Creating the environment

This template is based in this paper

https://revistas.ucm.es/index.php/REVE/article/view/75566/4564456557467

For a detail explanation of how to use it, please watch this video

https://www.youtube.com/watch?v=jtKSifvNvTM

Data getting

wos_scopus_tos <- 
  tosr::tosr_load("Scopus_1106.bib", 
                  "WoS_1.txt", 
                  "WoS_2.txt")

tree_of_science <- 
  tosr::tosR("Scopus_1106.bib", 
                  "WoS_1.txt", 
                  "WoS_2.txt")

wos <- 
  bibliometrix::convert2df(c("WoS_1.txt", 
                             "WoS_2.txt"))  # create dataframe from wos file

scopus <- 
  bibliometrix::convert2df("Scopus_1106.bib", # Create dataframe from scopus file
                           dbsource = "scopus", 
                           format = "bibtex")

Table 1. Search Criteria

table_1 <- 
  tibble(wos = length(wos$SR), # Create a dataframe with the values.
         scopus = length(scopus$SR), 
         total = length(wos_scopus_tos$df$SR))
table_1

Figure 1. Languages

main_languages <- 
  wos_scopus_tos$df |> 
  select(LA) |> 
  separate_rows(LA, sep = "; ") |> 
  count(LA, sort = TRUE) |> 
  slice(1:5)

other_languages <- 
  wos_scopus_tos$df |> 
  separate_rows(LA, sep = "; ") |> 
  select(LA) |> 
  count(LA, sort = TRUE) |> 
  slice(6:n) |> 
  summarise(n = sum(n)) |> 
  mutate(LA = "OTHERS") |> 
  select(LA, n)

languages <- 
  main_languages |> 
  bind_rows(other_languages) |> 
  mutate(percentage = n / sum(n),
         percentage = round(percentage, 
                            digits = 2) ) |> 
  rename(language = LA) |>
  select(language, percentage, count = n)

languages
df <- languages |> 
  rename(value = percentage, group = language) |>
  mutate(value = value * 100) |> 
  select(value, group)

df2 <- df %>% 
  mutate(csum = rev(cumsum(rev(value))), 
         pos = value/2 + lead(csum, 1),
         pos = if_else(is.na(pos), value/2, pos))

ggplot(df, aes(x = 2 , y = value, fill = fct_inorder(group))) +
  geom_col(width = 1, color = 1) +
  coord_polar(theta = "y") +
  geom_label_repel(data = df2,
                   aes(y = pos, label = paste0(value, "%")),
                   size = 4.5, nudge_x = 1, show.legend = FALSE) +
  theme(panel.background = element_blank(),
        axis.line = element_blank(), 
        axis.text = element_blank(),
        axis.ticks = element_blank(),
        axis.title = element_blank(),
        plot.title = element_text(hjust = 0.5, size = 18)) +
  labs(title = "Languages") +
  guides(fill = guide_legend(title = "")) +
  theme_void() +
  xlim(0.5, 2.5)

Figure 2. Scientific Production

wos_anual_production <- 
  wos |> 
  select(PY) |> 
  count(PY, sort = TRUE) |> 
  na.omit() |> 
  filter(PY >= 2000,
         PY < year(today())) |> 
  mutate(ref_type = "wos")

scopus_anual_production  <- 
  scopus |> 
  select(PY) |> 
  count(PY, sort = TRUE) |> 
  na.omit() |> 
  filter(PY >= 2000,
         PY < year(today())) |>
  mutate(ref_type = "scopus")

total_anual_production <- 
  wos_scopus_tos$df |> 
  select(PY) |> 
  count(PY, sort = TRUE) |> 
  na.omit() |> 
  filter(PY >= 2000,
         PY < year(today())) |>
  mutate(ref_type = "total")

wos_scopus_total_annual_production <- 
  wos_anual_production |> 
  bind_rows(scopus_anual_production,
            total_anual_production) 

figure_2_data <- 
  wos_scopus_total_annual_production |> 
  mutate(PY = replace_na(PY, replace = 0)) |> 
  pivot_wider(names_from = ref_type, 
              values_from = n) |> 
  arrange(desc(PY))

figure_2_data 
wos_scopus_total_annual_production |> 
  ggplot(aes(x = PY, y = n, color = ref_type)) +
  geom_line() +
  labs(title = "Annual Scientific Production", 
       x = "years",
       y = "papers") +
  theme(plot.title = element_text(hjust = 0.5)) 

Table 2. Country production

data_biblio_wos <- biblioAnalysis(wos)

wos_country <- 
  data_biblio_wos$Countries |> 
  data.frame() |> 
  mutate(database = "wos") |> 
  select(country = Tab, papers = Freq, database ) |> 
  arrange(desc(papers)) 

data_biblio_scopus <- biblioAnalysis(scopus)

scopus_country <- 
  data_biblio_scopus$Countries |> 
  data.frame() |> 
  mutate(database = "scopus") |> 
  select(country = Tab, papers = Freq, database ) |> 
  arrange(desc(papers)) 

data_biblio_total <- biblioAnalysis(wos_scopus_tos$df)

total_country <- 
  data_biblio_total$Countries |> 
  data.frame() |> 
  mutate(database = "total") |> 
  select(country = Tab, papers = Freq, database ) |> 
  arrange(desc(papers)) 

wos_scopus_total_country <- 
  wos_country |> 
  bind_rows(scopus_country, 
            total_country) |> 
  mutate(country = as.character(country)) |> 
  pivot_wider(names_from = database, 
              values_from = papers) |> 
  arrange(desc(total)) |> 
  slice(1:10) |> 
  mutate(percentage = total / (table_1 |> pull(total)),
         percentage = round(percentage, digits = 2))

wos_scopus_total_country

Table 3. Author production

wos_authors <- 
  data_biblio_wos$Authors |> 
  data.frame() |> 
  rename(authors_wos = AU, papers_wos = Freq) |> 
  arrange(desc(papers_wos)) |> 
  slice(1:10) |> 
  mutate(database_wos = "wos")


scopus_authors <- 
  data_biblio_scopus$Authors |> 
  data.frame() |> 
  rename(authors_scopus = AU, papers_scopus = Freq) |> 
  arrange(desc(papers_scopus)) |> 
  slice(1:10) |> 
  mutate(database_scopus = "scopus")

total_authors <- 
  data_biblio_total$Authors |> 
  data.frame() |> 
  rename(authors_total = AU, 
         papers_total = Freq) |> 
  arrange(desc(papers_total)) |> 
  slice(1:10) |> 
  mutate(database_total = "total")

wos_scopus_authors <- 
  wos_authors |> 
  bind_cols(scopus_authors,
            total_authors)

wos_scopus_authors

Table 4. Journal production

wos_journal <- 
  wos |> 
  select(journal = SO) |> 
  na.omit() |> 
  count(journal, sort = TRUE) |> 
  slice(1:20) |> 
  rename(publications = n) |> 
  mutate(database = "wos")

scopus_journal <- 
  scopus |> 
  select(journal = SO) |> 
  na.omit() |> 
  count(journal, sort = TRUE) |> 
  slice(1:20) |> 
  rename(publications = n) |> 
  mutate(database = "scopus")

total_journal <- 
  wos_scopus_tos$df |> 
  select(journal = SO) |> 
  na.omit() |> 
  count(journal, sort = TRUE) |> 
  slice(1:20) |> 
  rename(publications = n) |> 
  mutate(database = "total")

wos_scopus_total_journal <- 
  wos_journal |> 
  bind_rows(scopus_journal, 
            total_journal) |> 
  pivot_wider(names_from = database, 
              values_from = publications) |> 
  arrange(desc(total)) |> 
  slice(1:10) |> 
  mutate(percentage = total / table_1 |> pull(total),
         percentage = round(percentage, digits = 2))


wos_scopus_total_journal

Figure 3. Co-citation network

Author co-citation network

wos_scopus_author_metatag <- 
  metaTagExtraction(wos_scopus_tos$df, Field = "CR_AU")

wos_scopus_author_co_citation_matrix <- 
  biblioNetwork(M = wos_scopus_author_metatag, 
                analysis = "co-citation", 
                network = "authors")

aca_tbl_graph <- 
  graph_from_adjacency_matrix(wos_scopus_author_co_citation_matrix , 
                              mode = "undirected", 
                              weighted = TRUE, 
                              diag = FALSE) |> 
  as_tbl_graph(aca_igraph, directed = FALSE ) |> 
  activate(nodes) |> 
  mutate(degree = centrality_degree()) |> 
  arrange(desc(degree)) |> 
  slice(1:30)

weight_tbl <- 
  aca_tbl_graph |> 
  activate(edges) |> 
  select(weight) |> 
  as.data.frame()

threshold <- 
  quantile(weight_tbl |> 
             select(weight) |> 
             pull(), 
           probs = 0.80)

aca_tbl_graph_filtered <- 
  aca_tbl_graph |> 
  activate(edges) |> 
  filter(weight >= threshold) |> 
  activate(nodes) |> 
  mutate(components = group_components(type = "weak")) |> 
  filter(components == 1) |> 
  mutate(degree = centrality_degree(),
         community = as.factor(group_louvain()) )

aca_tbl_graph_filtered |> 
  ggraph(layout = "kk") + 
  geom_edge_link(alpha = .25, 
                 aes(width = weight)) +
  geom_node_point(aes(colour = community, 
                      size = degree)) +
  geom_node_text(aes(label = name), repel = TRUE) +
  theme_graph()

Author Collaboration network

wos_scopus_author_collab_matrix <- 
  biblioNetwork(M = wos_scopus_tos$df, 
                analysis = "collaboration", 
                network = "authors")

plot_author_collab <- 
  networkPlot(NetMatrix = wos_scopus_author_collab_matrix, 
              weighted=T, n = 30, 
              Title = "Author Collaboration Network", 
              type = "fruchterman", 
              size=T,
              edgesize = 5,
              labelsize=0.7)

author_collab_tbl_graph <- 
  graph_from_adjacency_matrix(wos_scopus_author_collab_matrix , 
                              mode = "undirected", 
                              weighted = TRUE, 
                              diag = FALSE) |> 
  as_tbl_graph(aca_igraph, directed = FALSE ) |> 
  activate(nodes) |> 
  mutate(degree = centrality_degree()) |> 
  arrange(desc(degree)) |> 
  slice(1:30)

author_collab_tbl_graph_filtered <- 
  author_collab_tbl_graph |> 
  activate(edges) |> 
  filter(weight > 1) |> 
  activate(nodes) |> 
  mutate(components = group_components(type = "weak")) |>
  filter(components == 1) |>
  mutate(degree = centrality_degree(),
         community = as.factor(group_louvain()) )

author_collab_tbl_graph_filtered |> 
  ggraph(layout = "kk") + 
  geom_edge_link(alpha = .25, 
                 aes(width = weight)) +
  geom_node_point(aes(colour = community, 
                      size = degree)) +
  geom_node_text(aes(label = name), repel = TRUE) +
  theme_graph()

Country Collaboration Network

wos_scopus_country_collab_matrix <- 
  biblioNetwork(M = wos_scopus_tos$df, 
                analysis = "collaboration", 
                network = "countries")

plot_country_collab <- 
  networkPlot(wos_scopus_country_collab_matrix, 
              weighted=T, n = 30, 
              Title = "Country Collaboration Network", 
              type = "fruchterman", 
              size=T,
              edgesize = 5,
              labelsize=0.7)

country_collab_tbl_graph <- 
  graph_from_adjacency_matrix(wos_scopus_country_collab_matrix , 
                              mode = "undirected", 
                              weighted = TRUE, 
                              diag = FALSE) |> 
  as_tbl_graph(aca_igraph, directed = FALSE ) |> 
  activate(nodes) |> 
  mutate(degree = centrality_degree()) |> 
  arrange(desc(degree)) |> 
  slice(1:30)

country_collab_tbl_graph_filtered <- 
  country_collab_tbl_graph |> 
  activate(nodes) |> 
  mutate(components = group_components(type = "weak")) |>
  filter(components == 1) |>
  mutate(degree = centrality_degree(),
         community = as.factor(group_louvain()) )

country_collab_tbl_graph_filtered |> 
  ggraph(layout = "kk") + 
  geom_edge_link(alpha = .25, 
                 aes(width = weight)) +
  geom_node_point(aes(colour = community, 
                      size = degree)) +
  geom_node_text(aes(label = name), repel = TRUE) +
  theme_graph()

