Survey Data Source: National Household Education Surveys (NHES) Program 2019: Parent and Family Involvement in Education (PFI)
Developing an Index of “Student Success” – Higher is better
Variable 1: enjoy_school; Item 50: SEENJOY “How much do you agree or disagree with ‘This child enjoys school’”
Variable 2: charter_school; Item 32: SCHRTSCHL “Is this school a charter school?”
Variable 3: magnet_school; Item 33: SCHLMAGNET “Is this school a magnet school or does he/she attend a magnet program?”
Variable 4: overall_grades; Item 51: SEGRADES “Overall, across all subjects, what grades does this child get?”
Variable 5: time_absent; Item 54: SEABSNT “Since the beginning of this school year, how many days has this child been absent from school?” (Recoded - higher value means less time absent, lower value means more time absent)
Variable 6: times_participated; Item 61: FSFREQ “During this school year, how many times has any adult in the household gone to meetings or participated in activities at this child’s school?”
Variable 7: hours_hw_perweek; Item 66: FHWKHRS “In an average week, how many hours does this child spend on homework outside of school?”
Variable 8: parent_interaction; Item 64E: FCSUPPRT “How satisfied or dissatisfied are you with the way that school staff interacts with parents?”
Categorical Variable 1: parent_educ; PARGRADEX “Parent/guardian highest education”
Categorical Variable 2: race_eth; RACEETH “Race and ethnicity of child”
Categorical Variable 3: expectation; Item 144: SEFUTUREX “How far do you expect this child to go in his or her education?”
hw7data <- pfi19 %>%
select (enjoy_school, charter_school, magnet_school, overall_grades, time_absent, times_participated, hours_hw_perweek, parent_interaction, parent_educ, race_eth, expectation, PPSU, PSTRATUM, FPWT) %>%
filter (complete.cases(.))
hw7data.pc <- PCA (hw7data[, c(1:8)],
scale.unit = T,
graph = F)
eigenvalues <- hw7data.pc$eig
eigenvalues
## eigenvalue percentage of variance cumulative percentage of variance
## comp 1 1.5779411 19.724264 19.72426
## comp 2 1.0875916 13.594895 33.31916
## comp 3 1.0802455 13.503069 46.82223
## comp 4 0.9599272 11.999090 58.82132
## comp 5 0.9230543 11.538179 70.35950
## comp 6 0.8867293 11.084116 81.44361
## comp 7 0.7830088 9.787610 91.23122
## comp 8 0.7015022 8.768777 100.00000
fviz_screeplot(hw7data.pc, ncp=8)
summary(hw7data.pc)
##
## Call:
## PCA(X = hw7data[, c(1:8)], scale.unit = T, graph = F)
##
##
## Eigenvalues
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6 Dim.7
## Variance 1.578 1.088 1.080 0.960 0.923 0.887 0.783
## % of var. 19.724 13.595 13.503 11.999 11.538 11.084 9.788
## Cumulative % of var. 19.724 33.319 46.822 58.821 70.359 81.444 91.231
## Dim.8
## Variance 0.702
## % of var. 8.769
## Cumulative % of var. 100.000
##
## Individuals (the 10 first)
## Dist Dim.1 ctr cos2 Dim.2 ctr cos2
## 1 | 1.432 | 0.764 0.003 0.285 | -0.713 0.004 0.248 |
## 2 | 1.199 | 0.860 0.004 0.514 | -0.497 0.002 0.171 |
## 3 | 1.142 | 0.893 0.004 0.612 | -0.512 0.002 0.201 |
## 4 | 1.394 | 0.992 0.005 0.507 | -0.123 0.000 0.008 |
## 5 | 1.431 | 0.976 0.005 0.465 | -0.115 0.000 0.007 |
## 6 | 1.185 | 0.072 0.000 0.004 | -0.462 0.002 0.152 |
## 7 | 2.979 | -0.907 0.004 0.093 | -0.508 0.002 0.029 |
## 8 | 2.905 | -1.596 0.014 0.302 | -0.521 0.002 0.032 |
## 9 | 3.488 | 0.591 0.002 0.029 | 0.949 0.007 0.074 |
## 10 | 1.016 | 0.138 0.000 0.019 | -0.493 0.002 0.236 |
## Dim.3 ctr cos2
## 1 -0.718 0.004 0.252 |
## 2 -0.324 0.001 0.073 |
## 3 -0.193 0.000 0.028 |
## 4 0.222 0.000 0.025 |
## 5 0.157 0.000 0.012 |
## 6 -0.664 0.004 0.314 |
## 7 -0.026 0.000 0.000 |
## 8 0.030 0.000 0.000 |
## 9 1.480 0.017 0.180 |
## 10 -0.401 0.001 0.156 |
##
## Variables
## Dim.1 ctr cos2 Dim.2 ctr cos2 Dim.3
## enjoy_school | 0.701 31.136 0.491 | -0.047 0.201 0.002 | -0.175
## charter_school | 0.034 0.075 0.001 | 0.588 31.740 0.345 | -0.384
## magnet_school | 0.061 0.233 0.004 | 0.733 49.363 0.537 | -0.020
## overall_grades | 0.696 30.680 0.484 | -0.014 0.019 0.000 | 0.159
## time_absent | 0.547 18.929 0.299 | -0.132 1.611 0.018 | -0.056
## times_participated | 0.184 2.156 0.034 | -0.073 0.487 0.005 | 0.609
## hours_hw_perweek | 0.181 2.068 0.033 | 0.424 16.516 0.180 | 0.619
## parent_interaction | 0.482 14.724 0.232 | -0.026 0.063 0.001 | -0.345
## ctr cos2
## enjoy_school 2.838 0.031 |
## charter_school 13.659 0.148 |
## magnet_school 0.037 0.000 |
## overall_grades 2.326 0.025 |
## time_absent 0.294 0.003 |
## times_participated 34.350 0.371 |
## hours_hw_perweek 35.450 0.383 |
## parent_interaction 11.046 0.119 |
hw7data.pc$var
