}{(t-\lambda)^2}\)
\(M'(0) = 1\)
\(M^n(t) = -\dfrac{2\lambda}{(t-\lambda)^3}\)
\(M^n(0) = -\dfrac{2\lambda}{(-\lambda)^3} = 2 / \lambda ^2\)
The expected value is \(1 / \lambda\) and the variance is \(2 / \lambda ^2\)
Some good explanation for MGF https://towardsdatascience.com/moment-generating-function-explained-27821a739035