Keyword co-occurrence network

wos_scopus_keyword_co_occurrence_matrix <- 
  biblioNetwork(M = wos_scopus_tos$df, 
                analysis = "co-occurrences", 
                network = "keywords", 
                sep = ";")

plot_net_co_occurrence <- 
  networkPlot(wos_scopus_keyword_co_occurrence_matrix, 
              weighted=T, n = 30, 
              Title = "Keyword Co-occurrence Network", 
              type = "fruchterman", 
              size=T,
              edgesize = 5,
              labelsize=0.7)

keyword_co_occurrence_tbl_graph <- 
  graph_from_adjacency_matrix(wos_scopus_keyword_co_occurrence_matrix , 
                              mode = "undirected", 
                              weighted = TRUE, 
                              diag = FALSE) |> 
  as_tbl_graph(aca_igraph, directed = FALSE ) |> 
  activate(nodes) |> 
  mutate(degree = centrality_degree()) |> 
  arrange(desc(degree)) |> 
  slice(1:30)

keyword_co_occurrence_weight_tbl <- 
  keyword_co_occurrence_tbl_graph |> 
  activate(edges) |> 
  select(weight) |> 
  as.data.frame()

threshold <- 
  quantile(keyword_co_occurrence_weight_tbl |> 
             select(weight) |> 
             pull(), 
           probs = 0.80)

keyword_co_occurrence_tbl_graph_filtered <- 
  keyword_co_occurrence_tbl_graph |> 
  activate(edges) |> 
  filter(weight >= threshold) |> 
  activate(nodes) |> 
  mutate(components = group_components(type = "weak")) |> 
  filter(components == 1) |> 
  mutate(degree = centrality_degree(),
         community = as.factor(group_louvain()) )

keyword_co_occurrence_tbl_graph_filtered |> 
  ggraph(layout = "kk") + 
  geom_edge_link(alpha = .25, 
                 aes(width = weight)) +
  geom_node_point(aes(colour = community, 
                      size = degree)) +
  geom_node_text(aes(label = name), repel = TRUE) +
  theme_graph()

Figure 4. Tree of Science

Tree of Science

tree_of_science

Clustering analysis

Finding the clusters

nodes <-  # Create a dataframe with the fullname of articles 
  tibble(name = V(wos_scopus_tos$graph)$name) |> 
  left_join(wos_scopus_tos$nodes, 
            by = c("name" = "ID_TOS"))

wos_scopus_citation_network_1 <- # Add the article names to the citation network
  wos_scopus_tos$graph |> 
  igraph::set.vertex.attribute(name = "full_name", 
                               index = V(wos_scopus_tos$graph)$name, 
                               value = nodes$CITE)

nodes_1 <- # Create a dataframe with subfields (clusters)
  tibble(name = V(wos_scopus_citation_network_1)$name,
         cluster = V(wos_scopus_citation_network_1)$subfield,
         full_name = V(wos_scopus_citation_network_1)$full_name)

nodes_2 <- # Count the number of articles per cluster
  nodes_1 |> 
  count(cluster, sort = TRUE) |> 
  mutate(cluster_1 = row_number()) |> 
  select(cluster, cluster_1)

nodes_3 <- 
  nodes_1 |> 
  left_join(nodes_2) |> 
  rename(subfield = cluster_1) |> 
  select(name, full_name, subfield)

edge_list <- 
  get.edgelist(wos_scopus_citation_network_1) |> 
  data.frame() |> 
  rename(Source = X1, Target = X2)

wos_scopus_citation_network <- 
  graph.data.frame(d = edge_list, 
                   directed = TRUE, 
                   vertices = nodes_3)

wos_scopus_citation_network |> 
  summary()

Choosing clusters

We proposed the tipping point option to choose the number of clusters. See this paper:

https://www.nature.com/articles/s41598-021-85041-8

clusters <- 
  tibble(cluster = V(wos_scopus_citation_network)$subfield) |> 
  count(cluster, sort = TRUE)

clusters |> 
  ggplot(aes(x = reorder(cluster, n), y = n)) +
  geom_point(size = 3) +
  labs(x = "Clusters", y = "Number of papers") +
  theme(axis.title.x = element_text(size = 16 , 
                                    family =  "Arial"),
        axis.title.y = element_text(size = 16, family = "Arial"),
        axis.text.x = element_text(size = 12, family = "Arial"), 
        axis.text.y = element_text(size = 12, family = "Arial"))

Removing not chosen clusters

wos_scopus_citation_network_clusters <- 
  wos_scopus_citation_network |> 
  delete.vertices(which(V(wos_scopus_citation_network)$subfield != 1 & # filter clusters 
                          V(wos_scopus_citation_network)$subfield != 2 &
                          V(wos_scopus_citation_network)$subfield != 3  &
                          V(wos_scopus_citation_network)$subfield != 4))

wos_scopus_citation_network_clusters |> 
  summary()

Cluster 1

pal <- brewer.pal(8,"Dark2")

nodes_full_data <- 
  tibble(name = V(wos_scopus_citation_network)$name,
         cluster = V(wos_scopus_citation_network)$subfield,
         full_name = V(wos_scopus_citation_network)$full_name)

cluster_1 <- 
  wos_scopus_citation_network |> 
  delete.vertices(which(V(wos_scopus_citation_network)$subfield != 1))

cluster_1_page_rank <- 
  cluster_1 |> 
  set.vertex.attribute(name = "page_rank", 
                       value = page_rank(cluster_1)$vector)

cluster_1_df <- 
  tibble(name = V(cluster_1_page_rank)$name,
         full_name = V(cluster_1_page_rank)$full_name,
         page_rank = V(cluster_1_page_rank)$page_rank,
         cluster = V(cluster_1_page_rank)$subfield,)

nodes_full_data |> 
  filter(cluster == 1) |> 
  select(full_name) |> 
  mutate(full_name = str_extract(full_name, SPC %R%  # Regular expressions 
                                   one_or_more(WRD) %R% 
                                   SPC %R% 
                                   one_or_more(or(WRD, ANY_CHAR))),
         full_name = str_remove(full_name, OPEN_PAREN %R% 
                                  repeated(DGT, 4) %R% 
                                  CLOSE_PAREN %R%
                                  one_or_more(or(WRD,ANY_CHAR))),
         full_name = str_trim(full_name))  |> 
  unnest_tokens(output = word, input = full_name) |> # Tokenization
  anti_join(stop_words) |>  # Removing stop words
  filter(word != "doi",
         !str_detect(word, "[0-9]")) |>  # WoS data
  filter(word == str_remove(word, pattern = "citation"),
         word == str_remove(word, pattern = "research"),  # Words removed
         word == str_remove(word, pattern = "analysis"), 
         word == str_remove(word, pattern = "science"),
         word == str_remove(word, pattern = "scientometric"),
         word == str_remove(word, pattern = "management"),
         word == str_remove(word, pattern = "bibliometric"),
         word == str_remove(word, pattern = "review"),
         word == str_remove(word, pattern = "journal")) |>
  count(word, sort = TRUE) |> 
  with(wordcloud(word, 
                 n, 
                 random.order = FALSE, 
                 max.words = 50, 
                 colors=pal))

Cluster 2

cluster_2 <- 
  wos_scopus_citation_network |> 
  delete.vertices(which(V(wos_scopus_citation_network)$subfield != 2))

cluster_2_page_rank <- 
  cluster_2 |> 
  set.vertex.attribute(name = "page_rank", 
                       value = page_rank(cluster_2)$vector)

cluster_2_df <- 
  tibble(name = V(cluster_2_page_rank)$name,
         full_name = V(cluster_2_page_rank)$full_name,
         page_rank = V(cluster_2_page_rank)$page_rank,
         cluster = V(cluster_2_page_rank)$subfield,)

nodes_full_data |> 
  filter(cluster == 2) |> 
  select(full_name) |> 
  mutate(full_name = str_extract(full_name, SPC %R%  # Regular expressions 
                                   one_or_more(WRD) %R% 
                                   SPC %R% 
                                   one_or_more(or(WRD, ANY_CHAR))),
         full_name = str_remove(full_name, OPEN_PAREN %R% 
                                  repeated(DGT, 4) %R% 
                                  CLOSE_PAREN %R%
                                  one_or_more(or(WRD,ANY_CHAR))),
         full_name = str_trim(full_name))  |> 
  unnest_tokens(output = word, input = full_name) |> 
  anti_join(stop_words) |>
  filter(word != "doi",
         !str_detect(word, "[0-9]")) |>  # WoS data
  filter(word == str_remove(word, pattern = "citation"),
         word == str_remove(word, pattern = "research"), 
         word == str_remove(word, pattern = "analysis"), 
         word == str_remove(word, pattern = "science"),
         word == str_remove(word, pattern = "scientometric"),
         word == str_remove(word, pattern = "vulnerability")) |>
  count(word, sort = TRUE) |> 
  with(wordcloud(word, 
                 n, 
                 random.order = FALSE, 
                 max.words = 50, 
                 colors=pal))

Cluster 3


cluster_3 <- 
  wos_scopus_citation_network |> 
  delete.vertices(which(V(wos_scopus_citation_network)$subfield != 3))

cluster_3_page_rank <- 
  cluster_3 |> 
  set.vertex.attribute(name = "page_rank", 
                       value = page_rank(cluster_3)$vector)

cluster_3_df <- 
  tibble(name = V(cluster_3_page_rank)$name,
         full_name = V(cluster_3_page_rank)$full_name,
         page_rank = V(cluster_3_page_rank)$page_rank,
         cluster = V(cluster_3_page_rank)$subfield,)

nodes_full_data |> 
  filter(cluster == 3) |> 
  select(full_name) |> 
  mutate(full_name = str_extract(full_name, SPC %R%  # Regular expressions 
                                   one_or_more(WRD) %R% 
                                   SPC %R% 
                                   one_or_more(or(WRD, ANY_CHAR))),
         full_name = str_remove(full_name, OPEN_PAREN %R% 
                                  repeated(DGT, 4) %R% 
                                  CLOSE_PAREN %R%
                                  one_or_more(or(WRD,ANY_CHAR))),
         full_name = str_trim(full_name))  |> 
  unnest_tokens(output = word, input = full_name) |> 
  anti_join(stop_words) |>
  filter(word != "doi",
         !str_detect(word, "[0-9]")) |>  # WoS data 
  filter(word == str_remove(word, pattern = "citation"),
         word == str_remove(word, pattern = "research"),
         word == str_remove(word, pattern = "analysis"),
         word == str_remove(word, pattern = "science"),
         word == str_remove(word, pattern = "scientometric"),
         word == str_remove(word, pattern = "vulnerability"),
         word == str_remove(word, pattern = "journal"),
         word == str_remove(word, pattern = "information")) |>
  count(word, sort = TRUE) |> 
  with(wordcloud(word, 
                 n, 
                 random.order = FALSE, 
                 max.words = 50, 
                 colors=pal))

Cluster 4


cluster_4 <- 
  wos_scopus_citation_network |> 
  delete.vertices(which(V(wos_scopus_citation_network)$subfield != 4))

cluster_4_page_rank <- 
  cluster_4 |> 
  set.vertex.attribute(name = "page_rank", 
                       value = page_rank(cluster_4)$vector)

cluster_4_df <- 
  tibble(name = V(cluster_4_page_rank)$name,
         full_name = V(cluster_4_page_rank)$full_name,
         page_rank = V(cluster_4_page_rank)$page_rank,
         cluster = V(cluster_4_page_rank)$subfield,)

nodes_full_data |> 
  filter(cluster == 4) |> 
  select(full_name) |> 
  mutate(full_name = str_extract(full_name, SPC %R%  # Regular expressions 
                                   one_or_more(WRD) %R% 
                                   SPC %R% 
                                   one_or_more(or(WRD, ANY_CHAR))),
         full_name = str_remove(full_name, OPEN_PAREN %R% 
                                  repeated(DGT, 4) %R% 
                                  CLOSE_PAREN %R%
                                  one_or_more(or(WRD,ANY_CHAR))),
         full_name = str_trim(full_name))  |> 
  unnest_tokens(output = word, input = full_name) |> 
  anti_join(stop_words) |> 
  filter(word != "doi",
         !str_detect(word, "[0-9]")) |>  # WoS data
  filter(word == str_remove(word, pattern = "citation"),
         word == str_remove(word, pattern = "research"), 
         word == str_remove(word, pattern = "analysis"), 
         word == str_remove(word, pattern = "science"),
         word == str_remove(word, pattern = "scientometric"),
         word == str_remove(word, pattern = "vulnerability")) |>
  count(word, sort = TRUE) |> 
  with(wordcloud(word, 
                 n, 
                 random.order = FALSE, 
                 max.words = 50, 
                 colors=pal))

Exporting files


write_csv(wos_scopus_tos$df, "wos_scopus_tos.csv") # Exporting all data merged

write_csv(table_1, "table_1.csv") # Exporting table 1
write_csv(wos_scopus_total_country, "table_2_.csv")  # Exporting table 2
write_csv(wos_scopus_authors, "table_3.csv") # Exporting table 3
write_csv(wos_scopus_total_journal, "table_4.csv") # Exporting table 4


write_csv(languages, "figure_1.csv") # Exporting data figure 1 
write_csv(figure_2_data, "figure_2.csv") # Exporting data figure 2

write.graph(wos_scopus_citation_network, "citation_network_full.graphml", "graphml") # Exporting graph
write.graph(wos_scopus_citation_network_clusters, 
            "wos_scopus_citation_network_clusters.graphml", 
            "graphml")

aca_graphml_nodes <- 
  aca_tbl_graph_filtered |> 
  activate(nodes) |> 
  as_tibble() |> 
  rename(author = name) |> 
  rownames_to_column("name")

aca_graphml_edges <- 
  aca_tbl_graph_filtered |> 
  activate(edges) |> 
  as_tibble() 

aca_graphml <- 
  graph_from_data_frame(d = aca_graphml_edges, 
                        directed = FALSE, 
                        vertices = aca_graphml_nodes)

write_graph(aca_graphml, "aca_graph.graphml", "graphml") # Export author co-citation graph

author_collab_graphml_nodes <- 
  author_collab_tbl_graph_filtered |> 
  activate(nodes) |> 
  as_tibble() |> 
  rename(author = name) |> 
  rownames_to_column("name")

author_collab_graphml_edges <- 
  author_collab_tbl_graph_filtered |> 
  activate(edges) |> 
  as_tibble() 

author_collab_graphml <- 
  graph_from_data_frame(d = author_collab_graphml_edges, 
                        directed = FALSE, 
                        vertices = author_collab_graphml_nodes)

write_graph(author_collab_graphml, "author_collab_graphml.graphml", "graphml") # Export author co-citation graph

country_collab_graphml_nodes <- 
  country_collab_tbl_graph_filtered |> 
  activate(nodes) |> 
  as_tibble() |> 
  rename(author = name) |> 
  rownames_to_column("name")

country_collab_graphml_edges <- 
  country_collab_tbl_graph_filtered |> 
  activate(edges) |> 
  as_tibble() 

country_collab_graphml <- 
  graph_from_data_frame(d = country_collab_graphml_edges, 
                        directed = FALSE, 
                        vertices = country_collab_graphml_nodes)

write_graph(country_collab_graphml, "country_collab_graphml.graphml", "graphml") # Export author co-citation graph

keyword_co_occurrence_graphml_nodes <- 
  keyword_co_occurrence_tbl_graph_filtered |> 
  activate(nodes) |> 
  as_tibble() |> 
  rename(author = name) |> 
  rownames_to_column("name")

keyword_co_occurrence_graphml_edges <- 
  keyword_co_occurrence_tbl_graph_filtered |> 
  activate(edges) |> 
  as_tibble()  

keyword_co_occurrence_graphml <- 
  graph_from_data_frame(d = keyword_co_occurrence_graphml_edges, 
                        directed = FALSE, 
                        vertices = keyword_co_occurrence_graphml_nodes)

write_graph(keyword_co_occurrence_graphml, "keyword_co_occurrence_graphml.graphml", "graphml") # Export author co-citation graph

write.csv(tree_of_science, "tree_of_science.csv") # Exporting Tree of Science

write.csv(cluster_1_df, "cluster_1.csv") # Exporting cluster 1
write.csv(cluster_2_df, "cluster_2.csv") # Exporting cluster 2
write.csv(cluster_3_df, "cluster_3.csv") # Exporting cluster 3
write.csv(cluster_4_df, "cluster_4.csv") # Exporting cluster 4

write.csv(nodes_full_data, "nodes_full_data.csv") # Exporting all nodes
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCmVkaXRvcl9vcHRpb25zOiAKICBjaHVua19vdXRwdXRfdHlwZTogaW5saW5lCi0tLQoKIyBDcmVhdGluZyB0aGUgZW52aXJvbm1lbnQKCmBgYHtyIGVjaG89RkFMU0UsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KHRvc3IpCmxpYnJhcnkoYmlibGlvbWV0cml4KQpsaWJyYXJ5KGx1YnJpZGF0ZSkKbGlicmFyeShpZ3JhcGgpCmxpYnJhcnkodGlkeXRleHQpCmxpYnJhcnkod29yZGNsb3VkKQpsaWJyYXJ5KHJlYnVzKQpsaWJyYXJ5KGdncmVwZWwpICMgaW1wcm92ZSBkb251dCB2aXN1YWxpemF0aW9uCmxpYnJhcnkoZ2dyYXBoKQpsaWJyYXJ5KHZpc05ldHdvcmspIApsaWJyYXJ5KHRpZHlncmFwaCkKYGBgCgpUaGlzIHRlbXBsYXRlIGlzIGJhc2VkIGluIHRoaXMgcGFwZXIKCmh0dHBzOi8vcmV2aXN0YXMudWNtLmVzL2luZGV4LnBocC9SRVZFL2FydGljbGUvdmlldy83NTU2Ni80NTY0NDU2NTU3NDY3CgpGb3IgYSBkZXRhaWwgZXhwbGFuYXRpb24gb2YgaG93IHRvIHVzZSBpdCwgcGxlYXNlIHdhdGNoIHRoaXMgdmlkZW8gCgpodHRwczovL3d3dy55b3V0dWJlLmNvbS93YXRjaD92PWp0S1NpZnZOdlRNCgojIERhdGEgZ2V0dGluZwoKYGBge3J9Cndvc19zY29wdXNfdG9zIDwtIAogIHRvc3I6OnRvc3JfbG9hZCgiU2NvcHVzXzExMDYuYmliIiwgCiAgICAgICAgICAgICAgICAgICJXb1NfMS50eHQiLCAKICAgICAgICAgICAgICAgICAgIldvU18yLnR4dCIpCgp0cmVlX29mX3NjaWVuY2UgPC0gCiAgdG9zcjo6dG9zUigiU2NvcHVzXzExMDYuYmliIiwgCiAgICAgICAgICAgICAgICAgICJXb1NfMS50eHQiLCAKICAgICAgICAgICAgICAgICAgIldvU18yLnR4dCIpCgp3b3MgPC0gCiAgYmlibGlvbWV0cml4Ojpjb252ZXJ0MmRmKGMoIldvU18xLnR4dCIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICJXb1NfMi50eHQiKSkgICMgY3JlYXRlIGRhdGFmcmFtZSBmcm9tIHdvcyBmaWxlCgpzY29wdXMgPC0gCiAgYmlibGlvbWV0cml4Ojpjb252ZXJ0MmRmKCJTY29wdXNfMTEwNi5iaWIiLCAjIENyZWF0ZSBkYXRhZnJhbWUgZnJvbSBzY29wdXMgZmlsZQogICAgICAgICAgICAgICAgICAgICAgICAgICBkYnNvdXJjZSA9ICJzY29wdXMiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgZm9ybWF0ID0gImJpYnRleCIpCmBgYAoKIyMgVGFibGUgMS4gU2VhcmNoIENyaXRlcmlhCgpgYGB7cn0KdGFibGVfMSA8LSAKICB0aWJibGUod29zID0gbGVuZ3RoKHdvcyRTUiksICMgQ3JlYXRlIGEgZGF0YWZyYW1lIHdpdGggdGhlIHZhbHVlcy4KICAgICAgICAgc2NvcHVzID0gbGVuZ3RoKHNjb3B1cyRTUiksIAogICAgICAgICB0b3RhbCA9IGxlbmd0aCh3b3Nfc2NvcHVzX3RvcyRkZiRTUikpCnRhYmxlXzEKYGBgCgojIyBGaWd1cmUgMS4gTGFuZ3VhZ2VzCgpgYGB7cn0KbWFpbl9sYW5ndWFnZXMgPC0gCiAgd29zX3Njb3B1c190b3MkZGYgfD4gCiAgc2VsZWN0KExBKSB8PiAKICBzZXBhcmF0ZV9yb3dzKExBLCBzZXAgPSAiOyAiKSB8PiAKICBjb3VudChMQSwgc29ydCA9IFRSVUUpIHw+IAogIHNsaWNlKDE6NSkKCm90aGVyX2xhbmd1YWdlcyA8LSAKICB3b3Nfc2NvcHVzX3RvcyRkZiB8PiAKICBzZXBhcmF0ZV9yb3dzKExBLCBzZXAgPSAiOyAiKSB8PiAKICBzZWxlY3QoTEEpIHw+IAogIGNvdW50KExBLCBzb3J0ID0gVFJVRSkgfD4gCiAgc2xpY2UoNjpuKSB8PiAKICBzdW1tYXJpc2UobiA9IHN1bShuKSkgfD4gCiAgbXV0YXRlKExBID0gIk9USEVSUyIpIHw+IAogIHNlbGVjdChMQSwgbikKCmxhbmd1YWdlcyA8LSAKICBtYWluX2xhbmd1YWdlcyB8PiAKICBiaW5kX3Jvd3Mob3RoZXJfbGFuZ3VhZ2VzKSB8PiAKICBtdXRhdGUocGVyY2VudGFnZSA9IG4gLyBzdW0obiksCiAgICAgICAgIHBlcmNlbnRhZ2UgPSByb3VuZChwZXJjZW50YWdlLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRpZ2l0cyA9IDIpICkgfD4gCiAgcmVuYW1lKGxhbmd1YWdlID0gTEEpIHw+CiAgc2VsZWN0KGxhbmd1YWdlLCBwZXJjZW50YWdlLCBjb3VudCA9IG4pCgpsYW5ndWFnZXMKYGBgCgoKYGBge3J9CmRmIDwtIGxhbmd1YWdlcyB8PiAKICByZW5hbWUodmFsdWUgPSBwZXJjZW50YWdlLCBncm91cCA9IGxhbmd1YWdlKSB8PgogIG11dGF0ZSh2YWx1ZSA9IHZhbHVlICogMTAwKSB8PiAKICBzZWxlY3QodmFsdWUsIGdyb3VwKQoKZGYyIDwtIGRmICU+JSAKICBtdXRhdGUoY3N1bSA9IHJldihjdW1zdW0ocmV2KHZhbHVlKSkpLCAKICAgICAgICAgcG9zID0gdmFsdWUvMiArIGxlYWQoY3N1bSwgMSksCiAgICAgICAgIHBvcyA9IGlmX2Vsc2UoaXMubmEocG9zKSwgdmFsdWUvMiwgcG9zKSkKCmdncGxvdChkZiwgYWVzKHggPSAyICwgeSA9IHZhbHVlLCBmaWxsID0gZmN0X2lub3JkZXIoZ3JvdXApKSkgKwogIGdlb21fY29sKHdpZHRoID0gMSwgY29sb3IgPSAxKSArCiAgY29vcmRfcG9sYXIodGhldGEgPSAieSIpICsKICBnZW9tX2xhYmVsX3JlcGVsKGRhdGEgPSBkZjIsCiAgICAgICAgICAgICAgICAgICBhZXMoeSA9IHBvcywgbGFiZWwgPSBwYXN0ZTAodmFsdWUsICIlIikpLAogICAgICAgICAgICAgICAgICAgc2l6ZSA9IDQuNSwgbnVkZ2VfeCA9IDEsIHNob3cubGVnZW5kID0gRkFMU0UpICsKICB0aGVtZShwYW5lbC5iYWNrZ3JvdW5kID0gZWxlbWVudF9ibGFuaygpLAogICAgICAgIGF4aXMubGluZSA9IGVsZW1lbnRfYmxhbmsoKSwgCiAgICAgICAgYXhpcy50ZXh0ID0gZWxlbWVudF9ibGFuaygpLAogICAgICAgIGF4aXMudGlja3MgPSBlbGVtZW50X2JsYW5rKCksCiAgICAgICAgYXhpcy50aXRsZSA9IGVsZW1lbnRfYmxhbmsoKSwKICAgICAgICBwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KGhqdXN0ID0gMC41LCBzaXplID0gMTgpKSArCiAgbGFicyh0aXRsZSA9ICJMYW5ndWFnZXMiKSArCiAgZ3VpZGVzKGZpbGwgPSBndWlkZV9sZWdlbmQodGl0bGUgPSAiIikpICsKICB0aGVtZV92b2lkKCkgKwogIHhsaW0oMC41LCAyLjUpCmBgYAoKIyMgRmlndXJlIDIuIFNjaWVudGlmaWMgUHJvZHVjdGlvbgoKYGBge3J9Cndvc19hbnVhbF9wcm9kdWN0aW9uIDwtIAogIHdvcyB8PiAKICBzZWxlY3QoUFkpIHw+IAogIGNvdW50KFBZLCBzb3J0ID0gVFJVRSkgfD4gCiAgbmEub21pdCgpIHw+IAogIGZpbHRlcihQWSA+PSAyMDAwLAogICAgICAgICBQWSA8IHllYXIodG9kYXkoKSkpIHw+IAogIG11dGF0ZShyZWZfdHlwZSA9ICJ3b3MiKQoKc2NvcHVzX2FudWFsX3Byb2R1Y3Rpb24gIDwtIAogIHNjb3B1cyB8PiAKICBzZWxlY3QoUFkpIHw+IAogIGNvdW50KFBZLCBzb3J0ID0gVFJVRSkgfD4gCiAgbmEub21pdCgpIHw+IAogIGZpbHRlcihQWSA+PSAyMDAwLAogICAgICAgICBQWSA8IHllYXIodG9kYXkoKSkpIHw+CiAgbXV0YXRlKHJlZl90eXBlID0gInNjb3B1cyIpCgp0b3RhbF9hbnVhbF9wcm9kdWN0aW9uIDwtIAogIHdvc19zY29wdXNfdG9zJGRmIHw+IAogIHNlbGVjdChQWSkgfD4gCiAgY291bnQoUFksIHNvcnQgPSBUUlVFKSB8PiAKICBuYS5vbWl0KCkgfD4gCiAgZmlsdGVyKFBZID49IDIwMDAsCiAgICAgICAgIFBZIDwgeWVhcih0b2RheSgpKSkgfD4KICBtdXRhdGUocmVmX3R5cGUgPSAidG90YWwiKQoKd29zX3Njb3B1c190b3RhbF9hbm51YWxfcHJvZHVjdGlvbiA8LSAKICB3b3NfYW51YWxfcHJvZHVjdGlvbiB8PiAKICBiaW5kX3Jvd3Moc2NvcHVzX2FudWFsX3Byb2R1Y3Rpb24sCiAgICAgICAgICAgIHRvdGFsX2FudWFsX3Byb2R1Y3Rpb24pIAoKZmlndXJlXzJfZGF0YSA8LSAKICB3b3Nfc2NvcHVzX3RvdGFsX2FubnVhbF9wcm9kdWN0aW9uIHw+IAogIG11dGF0ZShQWSA9IHJlcGxhY2VfbmEoUFksIHJlcGxhY2UgPSAwKSkgfD4gCiAgcGl2b3Rfd2lkZXIobmFtZXNfZnJvbSA9IHJlZl90eXBlLCAKICAgICAgICAgICAgICB2YWx1ZXNfZnJvbSA9IG4pIHw+IAogIGFycmFuZ2UoZGVzYyhQWSkpCgpmaWd1cmVfMl9kYXRhIApgYGAKCmBgYHtyfQp3b3Nfc2NvcHVzX3RvdGFsX2FubnVhbF9wcm9kdWN0aW9uIHw+IAogIGdncGxvdChhZXMoeCA9IFBZLCB5ID0gbiwgY29sb3IgPSByZWZfdHlwZSkpICsKICBnZW9tX2xpbmUoKSArCiAgbGFicyh0aXRsZSA9ICJBbm51YWwgU2NpZW50aWZpYyBQcm9kdWN0aW9uIiwgCiAgICAgICB4ID0gInllYXJzIiwKICAgICAgIHkgPSAicGFwZXJzIikgKwogIHRoZW1lKHBsb3QudGl0bGUgPSBlbGVtZW50X3RleHQoaGp1c3QgPSAwLjUpKSAKYGBgCgojIyBUYWJsZSAyLiBDb3VudHJ5IHByb2R1Y3Rpb24KCmBgYHtyfQpkYXRhX2JpYmxpb193b3MgPC0gYmlibGlvQW5hbHlzaXMod29zKQoKd29zX2NvdW50cnkgPC0gCiAgZGF0YV9iaWJsaW9fd29zJENvdW50cmllcyB8PiAKICBkYXRhLmZyYW1lKCkgfD4gCiAgbXV0YXRlKGRhdGFiYXNlID0gIndvcyIpIHw+IAogIHNlbGVjdChjb3VudHJ5ID0gVGFiLCBwYXBlcnMgPSBGcmVxLCBkYXRhYmFzZSApIHw+IAogIGFycmFuZ2UoZGVzYyhwYXBlcnMpKSAKCmRhdGFfYmlibGlvX3Njb3B1cyA8LSBiaWJsaW9BbmFseXNpcyhzY29wdXMpCgpzY29wdXNfY291bnRyeSA8LSAKICBkYXRhX2JpYmxpb19zY29wdXMkQ291bnRyaWVzIHw+IAogIGRhdGEuZnJhbWUoKSB8PiAKICBtdXRhdGUoZGF0YWJhc2UgPSAic2NvcHVzIikgfD4gCiAgc2VsZWN0KGNvdW50cnkgPSBUYWIsIHBhcGVycyA9IEZyZXEsIGRhdGFiYXNlICkgfD4gCiAgYXJyYW5nZShkZXNjKHBhcGVycykpIAoKZGF0YV9iaWJsaW9fdG90YWwgPC0gYmlibGlvQW5hbHlzaXMod29zX3Njb3B1c190b3MkZGYpCgp0b3RhbF9jb3VudHJ5IDwtIAogIGRhdGFfYmlibGlvX3RvdGFsJENvdW50cmllcyB8PiAKICBkYXRhLmZyYW1lKCkgfD4gCiAgbXV0YXRlKGRhdGFiYXNlID0gInRvdGFsIikgfD4gCiAgc2VsZWN0KGNvdW50cnkgPSBUYWIsIHBhcGVycyA9IEZyZXEsIGRhdGFiYXNlICkgfD4gCiAgYXJyYW5nZShkZXNjKHBhcGVycykpIAoKd29zX3Njb3B1c190b3RhbF9jb3VudHJ5IDwtIAogIHdvc19jb3VudHJ5IHw+IAogIGJpbmRfcm93cyhzY29wdXNfY291bnRyeSwgCiAgICAgICAgICAgIHRvdGFsX2NvdW50cnkpIHw+IAogIG11dGF0ZShjb3VudHJ5ID0gYXMuY2hhcmFjdGVyKGNvdW50cnkpKSB8PiAKICBwaXZvdF93aWRlcihuYW1lc19mcm9tID0gZGF0YWJhc2UsIAogICAgICAgICAgICAgIHZhbHVlc19mcm9tID0gcGFwZXJzKSB8PiAKICBhcnJhbmdlKGRlc2ModG90YWwpKSB8PiAKICBzbGljZSgxOjEwKSB8PiAKICBtdXRhdGUocGVyY2VudGFnZSA9IHRvdGFsIC8gKHRhYmxlXzEgfD4gcHVsbCh0b3RhbCkpLAogICAgICAgICBwZXJjZW50YWdlID0gcm91bmQocGVyY2VudGFnZSwgZGlnaXRzID0gMikpCgp3b3Nfc2NvcHVzX3RvdGFsX2NvdW50cnkKYGBgCgojIyBUYWJsZSAzLiBBdXRob3IgcHJvZHVjdGlvbgoKYGBge3J9Cndvc19hdXRob3JzIDwtIAogIGRhdGFfYmlibGlvX3dvcyRBdXRob3JzIHw+IAogIGRhdGEuZnJhbWUoKSB8PiAKICByZW5hbWUoYXV0aG9yc193b3MgPSBBVSwgcGFwZXJzX3dvcyA9IEZyZXEpIHw+IAogIGFycmFuZ2UoZGVzYyhwYXBlcnNfd29zKSkgfD4gCiAgc2xpY2UoMToxMCkgfD4gCiAgbXV0YXRlKGRhdGFiYXNlX3dvcyA9ICJ3b3MiKQoKCnNjb3B1c19hdXRob3JzIDwtIAogIGRhdGFfYmlibGlvX3Njb3B1cyRBdXRob3JzIHw+IAogIGRhdGEuZnJhbWUoKSB8PiAKICByZW5hbWUoYXV0aG9yc19zY29wdXMgPSBBVSwgcGFwZXJzX3Njb3B1cyA9IEZyZXEpIHw+IAogIGFycmFuZ2UoZGVzYyhwYXBlcnNfc2NvcHVzKSkgfD4gCiAgc2xpY2UoMToxMCkgfD4gCiAgbXV0YXRlKGRhdGFiYXNlX3Njb3B1cyA9ICJzY29wdXMiKQoKdG90YWxfYXV0aG9ycyA8LSAKICBkYXRhX2JpYmxpb190b3RhbCRBdXRob3JzIHw+IAogIGRhdGEuZnJhbWUoKSB8PiAKICByZW5hbWUoYXV0aG9yc190b3RhbCA9IEFVLCAKICAgICAgICAgcGFwZXJzX3RvdGFsID0gRnJlcSkgfD4gCiAgYXJyYW5nZShkZXNjKHBhcGVyc190b3RhbCkpIHw+IAogIHNsaWNlKDE6MTApIHw+IAogIG11dGF0ZShkYXRhYmFzZV90b3RhbCA9ICJ0b3RhbCIpCgp3b3Nfc2NvcHVzX2F1dGhvcnMgPC0gCiAgd29zX2F1dGhvcnMgfD4gCiAgYmluZF9jb2xzKHNjb3B1c19hdXRob3JzLAogICAgICAgICAgICB0b3RhbF9hdXRob3JzKQoKd29zX3Njb3B1c19hdXRob3JzCmBgYAoKIyMgVGFibGUgNC4gSm91cm5hbCBwcm9kdWN0aW9uCgpgYGB7cn0Kd29zX2pvdXJuYWwgPC0gCiAgd29zIHw+IAogIHNlbGVjdChqb3VybmFsID0gU08pIHw+IAogIG5hLm9taXQoKSB8PiAKICBjb3VudChqb3VybmFsLCBzb3J0ID0gVFJVRSkgfD4gCiAgc2xpY2UoMToyMCkgfD4gCiAgcmVuYW1lKHB1YmxpY2F0aW9ucyA9IG4pIHw+IAogIG11dGF0ZShkYXRhYmFzZSA9ICJ3b3MiKQoKc2NvcHVzX2pvdXJuYWwgPC0gCiAgc2NvcHVzIHw+IAogIHNlbGVjdChqb3VybmFsID0gU08pIHw+IAogIG5hLm9taXQoKSB8PiAKICBjb3VudChqb3VybmFsLCBzb3J0ID0gVFJVRSkgfD4gCiAgc2xpY2UoMToyMCkgfD4gCiAgcmVuYW1lKHB1YmxpY2F0aW9ucyA9IG4pIHw+IAogIG11dGF0ZShkYXRhYmFzZSA9ICJzY29wdXMiKQoKdG90YWxfam91cm5hbCA8LSAKICB3b3Nfc2NvcHVzX3RvcyRkZiB8PiAKICBzZWxlY3Qoam91cm5hbCA9IFNPKSB8PiAKICBuYS5vbWl0KCkgfD4gCiAgY291bnQoam91cm5hbCwgc29ydCA9IFRSVUUpIHw+IAogIHNsaWNlKDE6MjApIHw+IAogIHJlbmFtZShwdWJsaWNhdGlvbnMgPSBuKSB8PiAKICBtdXRhdGUoZGF0YWJhc2UgPSAidG90YWwiKQoKd29zX3Njb3B1c190b3RhbF9qb3VybmFsIDwtIAogIHdvc19qb3VybmFsIHw+IAogIGJpbmRfcm93cyhzY29wdXNfam91cm5hbCwgCiAgICAgICAgICAgIHRvdGFsX2pvdXJuYWwpIHw+IAogIHBpdm90X3dpZGVyKG5hbWVzX2Zyb20gPSBkYXRhYmFzZSwgCiAgICAgICAgICAgICAgdmFsdWVzX2Zyb20gPSBwdWJsaWNhdGlvbnMpIHw+IAogIGFycmFuZ2UoZGVzYyh0b3RhbCkpIHw+IAogIHNsaWNlKDE6MTApIHw+IAogIG11dGF0ZShwZXJjZW50YWdlID0gdG90YWwgLyB0YWJsZV8xIHw+IHB1bGwodG90YWwpLAogICAgICAgICBwZXJjZW50YWdlID0gcm91bmQocGVyY2VudGFnZSwgZGlnaXRzID0gMikpCgoKd29zX3Njb3B1c190b3RhbF9qb3VybmFsCmBgYAoKIyMgRmlndXJlIDMuIENvLWNpdGF0aW9uIG5ldHdvcmsKCiMjIyBBdXRob3IgY28tY2l0YXRpb24gbmV0d29yawoKYGBge3J9Cndvc19zY29wdXNfYXV0aG9yX21ldGF0YWcgPC0gCiAgbWV0YVRhZ0V4dHJhY3Rpb24od29zX3Njb3B1c190b3MkZGYsIEZpZWxkID0gIkNSX0FVIikKCndvc19zY29wdXNfYXV0aG9yX2NvX2NpdGF0aW9uX21hdHJpeCA8LSAKICBiaWJsaW9OZXR3b3JrKE0gPSB3b3Nfc2NvcHVzX2F1dGhvcl9tZXRhdGFnLCAKICAgICAgICAgICAgICAgIGFuYWx5c2lzID0gImNvLWNpdGF0aW9uIiwgCiAgICAgICAgICAgICAgICBuZXR3b3JrID0gImF1dGhvcnMiKQoKYWNhX3RibF9ncmFwaCA8LSAKICBncmFwaF9mcm9tX2FkamFjZW5jeV9tYXRyaXgod29zX3Njb3B1c19hdXRob3JfY29fY2l0YXRpb25fbWF0cml4ICwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1vZGUgPSAidW5kaXJlY3RlZCIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICB3ZWlnaHRlZCA9IFRSVUUsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkaWFnID0gRkFMU0UpIHw+IAogIGFzX3RibF9ncmFwaChhY2FfaWdyYXBoLCBkaXJlY3RlZCA9IEZBTFNFICkgfD4gCiAgYWN0aXZhdGUobm9kZXMpIHw+IAogIG11dGF0ZShkZWdyZWUgPSBjZW50cmFsaXR5X2RlZ3JlZSgpKSB8PiAKICBhcnJhbmdlKGRlc2MoZGVncmVlKSkgfD4gCiAgc2xpY2UoMTozMCkKCndlaWdodF90YmwgPC0gCiAgYWNhX3RibF9ncmFwaCB8PiAKICBhY3RpdmF0ZShlZGdlcykgfD4gCiAgc2VsZWN0KHdlaWdodCkgfD4gCiAgYXMuZGF0YS5mcmFtZSgpCgp0aHJlc2hvbGQgPC0gCiAgcXVhbnRpbGUod2VpZ2h0X3RibCB8PiAKICAgICAgICAgICAgIHNlbGVjdCh3ZWlnaHQpIHw+IAogICAgICAgICAgICAgcHVsbCgpLCAKICAgICAgICAgICBwcm9icyA9IDAuODApCgphY2FfdGJsX2dyYXBoX2ZpbHRlcmVkIDwtIAogIGFjYV90YmxfZ3JhcGggfD4gCiAgYWN0aXZhdGUoZWRnZXMpIHw+IAogIGZpbHRlcih3ZWlnaHQgPj0gdGhyZXNob2xkKSB8PiAKICBhY3RpdmF0ZShub2RlcykgfD4gCiAgbXV0YXRlKGNvbXBvbmVudHMgPSBncm91cF9jb21wb25lbnRzKHR5cGUgPSAid2VhayIpKSB8PiAKICBmaWx0ZXIoY29tcG9uZW50cyA9PSAxKSB8PiAKICBtdXRhdGUoZGVncmVlID0gY2VudHJhbGl0eV9kZWdyZWUoKSwKICAgICAgICAgY29tbXVuaXR5ID0gYXMuZmFjdG9yKGdyb3VwX2xvdXZhaW4oKSkgKQoKYWNhX3RibF9ncmFwaF9maWx0ZXJlZCB8PiAKICBnZ3JhcGgobGF5b3V0ID0gImtrIikgKyAKICBnZW9tX2VkZ2VfbGluayhhbHBoYSA9IC4yNSwgCiAgICAgICAgICAgICAgICAgYWVzKHdpZHRoID0gd2VpZ2h0KSkgKwogIGdlb21fbm9kZV9wb2ludChhZXMoY29sb3VyID0gY29tbXVuaXR5LCAKICAgICAgICAgICAgICAgICAgICAgIHNpemUgPSBkZWdyZWUpKSArCiAgZ2VvbV9ub2RlX3RleHQoYWVzKGxhYmVsID0gbmFtZSksIHJlcGVsID0gVFJVRSkgKwogIHRoZW1lX2dyYXBoKCkKYGBgCgojIyMgQXV0aG9yIENvbGxhYm9yYXRpb24gbmV0d29yawoKYGBge3J9Cndvc19zY29wdXNfYXV0aG9yX2NvbGxhYl9tYXRyaXggPC0gCiAgYmlibGlvTmV0d29yayhNID0gd29zX3Njb3B1c190b3MkZGYsIAogICAgICAgICAgICAgICAgYW5hbHlzaXMgPSAiY29sbGFib3JhdGlvbiIsIAogICAgICAgICAgICAgICAgbmV0d29yayA9ICJhdXRob3JzIikKCnBsb3RfYXV0aG9yX2NvbGxhYiA8LSAKICBuZXR3b3JrUGxvdChOZXRNYXRyaXggPSB3b3Nfc2NvcHVzX2F1dGhvcl9jb2xsYWJfbWF0cml4LCAKICAgICAgICAgICAgICB3ZWlnaHRlZD1ULCBuID0gMzAsIAogICAgICAgICAgICAgIFRpdGxlID0gIkF1dGhvciBDb2xsYWJvcmF0aW9uIE5ldHdvcmsiLCAKICAgICAgICAgICAgICB0eXBlID0gImZydWNodGVybWFuIiwgCiAgICAgICAgICAgICAgc2l6ZT1ULAogICAgICAgICAgICAgIGVkZ2VzaXplID0gNSwKICAgICAgICAgICAgICBsYWJlbHNpemU9MC43KQoKYXV0aG9yX2NvbGxhYl90YmxfZ3JhcGggPC0gCiAgZ3JhcGhfZnJvbV9hZGphY2VuY3lfbWF0cml4KHdvc19zY29wdXNfYXV0aG9yX2NvbGxhYl9tYXRyaXggLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbW9kZSA9ICJ1bmRpcmVjdGVkIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHdlaWdodGVkID0gVFJVRSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRpYWcgPSBGQUxTRSkgfD4gCiAgYXNfdGJsX2dyYXBoKGFjYV9pZ3JhcGgsIGRpcmVjdGVkID0gRkFMU0UgKSB8PiAKICBhY3RpdmF0ZShub2RlcykgfD4gCiAgbXV0YXRlKGRlZ3JlZSA9IGNlbnRyYWxpdHlfZGVncmVlKCkpIHw+IAogIGFycmFuZ2UoZGVzYyhkZWdyZWUpKSB8PiAKICBzbGljZSgxOjMwKQoKYXV0aG9yX2NvbGxhYl90YmxfZ3JhcGhfZmlsdGVyZWQgPC0gCiAgYXV0aG9yX2NvbGxhYl90YmxfZ3JhcGggfD4gCiAgYWN0aXZhdGUoZWRnZXMpIHw+IAogIGZpbHRlcih3ZWlnaHQgPiAxKSB8PiAKICBhY3RpdmF0ZShub2RlcykgfD4gCiAgbXV0YXRlKGNvbXBvbmVudHMgPSBncm91cF9jb21wb25lbnRzKHR5cGUgPSAid2VhayIpKSB8PgogIGZpbHRlcihjb21wb25lbnRzID09IDEpIHw+CiAgbXV0YXRlKGRlZ3JlZSA9IGNlbnRyYWxpdHlfZGVncmVlKCksCiAgICAgICAgIGNvbW11bml0eSA9IGFzLmZhY3Rvcihncm91cF9sb3V2YWluKCkpICkKCmF1dGhvcl9jb2xsYWJfdGJsX2dyYXBoX2ZpbHRlcmVkIHw+IAogIGdncmFwaChsYXlvdXQgPSAia2siKSArIAogIGdlb21fZWRnZV9saW5rKGFscGhhID0gLjI1LCAKICAgICAgICAgICAgICAgICBhZXMod2lkdGggPSB3ZWlnaHQpKSArCiAgZ2VvbV9ub2RlX3BvaW50KGFlcyhjb2xvdXIgPSBjb21tdW5pdHksIAogICAgICAgICAgICAgICAgICAgICAgc2l6ZSA9IGRlZ3JlZSkpICsKICBnZW9tX25vZGVfdGV4dChhZXMobGFiZWwgPSBuYW1lKSwgcmVwZWwgPSBUUlVFKSArCiAgdGhlbWVfZ3JhcGgoKQpgYGAKCiMjIyBDb3VudHJ5IENvbGxhYm9yYXRpb24gTmV0d29yawoKYGBge3J9Cndvc19zY29wdXNfY291bnRyeV9jb2xsYWJfbWF0cml4IDwtIAogIGJpYmxpb05ldHdvcmsoTSA9IHdvc19zY29wdXNfdG9zJGRmLCAKICAgICAgICAgICAgICAgIGFuYWx5c2lzID0gImNvbGxhYm9yYXRpb24iLCAKICAgICAgICAgICAgICAgIG5ldHdvcmsgPSAiY291bnRyaWVzIikKCnBsb3RfY291bnRyeV9jb2xsYWIgPC0gCiAgbmV0d29ya1Bsb3Qod29zX3Njb3B1c19jb3VudHJ5X2NvbGxhYl9tYXRyaXgsIAogICAgICAgICAgICAgIHdlaWdodGVkPVQsIG4gPSAzMCwgCiAgICAgICAgICAgICAgVGl0bGUgPSAiQ291bnRyeSBDb2xsYWJvcmF0aW9uIE5ldHdvcmsiLCAKICAgICAgICAgICAgICB0eXBlID0gImZydWNodGVybWFuIiwgCiAgICAgICAgICAgICAgc2l6ZT1ULAogICAgICAgICAgICAgIGVkZ2VzaXplID0gNSwKICAgICAgICAgICAgICBsYWJlbHNpemU9MC43KQoKY291bnRyeV9jb2xsYWJfdGJsX2dyYXBoIDwtIAogIGdyYXBoX2Zyb21fYWRqYWNlbmN5X21hdHJpeCh3b3Nfc2NvcHVzX2NvdW50cnlfY29sbGFiX21hdHJpeCAsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlID0gInVuZGlyZWN0ZWQiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgd2VpZ2h0ZWQgPSBUUlVFLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZGlhZyA9IEZBTFNFKSB8PiAKICBhc190YmxfZ3JhcGgoYWNhX2lncmFwaCwgZGlyZWN0ZWQgPSBGQUxTRSApIHw+IAogIGFjdGl2YXRlKG5vZGVzKSB8PiAKICBtdXRhdGUoZGVncmVlID0gY2VudHJhbGl0eV9kZWdyZWUoKSkgfD4gCiAgYXJyYW5nZShkZXNjKGRlZ3JlZSkpIHw+IAogIHNsaWNlKDE6MzApCgpjb3VudHJ5X2NvbGxhYl90YmxfZ3JhcGhfZmlsdGVyZWQgPC0gCiAgY291bnRyeV9jb2xsYWJfdGJsX2dyYXBoIHw+IAogIGFjdGl2YXRlKG5vZGVzKSB8PiAKICBtdXRhdGUoY29tcG9uZW50cyA9IGdyb3VwX2NvbXBvbmVudHModHlwZSA9ICJ3ZWFrIikpIHw+CiAgZmlsdGVyKGNvbXBvbmVudHMgPT0gMSkgfD4KICBtdXRhdGUoZGVncmVlID0gY2VudHJhbGl0eV9kZWdyZWUoKSwKICAgICAgICAgY29tbXVuaXR5ID0gYXMuZmFjdG9yKGdyb3VwX2xvdXZhaW4oKSkgKQoKY291bnRyeV9jb2xsYWJfdGJsX2dyYXBoX2ZpbHRlcmVkIHw+IAogIGdncmFwaChsYXlvdXQgPSAia2siKSArIAogIGdlb21fZWRnZV9saW5rKGFscGhhID0gLjI1LCAKICAgICAgICAgICAgICAgICBhZXMod2lkdGggPSB3ZWlnaHQpKSArCiAgZ2VvbV9ub2RlX3BvaW50KGFlcyhjb2xvdXIgPSBjb21tdW5pdHksIAogICAgICAgICAgICAgICAgICAgICAgc2l6ZSA9IGRlZ3JlZSkpICsKICBnZW9tX25vZGVfdGV4dChhZXMobGFiZWwgPSBuYW1lKSwgcmVwZWwgPSBUUlVFKSArCiAgdGhlbWVfZ3JhcGgoKQpgYGAKCiMjIyBLZXl3b3JkIGNvLW9jY3VycmVuY2UgbmV0d29yawoKYGBge3J9Cndvc19zY29wdXNfa2V5d29yZF9jb19vY2N1cnJlbmNlX21hdHJpeCA8LSAKICBiaWJsaW9OZXR3b3JrKE0gPSB3b3Nfc2NvcHVzX3RvcyRkZiwgCiAgICAgICAgICAgICAgICBhbmFseXNpcyA9ICJjby1vY2N1cnJlbmNlcyIsIAogICAgICAgICAgICAgICAgbmV0d29yayA9ICJrZXl3b3JkcyIsIAogICAgICAgICAgICAgICAgc2VwID0gIjsiKQoKcGxvdF9uZXRfY29fb2NjdXJyZW5jZSA8LSAKICBuZXR3b3JrUGxvdCh3b3Nfc2NvcHVzX2tleXdvcmRfY29fb2NjdXJyZW5jZV9tYXRyaXgsIAogICAgICAgICAgICAgIHdlaWdodGVkPVQsIG4gPSAzMCwgCiAgICAgICAgICAgICAgVGl0bGUgPSAiS2V5d29yZCBDby1vY2N1cnJlbmNlIE5ldHdvcmsiLCAKICAgICAgICAgICAgICB0eXBlID0gImZydWNodGVybWFuIiwgCiAgICAgICAgICAgICAgc2l6ZT1ULAogICAgICAgICAgICAgIGVkZ2VzaXplID0gNSwKICAgICAgICAgICAgICBsYWJlbHNpemU9MC43KQoKa2V5d29yZF9jb19vY2N1cnJlbmNlX3RibF9ncmFwaCA8LSAKICBncmFwaF9mcm9tX2FkamFjZW5jeV9tYXRyaXgod29zX3Njb3B1c19rZXl3b3JkX2NvX29jY3VycmVuY2VfbWF0cml4ICwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1vZGUgPSAidW5kaXJlY3RlZCIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICB3ZWlnaHRlZCA9IFRSVUUsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkaWFnID0gRkFMU0UpIHw+IAogIGFzX3RibF9ncmFwaChhY2FfaWdyYXBoLCBkaXJlY3RlZCA9IEZBTFNFICkgfD4gCiAgYWN0aXZhdGUobm9kZXMpIHw+IAogIG11dGF0ZShkZWdyZWUgPSBjZW50cmFsaXR5X2RlZ3JlZSgpKSB8PiAKICBhcnJhbmdlKGRlc2MoZGVncmVlKSkgfD4gCiAgc2xpY2UoMTozMCkKCmtleXdvcmRfY29fb2NjdXJyZW5jZV93ZWlnaHRfdGJsIDwtIAogIGtleXdvcmRfY29fb2NjdXJyZW5jZV90YmxfZ3JhcGggfD4gCiAgYWN0aXZhdGUoZWRnZXMpIHw+IAogIHNlbGVjdCh3ZWlnaHQpIHw+IAogIGFzLmRhdGEuZnJhbWUoKQoKdGhyZXNob2xkIDwtIAogIHF1YW50aWxlKGtleXdvcmRfY29fb2NjdXJyZW5jZV93ZWlnaHRfdGJsIHw+IAogICAgICAgICAgICAgc2VsZWN0KHdlaWdodCkgfD4gCiAgICAgICAgICAgICBwdWxsKCksIAogICAgICAgICAgIHByb2JzID0gMC44MCkKCmtleXdvcmRfY29fb2NjdXJyZW5jZV90YmxfZ3JhcGhfZmlsdGVyZWQgPC0gCiAga2V5d29yZF9jb19vY2N1cnJlbmNlX3RibF9ncmFwaCB8PiAKICBhY3RpdmF0ZShlZGdlcykgfD4gCiAgZmlsdGVyKHdlaWdodCA+PSB0aHJlc2hvbGQpIHw+IAogIGFjdGl2YXRlKG5vZGVzKSB8PiAKICBtdXRhdGUoY29tcG9uZW50cyA9IGdyb3VwX2NvbXBvbmVudHModHlwZSA9ICJ3ZWFrIikpIHw+IAogIGZpbHRlcihjb21wb25lbnRzID09IDEpIHw+IAogIG11dGF0ZShkZWdyZWUgPSBjZW50cmFsaXR5X2RlZ3JlZSgpLAogICAgICAgICBjb21tdW5pdHkgPSBhcy5mYWN0b3IoZ3JvdXBfbG91dmFpbigpKSApCgprZXl3b3JkX2NvX29jY3VycmVuY2VfdGJsX2dyYXBoX2ZpbHRlcmVkIHw+IAogIGdncmFwaChsYXlvdXQgPSAia2siKSArIAogIGdlb21fZWRnZV9saW5rKGFscGhhID0gLjI1LCAKICAgICAgICAgICAgICAgICBhZXMod2lkdGggPSB3ZWlnaHQpKSArCiAgZ2VvbV9ub2RlX3BvaW50KGFlcyhjb2xvdXIgPSBjb21tdW5pdHksIAogICAgICAgICAgICAgICAgICAgICAgc2l6ZSA9IGRlZ3JlZSkpICsKICBnZW9tX25vZGVfdGV4dChhZXMobGFiZWwgPSBuYW1lKSwgcmVwZWwgPSBUUlVFKSArCiAgdGhlbWVfZ3JhcGgoKQpgYGAKCiMjIEZpZ3VyZSA0LiBUcmVlIG9mIFNjaWVuY2UKCiMjIyBUcmVlIG9mIFNjaWVuY2UKCmBgYHtyfQp0cmVlX29mX3NjaWVuY2UKYGBgCgojIyMgQ2x1c3RlcmluZyBhbmFseXNpcwoKRmluZGluZyB0aGUgY2x1c3RlcnMKCmBgYHtyfQpub2RlcyA8LSAgIyBDcmVhdGUgYSBkYXRhZnJhbWUgd2l0aCB0aGUgZnVsbG5hbWUgb2YgYXJ0aWNsZXMgCiAgdGliYmxlKG5hbWUgPSBWKHdvc19zY29wdXNfdG9zJGdyYXBoKSRuYW1lKSB8PiAKICBsZWZ0X2pvaW4od29zX3Njb3B1c190b3Mkbm9kZXMsIAogICAgICAgICAgICBieSA9IGMoIm5hbWUiID0gIklEX1RPUyIpKQoKd29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrXzEgPC0gIyBBZGQgdGhlIGFydGljbGUgbmFtZXMgdG8gdGhlIGNpdGF0aW9uIG5ldHdvcmsKICB3b3Nfc2NvcHVzX3RvcyRncmFwaCB8PiAKICBpZ3JhcGg6OnNldC52ZXJ0ZXguYXR0cmlidXRlKG5hbWUgPSAiZnVsbF9uYW1lIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBpbmRleCA9IFYod29zX3Njb3B1c190b3MkZ3JhcGgpJG5hbWUsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWUgPSBub2RlcyRDSVRFKQoKbm9kZXNfMSA8LSAjIENyZWF0ZSBhIGRhdGFmcmFtZSB3aXRoIHN1YmZpZWxkcyAoY2x1c3RlcnMpCiAgdGliYmxlKG5hbWUgPSBWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29ya18xKSRuYW1lLAogICAgICAgICBjbHVzdGVyID0gVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmtfMSkkc3ViZmllbGQsCiAgICAgICAgIGZ1bGxfbmFtZSA9IFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrXzEpJGZ1bGxfbmFtZSkKCm5vZGVzXzIgPC0gIyBDb3VudCB0aGUgbnVtYmVyIG9mIGFydGljbGVzIHBlciBjbHVzdGVyCiAgbm9kZXNfMSB8PiAKICBjb3VudChjbHVzdGVyLCBzb3J0ID0gVFJVRSkgfD4gCiAgbXV0YXRlKGNsdXN0ZXJfMSA9IHJvd19udW1iZXIoKSkgfD4gCiAgc2VsZWN0KGNsdXN0ZXIsIGNsdXN0ZXJfMSkKCm5vZGVzXzMgPC0gCiAgbm9kZXNfMSB8PiAKICBsZWZ0X2pvaW4obm9kZXNfMikgfD4gCiAgcmVuYW1lKHN1YmZpZWxkID0gY2x1c3Rlcl8xKSB8PiAKICBzZWxlY3QobmFtZSwgZnVsbF9uYW1lLCBzdWJmaWVsZCkKCmVkZ2VfbGlzdCA8LSAKICBnZXQuZWRnZWxpc3Qod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrXzEpIHw+IAogIGRhdGEuZnJhbWUoKSB8PiAKICByZW5hbWUoU291cmNlID0gWDEsIFRhcmdldCA9IFgyKQoKd29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrIDwtIAogIGdyYXBoLmRhdGEuZnJhbWUoZCA9IGVkZ2VfbGlzdCwgCiAgICAgICAgICAgICAgICAgICBkaXJlY3RlZCA9IFRSVUUsIAogICAgICAgICAgICAgICAgICAgdmVydGljZXMgPSBub2Rlc18zKQoKd29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrIHw+IAogIHN1bW1hcnkoKQpgYGAKCkNob29zaW5nIGNsdXN0ZXJzCgpXZSBwcm9wb3NlZCB0aGUgdGlwcGluZyBwb2ludCBvcHRpb24gdG8gY2hvb3NlIHRoZSBudW1iZXIgb2YgY2x1c3RlcnMuIFNlZSB0aGlzIHBhcGVyOgoKaHR0cHM6Ly93d3cubmF0dXJlLmNvbS9hcnRpY2xlcy9zNDE1OTgtMDIxLTg1MDQxLTgKCmBgYHtyfQpjbHVzdGVycyA8LSAKICB0aWJibGUoY2x1c3RlciA9IFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrKSRzdWJmaWVsZCkgfD4gCiAgY291bnQoY2x1c3Rlciwgc29ydCA9IFRSVUUpCgpjbHVzdGVycyB8PiAKICBnZ3Bsb3QoYWVzKHggPSByZW9yZGVyKGNsdXN0ZXIsIG4pLCB5ID0gbikpICsKICBnZW9tX3BvaW50KHNpemUgPSAzKSArCiAgbGFicyh4ID0gIkNsdXN0ZXJzIiwgeSA9ICJOdW1iZXIgb2YgcGFwZXJzIikgKwogIHRoZW1lKGF4aXMudGl0bGUueCA9IGVsZW1lbnRfdGV4dChzaXplID0gMTYgLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZmFtaWx5ID0gICJBcmlhbCIpLAogICAgICAgIGF4aXMudGl0bGUueSA9IGVsZW1lbnRfdGV4dChzaXplID0gMTYsIGZhbWlseSA9ICJBcmlhbCIpLAogICAgICAgIGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMiwgZmFtaWx5ID0gIkFyaWFsIiksIAogICAgICAgIGF4aXMudGV4dC55ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMiwgZmFtaWx5ID0gIkFyaWFsIikpCmBgYAoKUmVtb3Zpbmcgbm90IGNob3NlbiBjbHVzdGVycwoKYGBge3J9Cndvc19zY29wdXNfY2l0YXRpb25fbmV0d29ya19jbHVzdGVycyA8LSAKICB3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmsgfD4gCiAgZGVsZXRlLnZlcnRpY2VzKHdoaWNoKFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrKSRzdWJmaWVsZCAhPSAxICYgIyBmaWx0ZXIgY2x1c3RlcnMgCiAgICAgICAgICAgICAgICAgICAgICAgICAgVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkICE9IDIgJgogICAgICAgICAgICAgICAgICAgICAgICAgIFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrKSRzdWJmaWVsZCAhPSAzICAmCiAgICAgICAgICAgICAgICAgICAgICAgICAgVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkICE9IDQpKQoKd29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrX2NsdXN0ZXJzIHw+IAogIHN1bW1hcnkoKQpgYGAKCiMjIyBDbHVzdGVyIDEKCmBgYHtyfQpwYWwgPC0gYnJld2VyLnBhbCg4LCJEYXJrMiIpCgpub2Rlc19mdWxsX2RhdGEgPC0gCiAgdGliYmxlKG5hbWUgPSBWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yaykkbmFtZSwKICAgICAgICAgY2x1c3RlciA9IFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrKSRzdWJmaWVsZCwKICAgICAgICAgZnVsbF9uYW1lID0gVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJGZ1bGxfbmFtZSkKCmNsdXN0ZXJfMSA8LSAKICB3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmsgfD4gCiAgZGVsZXRlLnZlcnRpY2VzKHdoaWNoKFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrKSRzdWJmaWVsZCAhPSAxKSkKCmNsdXN0ZXJfMV9wYWdlX3JhbmsgPC0gCiAgY2x1c3Rlcl8xIHw+IAogIHNldC52ZXJ0ZXguYXR0cmlidXRlKG5hbWUgPSAicGFnZV9yYW5rIiwgCiAgICAgICAgICAgICAgICAgICAgICAgdmFsdWUgPSBwYWdlX3JhbmsoY2x1c3Rlcl8xKSR2ZWN0b3IpCgpjbHVzdGVyXzFfZGYgPC0gCiAgdGliYmxlKG5hbWUgPSBWKGNsdXN0ZXJfMV9wYWdlX3JhbmspJG5hbWUsCiAgICAgICAgIGZ1bGxfbmFtZSA9IFYoY2x1c3Rlcl8xX3BhZ2VfcmFuaykkZnVsbF9uYW1lLAogICAgICAgICBwYWdlX3JhbmsgPSBWKGNsdXN0ZXJfMV9wYWdlX3JhbmspJHBhZ2VfcmFuaywKICAgICAgICAgY2x1c3RlciA9IFYoY2x1c3Rlcl8xX3BhZ2VfcmFuaykkc3ViZmllbGQsKQoKbm9kZXNfZnVsbF9kYXRhIHw+IAogIGZpbHRlcihjbHVzdGVyID09IDEpIHw+IAogIHNlbGVjdChmdWxsX25hbWUpIHw+IAogIG11dGF0ZShmdWxsX25hbWUgPSBzdHJfZXh0cmFjdChmdWxsX25hbWUsIFNQQyAlUiUgICMgUmVndWxhciBleHByZXNzaW9ucyAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmVfb3JfbW9yZShXUkQpICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBTUEMgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKG9yKFdSRCwgQU5ZX0NIQVIpKSksCiAgICAgICAgIGZ1bGxfbmFtZSA9IHN0cl9yZW1vdmUoZnVsbF9uYW1lLCBPUEVOX1BBUkVOICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJlcGVhdGVkKERHVCwgNCkgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQ0xPU0VfUEFSRU4gJVIlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmVfb3JfbW9yZShvcihXUkQsQU5ZX0NIQVIpKSksCiAgICAgICAgIGZ1bGxfbmFtZSA9IHN0cl90cmltKGZ1bGxfbmFtZSkpICB8PiAKICB1bm5lc3RfdG9rZW5zKG91dHB1dCA9IHdvcmQsIGlucHV0ID0gZnVsbF9uYW1lKSB8PiAjIFRva2VuaXphdGlvbgogIGFudGlfam9pbihzdG9wX3dvcmRzKSB8PiAgIyBSZW1vdmluZyBzdG9wIHdvcmRzCiAgZmlsdGVyKHdvcmQgIT0gImRvaSIsCiAgICAgICAgICFzdHJfZGV0ZWN0KHdvcmQsICJbMC05XSIpKSB8PiAgIyBXb1MgZGF0YQogIGZpbHRlcih3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJjaXRhdGlvbiIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJyZXNlYXJjaCIpLCAgIyBXb3JkcyByZW1vdmVkCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImFuYWx5c2lzIiksIAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJzY2llbmNlIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInNjaWVudG9tZXRyaWMiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAibWFuYWdlbWVudCIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJiaWJsaW9tZXRyaWMiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAicmV2aWV3IiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImpvdXJuYWwiKSkgfD4KICBjb3VudCh3b3JkLCBzb3J0ID0gVFJVRSkgfD4gCiAgd2l0aCh3b3JkY2xvdWQod29yZCwgCiAgICAgICAgICAgICAgICAgbiwgCiAgICAgICAgICAgICAgICAgcmFuZG9tLm9yZGVyID0gRkFMU0UsIAogICAgICAgICAgICAgICAgIG1heC53b3JkcyA9IDUwLCAKICAgICAgICAgICAgICAgICBjb2xvcnM9cGFsKSkKYGBgCgojIyMgQ2x1c3RlciAyCgpgYGB7cn0KY2x1c3Rlcl8yIDwtIAogIHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yayB8PiAKICBkZWxldGUudmVydGljZXMod2hpY2goVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkICE9IDIpKQoKY2x1c3Rlcl8yX3BhZ2VfcmFuayA8LSAKICBjbHVzdGVyXzIgfD4gCiAgc2V0LnZlcnRleC5hdHRyaWJ1dGUobmFtZSA9ICJwYWdlX3JhbmsiLCAKICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZSA9IHBhZ2VfcmFuayhjbHVzdGVyXzIpJHZlY3RvcikKCmNsdXN0ZXJfMl9kZiA8LSAKICB0aWJibGUobmFtZSA9IFYoY2x1c3Rlcl8yX3BhZ2VfcmFuaykkbmFtZSwKICAgICAgICAgZnVsbF9uYW1lID0gVihjbHVzdGVyXzJfcGFnZV9yYW5rKSRmdWxsX25hbWUsCiAgICAgICAgIHBhZ2VfcmFuayA9IFYoY2x1c3Rlcl8yX3BhZ2VfcmFuaykkcGFnZV9yYW5rLAogICAgICAgICBjbHVzdGVyID0gVihjbHVzdGVyXzJfcGFnZV9yYW5rKSRzdWJmaWVsZCwpCgpub2Rlc19mdWxsX2RhdGEgfD4gCiAgZmlsdGVyKGNsdXN0ZXIgPT0gMikgfD4gCiAgc2VsZWN0KGZ1bGxfbmFtZSkgfD4gCiAgbXV0YXRlKGZ1bGxfbmFtZSA9IHN0cl9leHRyYWN0KGZ1bGxfbmFtZSwgU1BDICVSJSAgIyBSZWd1bGFyIGV4cHJlc3Npb25zIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKFdSRCkgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFNQQyAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb25lX29yX21vcmUob3IoV1JELCBBTllfQ0hBUikpKSwKICAgICAgICAgZnVsbF9uYW1lID0gc3RyX3JlbW92ZShmdWxsX25hbWUsIE9QRU5fUEFSRU4gJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVwZWF0ZWQoREdULCA0KSAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBDTE9TRV9QQVJFTiAlUiUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKG9yKFdSRCxBTllfQ0hBUikpKSwKICAgICAgICAgZnVsbF9uYW1lID0gc3RyX3RyaW0oZnVsbF9uYW1lKSkgIHw+IAogIHVubmVzdF90b2tlbnMob3V0cHV0ID0gd29yZCwgaW5wdXQgPSBmdWxsX25hbWUpIHw+IAogIGFudGlfam9pbihzdG9wX3dvcmRzKSB8PgogIGZpbHRlcih3b3JkICE9ICJkb2kiLAogICAgICAgICAhc3RyX2RldGVjdCh3b3JkLCAiWzAtOV0iKSkgfD4gICMgV29TIGRhdGEKICBmaWx0ZXIod29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAiY2l0YXRpb24iKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAicmVzZWFyY2giKSwgCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImFuYWx5c2lzIiksIAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJzY2llbmNlIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInNjaWVudG9tZXRyaWMiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAidnVsbmVyYWJpbGl0eSIpKSB8PgogIGNvdW50KHdvcmQsIHNvcnQgPSBUUlVFKSB8PiAKICB3aXRoKHdvcmRjbG91ZCh3b3JkLCAKICAgICAgICAgICAgICAgICBuLCAKICAgICAgICAgICAgICAgICByYW5kb20ub3JkZXIgPSBGQUxTRSwgCiAgICAgICAgICAgICAgICAgbWF4LndvcmRzID0gNTAsIAogICAgICAgICAgICAgICAgIGNvbG9ycz1wYWwpKQpgYGAKCiMjIyBDbHVzdGVyIDMKCmBgYHtyfQoKY2x1c3Rlcl8zIDwtIAogIHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yayB8PiAKICBkZWxldGUudmVydGljZXMod2hpY2goVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkICE9IDMpKQoKY2x1c3Rlcl8zX3BhZ2VfcmFuayA8LSAKICBjbHVzdGVyXzMgfD4gCiAgc2V0LnZlcnRleC5hdHRyaWJ1dGUobmFtZSA9ICJwYWdlX3JhbmsiLCAKICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZSA9IHBhZ2VfcmFuayhjbHVzdGVyXzMpJHZlY3RvcikKCmNsdXN0ZXJfM19kZiA8LSAKICB0aWJibGUobmFtZSA9IFYoY2x1c3Rlcl8zX3BhZ2VfcmFuaykkbmFtZSwKICAgICAgICAgZnVsbF9uYW1lID0gVihjbHVzdGVyXzNfcGFnZV9yYW5rKSRmdWxsX25hbWUsCiAgICAgICAgIHBhZ2VfcmFuayA9IFYoY2x1c3Rlcl8zX3BhZ2VfcmFuaykkcGFnZV9yYW5rLAogICAgICAgICBjbHVzdGVyID0gVihjbHVzdGVyXzNfcGFnZV9yYW5rKSRzdWJmaWVsZCwpCgpub2Rlc19mdWxsX2RhdGEgfD4gCiAgZmlsdGVyKGNsdXN0ZXIgPT0gMykgfD4gCiAgc2VsZWN0KGZ1bGxfbmFtZSkgfD4gCiAgbXV0YXRlKGZ1bGxfbmFtZSA9IHN0cl9leHRyYWN0KGZ1bGxfbmFtZSwgU1BDICVSJSAgIyBSZWd1bGFyIGV4cHJlc3Npb25zIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKFdSRCkgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFNQQyAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb25lX29yX21vcmUob3IoV1JELCBBTllfQ0hBUikpKSwKICAgICAgICAgZnVsbF9uYW1lID0gc3RyX3JlbW92ZShmdWxsX25hbWUsIE9QRU5fUEFSRU4gJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVwZWF0ZWQoREdULCA0KSAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBDTE9TRV9QQVJFTiAlUiUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKG9yKFdSRCxBTllfQ0hBUikpKSwKICAgICAgICAgZnVsbF9uYW1lID0gc3RyX3RyaW0oZnVsbF9uYW1lKSkgIHw+IAogIHVubmVzdF90b2tlbnMob3V0cHV0ID0gd29yZCwgaW5wdXQgPSBmdWxsX25hbWUpIHw+IAogIGFudGlfam9pbihzdG9wX3dvcmRzKSB8PgogIGZpbHRlcih3b3JkICE9ICJkb2kiLAogICAgICAgICAhc3RyX2RldGVjdCh3b3JkLCAiWzAtOV0iKSkgfD4gICMgV29TIGRhdGEgCiAgZmlsdGVyKHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImNpdGF0aW9uIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInJlc2VhcmNoIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImFuYWx5c2lzIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInNjaWVuY2UiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAic2NpZW50b21ldHJpYyIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJ2dWxuZXJhYmlsaXR5IiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImpvdXJuYWwiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAiaW5mb3JtYXRpb24iKSkgfD4KICBjb3VudCh3b3JkLCBzb3J0ID0gVFJVRSkgfD4gCiAgd2l0aCh3b3JkY2xvdWQod29yZCwgCiAgICAgICAgICAgICAgICAgbiwgCiAgICAgICAgICAgICAgICAgcmFuZG9tLm9yZGVyID0gRkFMU0UsIAogICAgICAgICAgICAgICAgIG1heC53b3JkcyA9IDUwLCAKICAgICAgICAgICAgICAgICBjb2xvcnM9cGFsKSkKYGBgCiMjIyBDbHVzdGVyIDQKCmBgYHtyfQoKY2x1c3Rlcl80IDwtIAogIHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yayB8PiAKICBkZWxldGUudmVydGljZXMod2hpY2goVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkICE9IDQpKQoKY2x1c3Rlcl80X3BhZ2VfcmFuayA8LSAKICBjbHVzdGVyXzQgfD4gCiAgc2V0LnZlcnRleC5hdHRyaWJ1dGUobmFtZSA9ICJwYWdlX3JhbmsiLCAKICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZSA9IHBhZ2VfcmFuayhjbHVzdGVyXzQpJHZlY3RvcikKCmNsdXN0ZXJfNF9kZiA8LSAKICB0aWJibGUobmFtZSA9IFYoY2x1c3Rlcl80X3BhZ2VfcmFuaykkbmFtZSwKICAgICAgICAgZnVsbF9uYW1lID0gVihjbHVzdGVyXzRfcGFnZV9yYW5rKSRmdWxsX25hbWUsCiAgICAgICAgIHBhZ2VfcmFuayA9IFYoY2x1c3Rlcl80X3BhZ2VfcmFuaykkcGFnZV9yYW5rLAogICAgICAgICBjbHVzdGVyID0gVihjbHVzdGVyXzRfcGFnZV9yYW5rKSRzdWJmaWVsZCwpCgpub2Rlc19mdWxsX2RhdGEgfD4gCiAgZmlsdGVyKGNsdXN0ZXIgPT0gNCkgfD4gCiAgc2VsZWN0KGZ1bGxfbmFtZSkgfD4gCiAgbXV0YXRlKGZ1bGxfbmFtZSA9IHN0cl9leHRyYWN0KGZ1bGxfbmFtZSwgU1BDICVSJSAgIyBSZWd1bGFyIGV4cHJlc3Npb25zIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKFdSRCkgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFNQQyAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb25lX29yX21vcmUob3IoV1JELCBBTllfQ0hBUikpKSwKICAgICAgICAgZnVsbF9uYW1lID0gc3RyX3JlbW92ZShmdWxsX25hbWUsIE9QRU5fUEFSRU4gJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVwZWF0ZWQoREdULCA0KSAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBDTE9TRV9QQVJFTiAlUiUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKG9yKFdSRCxBTllfQ0hBUikpKSwKICAgICAgICAgZnVsbF9uYW1lID0gc3RyX3RyaW0oZnVsbF9uYW1lKSkgIHw+IAogIHVubmVzdF90b2tlbnMob3V0cHV0ID0gd29yZCwgaW5wdXQgPSBmdWxsX25hbWUpIHw+IAogIGFudGlfam9pbihzdG9wX3dvcmRzKSB8PiAKICBmaWx0ZXIod29yZCAhPSAiZG9pIiwKICAgICAgICAgIXN0cl9kZXRlY3Qod29yZCwgIlswLTldIikpIHw+ICAjIFdvUyBkYXRhCiAgZmlsdGVyKHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImNpdGF0aW9uIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInJlc2VhcmNoIiksIAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJhbmFseXNpcyIpLCAKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAic2NpZW5jZSIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJzY2llbnRvbWV0cmljIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInZ1bG5lcmFiaWxpdHkiKSkgfD4KICBjb3VudCh3b3JkLCBzb3J0ID0gVFJVRSkgfD4gCiAgd2l0aCh3b3JkY2xvdWQod29yZCwgCiAgICAgICAgICAgICAgICAgbiwgCiAgICAgICAgICAgICAgICAgcmFuZG9tLm9yZGVyID0gRkFMU0UsIAogICAgICAgICAgICAgICAgIG1heC53b3JkcyA9IDUwLCAKICAgICAgICAgICAgICAgICBjb2xvcnM9cGFsKSkKYGBgCgojIEV4cG9ydGluZyBmaWxlcwoKYGBge3J9Cgp3cml0ZV9jc3Yod29zX3Njb3B1c190b3MkZGYsICJ3b3Nfc2NvcHVzX3Rvcy5jc3YiKSAjIEV4cG9ydGluZyBhbGwgZGF0YSBtZXJnZWQKCndyaXRlX2Nzdih0YWJsZV8xLCAidGFibGVfMS5jc3YiKSAjIEV4cG9ydGluZyB0YWJsZSAxCndyaXRlX2Nzdih3b3Nfc2NvcHVzX3RvdGFsX2NvdW50cnksICJ0YWJsZV8yXy5jc3YiKSAgIyBFeHBvcnRpbmcgdGFibGUgMgp3cml0ZV9jc3Yod29zX3Njb3B1c19hdXRob3JzLCAidGFibGVfMy5jc3YiKSAjIEV4cG9ydGluZyB0YWJsZSAzCndyaXRlX2Nzdih3b3Nfc2NvcHVzX3RvdGFsX2pvdXJuYWwsICJ0YWJsZV80LmNzdiIpICMgRXhwb3J0aW5nIHRhYmxlIDQKCgp3cml0ZV9jc3YobGFuZ3VhZ2VzLCAiZmlndXJlXzEuY3N2IikgIyBFeHBvcnRpbmcgZGF0YSBmaWd1cmUgMSAKd3JpdGVfY3N2KGZpZ3VyZV8yX2RhdGEsICJmaWd1cmVfMi5jc3YiKSAjIEV4cG9ydGluZyBkYXRhIGZpZ3VyZSAyCgp3cml0ZS5ncmFwaCh3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmssICJjaXRhdGlvbl9uZXR3b3JrX2Z1bGwuZ3JhcGhtbCIsICJncmFwaG1sIikgIyBFeHBvcnRpbmcgZ3JhcGgKd3JpdGUuZ3JhcGgod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrX2NsdXN0ZXJzLCAKICAgICAgICAgICAgIndvc19zY29wdXNfY2l0YXRpb25fbmV0d29ya19jbHVzdGVycy5ncmFwaG1sIiwgCiAgICAgICAgICAgICJncmFwaG1sIikKCmFjYV9ncmFwaG1sX25vZGVzIDwtIAogIGFjYV90YmxfZ3JhcGhfZmlsdGVyZWQgfD4gCiAgYWN0aXZhdGUobm9kZXMpIHw+IAogIGFzX3RpYmJsZSgpIHw+IAogIHJlbmFtZShhdXRob3IgPSBuYW1lKSB8PiAKICByb3duYW1lc190b19jb2x1bW4oIm5hbWUiKQoKYWNhX2dyYXBobWxfZWRnZXMgPC0gCiAgYWNhX3RibF9ncmFwaF9maWx0ZXJlZCB8PiAKICBhY3RpdmF0ZShlZGdlcykgfD4gCiAgYXNfdGliYmxlKCkgCgphY2FfZ3JhcGhtbCA8LSAKICBncmFwaF9mcm9tX2RhdGFfZnJhbWUoZCA9IGFjYV9ncmFwaG1sX2VkZ2VzLCAKICAgICAgICAgICAgICAgICAgICAgICAgZGlyZWN0ZWQgPSBGQUxTRSwgCiAgICAgICAgICAgICAgICAgICAgICAgIHZlcnRpY2VzID0gYWNhX2dyYXBobWxfbm9kZXMpCgp3cml0ZV9ncmFwaChhY2FfZ3JhcGhtbCwgImFjYV9ncmFwaC5ncmFwaG1sIiwgImdyYXBobWwiKSAjIEV4cG9ydCBhdXRob3IgY28tY2l0YXRpb24gZ3JhcGgKCmF1dGhvcl9jb2xsYWJfZ3JhcGhtbF9ub2RlcyA8LSAKICBhdXRob3JfY29sbGFiX3RibF9ncmFwaF9maWx0ZXJlZCB8PiAKICBhY3RpdmF0ZShub2RlcykgfD4gCiAgYXNfdGliYmxlKCkgfD4gCiAgcmVuYW1lKGF1dGhvciA9IG5hbWUpIHw+IAogIHJvd25hbWVzX3RvX2NvbHVtbigibmFtZSIpCgphdXRob3JfY29sbGFiX2dyYXBobWxfZWRnZXMgPC0gCiAgYXV0aG9yX2NvbGxhYl90YmxfZ3JhcGhfZmlsdGVyZWQgfD4gCiAgYWN0aXZhdGUoZWRnZXMpIHw+IAogIGFzX3RpYmJsZSgpIAoKYXV0aG9yX2NvbGxhYl9ncmFwaG1sIDwtIAogIGdyYXBoX2Zyb21fZGF0YV9mcmFtZShkID0gYXV0aG9yX2NvbGxhYl9ncmFwaG1sX2VkZ2VzLCAKICAgICAgICAgICAgICAgICAgICAgICAgZGlyZWN0ZWQgPSBGQUxTRSwgCiAgICAgICAgICAgICAgICAgICAgICAgIHZlcnRpY2VzID0gYXV0aG9yX2NvbGxhYl9ncmFwaG1sX25vZGVzKQoKd3JpdGVfZ3JhcGgoYXV0aG9yX2NvbGxhYl9ncmFwaG1sLCAiYXV0aG9yX2NvbGxhYl9ncmFwaG1sLmdyYXBobWwiLCAiZ3JhcGhtbCIpICMgRXhwb3J0IGF1dGhvciBjby1jaXRhdGlvbiBncmFwaAoKY291bnRyeV9jb2xsYWJfZ3JhcGhtbF9ub2RlcyA8LSAKICBjb3VudHJ5X2NvbGxhYl90YmxfZ3JhcGhfZmlsdGVyZWQgfD4gCiAgYWN0aXZhdGUobm9kZXMpIHw+IAogIGFzX3RpYmJsZSgpIHw+IAogIHJlbmFtZShhdXRob3IgPSBuYW1lKSB8PiAKICByb3duYW1lc190b19jb2x1bW4oIm5hbWUiKQoKY291bnRyeV9jb2xsYWJfZ3JhcGhtbF9lZGdlcyA8LSAKICBjb3VudHJ5X2NvbGxhYl90YmxfZ3JhcGhfZmlsdGVyZWQgfD4gCiAgYWN0aXZhdGUoZWRnZXMpIHw+IAogIGFzX3RpYmJsZSgpIAoKY291bnRyeV9jb2xsYWJfZ3JhcGhtbCA8LSAKICBncmFwaF9mcm9tX2RhdGFfZnJhbWUoZCA9IGNvdW50cnlfY29sbGFiX2dyYXBobWxfZWRnZXMsIAogICAgICAgICAgICAgICAgICAgICAgICBkaXJlY3RlZCA9IEZBTFNFLCAKICAgICAgICAgICAgICAgICAgICAgICAgdmVydGljZXMgPSBjb3VudHJ5X2NvbGxhYl9ncmFwaG1sX25vZGVzKQoKd3JpdGVfZ3JhcGgoY291bnRyeV9jb2xsYWJfZ3JhcGhtbCwgImNvdW50cnlfY29sbGFiX2dyYXBobWwuZ3JhcGhtbCIsICJncmFwaG1sIikgIyBFeHBvcnQgYXV0aG9yIGNvLWNpdGF0aW9uIGdyYXBoCgprZXl3b3JkX2NvX29jY3VycmVuY2VfZ3JhcGhtbF9ub2RlcyA8LSAKICBrZXl3b3JkX2NvX29jY3VycmVuY2VfdGJsX2dyYXBoX2ZpbHRlcmVkIHw+IAogIGFjdGl2YXRlKG5vZGVzKSB8PiAKICBhc190aWJibGUoKSB8PiAKICByZW5hbWUoYXV0aG9yID0gbmFtZSkgfD4gCiAgcm93bmFtZXNfdG9fY29sdW1uKCJuYW1lIikKCmtleXdvcmRfY29fb2NjdXJyZW5jZV9ncmFwaG1sX2VkZ2VzIDwtIAogIGtleXdvcmRfY29fb2NjdXJyZW5jZV90YmxfZ3JhcGhfZmlsdGVyZWQgfD4gCiAgYWN0aXZhdGUoZWRnZXMpIHw+IAogIGFzX3RpYmJsZSgpICAKCmtleXdvcmRfY29fb2NjdXJyZW5jZV9ncmFwaG1sIDwtIAogIGdyYXBoX2Zyb21fZGF0YV9mcmFtZShkID0ga2V5d29yZF9jb19vY2N1cnJlbmNlX2dyYXBobWxfZWRnZXMsIAogICAgICAgICAgICAgICAgICAgICAgICBkaXJlY3RlZCA9IEZBTFNFLCAKICAgICAgICAgICAgICAgICAgICAgICAgdmVydGljZXMgPSBrZXl3b3JkX2NvX29jY3VycmVuY2VfZ3JhcGhtbF9ub2RlcykKCndyaXRlX2dyYXBoKGtleXdvcmRfY29fb2NjdXJyZW5jZV9ncmFwaG1sLCAia2V5d29yZF9jb19vY2N1cnJlbmNlX2dyYXBobWwuZ3JhcGhtbCIsICJncmFwaG1sIikgIyBFeHBvcnQgYXV0aG9yIGNvLWNpdGF0aW9uIGdyYXBoCgp3cml0ZS5jc3YodHJlZV9vZl9zY2llbmNlLCAidHJlZV9vZl9zY2llbmNlLmNzdiIpICMgRXhwb3J0aW5nIFRyZWUgb2YgU2NpZW5jZQoKd3JpdGUuY3N2KGNsdXN0ZXJfMV9kZiwgImNsdXN0ZXJfMS5jc3YiKSAjIEV4cG9ydGluZyBjbHVzdGVyIDEKd3JpdGUuY3N2KGNsdXN0ZXJfMl9kZiwgImNsdXN0ZXJfMi5jc3YiKSAjIEV4cG9ydGluZyBjbHVzdGVyIDIKd3JpdGUuY3N2KGNsdXN0ZXJfM19kZiwgImNsdXN0ZXJfMy5jc3YiKSAjIEV4cG9ydGluZyBjbHVzdGVyIDMKd3JpdGUuY3N2KGNsdXN0ZXJfNF9kZiwgImNsdXN0ZXJfNC5jc3YiKSAjIEV4cG9ydGluZyBjbHVzdGVyIDQKCndyaXRlLmNzdihub2Rlc19mdWxsX2RhdGEsICJub2Rlc19mdWxsX2RhdGEuY3N2IikgIyBFeHBvcnRpbmcgYWxsIG5vZGVzCmBgYAoK