## $coord
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## enjoy_school 0.70092924 -0.04676584 -0.17508231 0.0323651 -0.02845604
## charter_school 0.03429691 0.58754248 -0.38412224 0.3300287 0.62637469
## magnet_school 0.06069445 0.73271311 -0.02000104 -0.1260655 -0.53573266
## overall_grades 0.69577653 -0.01445093 0.15851127 -0.1057989 0.03218763
## time_absent 0.54652588 -0.13237066 -0.05639714 -0.4133403 0.28815956
## times_participated 0.18442918 -0.07275300 0.60914893 0.6629497 0.04311704
## hours_hw_perweek 0.18066033 0.42381999 0.61882989 -0.2302846 0.13013687
## parent_interaction 0.48200770 -0.02612832 -0.34543081 0.3993637 -0.37419674
##
## $cor
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## enjoy_school 0.70092924 -0.04676584 -0.17508231 0.0323651 -0.02845604
## charter_school 0.03429691 0.58754248 -0.38412224 0.3300287 0.62637469
## magnet_school 0.06069445 0.73271311 -0.02000104 -0.1260655 -0.53573266
## overall_grades 0.69577653 -0.01445093 0.15851127 -0.1057989 0.03218763
## time_absent 0.54652588 -0.13237066 -0.05639714 -0.4133403 0.28815956
## times_participated 0.18442918 -0.07275300 0.60914893 0.6629497 0.04311704
## hours_hw_perweek 0.18066033 0.42381999 0.61882989 -0.2302846 0.13013687
## parent_interaction 0.48200770 -0.02612832 -0.34543081 0.3993637 -0.37419674
##
## $cos2
## Dim.1 Dim.2 Dim.3 Dim.4
## enjoy_school 0.491301806 0.0021870436 0.0306538158 0.001047499
## charter_school 0.001176278 0.3452061714 0.1475498946 0.108918948
## magnet_school 0.003683816 0.5368685067 0.0004000415 0.015892508
## overall_grades 0.484104983 0.0002088292 0.0251258241 0.011193398
## time_absent 0.298690533 0.0175219904 0.0031806374 0.170850170
## times_participated 0.034014124 0.0052929986 0.3710624230 0.439502280
## hours_hw_perweek 0.032638154 0.1796233838 0.3829504374 0.053030981
## parent_interaction 0.232331427 0.0006826889 0.1193224421 0.159491385
## Dim.5
## enjoy_school 0.0008097462
## charter_school 0.3923452522
## magnet_school 0.2870094805
## overall_grades 0.0010360433
## time_absent 0.0830359328
## times_participated 0.0018590793
## hours_hw_perweek 0.0169356041
## parent_interaction 0.1400231983
##
## $contrib
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## enjoy_school 31.13562346 0.20109052 2.83767119 0.1091228 0.08772465
## charter_school 0.07454513 31.74042235 13.65892220 11.3465846 42.50510903
## magnet_school 0.23345715 49.36306059 0.03703246 1.6555952 31.09345454
## overall_grades 30.67953400 0.01920107 2.32593644 1.1660674 0.11224077
## time_absent 18.92913041 1.61108179 0.29443653 17.7982429 8.99577950
## times_participated 2.15560161 0.48667152 34.34982303 45.7849610 0.20140518
## hours_hw_perweek 2.06840128 16.51570145 35.45031493 5.5244796 1.83473533
## parent_interaction 14.72370696 0.06277071 11.04586322 16.6149465 15.16955099
fviz_pca_var(hw7data.pc,
col.var="contrib")+
theme_minimal()
fviz_pca_ind(hw7data.pc,
label="none",
col.ind="cos2")+
scale_color_gradient2(low="blue",
mid="white",
high="red",
midpoint=.5)+
theme_minimal()
eigenvalues
## eigenvalue percentage of variance cumulative percentage of variance
## comp 1 1.5779411 19.724264 19.72426
## comp 2 1.0875916 13.594895 33.31916
## comp 3 1.0802455 13.503069 46.82223
## comp 4 0.9599272 11.999090 58.82132
## comp 5 0.9230543 11.538179 70.35950
## comp 6 0.8867293 11.084116 81.44361
## comp 7 0.7830088 9.787610 91.23122
## comp 8 0.7015022 8.768777 100.00000
The first four components account for 58.8% of the variation in the input variables.
Three eigenvalues are greater than 1, indicating three real components among these variables.
desc <- dimdesc(hw7data.pc)
desc$Dim.1
## $quanti
## correlation p.value
## enjoy_school 0.70092924 0.000000e+00
## overall_grades 0.69577653 0.000000e+00
## time_absent 0.54652588 0.000000e+00
## parent_interaction 0.48200770 0.000000e+00
## times_participated 0.18442918 1.530109e-89
## hours_hw_perweek 0.18066033 6.155655e-86
## magnet_school 0.06069445 5.670152e-11
## charter_school 0.03429691 2.154719e-04
##
## attr(,"class")
## [1] "condes" "list"
desc$Dim.2
## $quanti
## correlation p.value
## magnet_school 0.73271311 0.000000e+00
## charter_school 0.58754248 0.000000e+00
## hours_hw_perweek 0.42381999 0.000000e+00
## parent_interaction -0.02612832 4.824464e-03
## enjoy_school -0.04676584 4.496310e-07
## times_participated -0.07275300 3.930668e-15
## time_absent -0.13237066 1.233148e-46
##
## attr(,"class")
## [1] "condes" "list"
hw7data$pc1 <- hw7data.pc$ind$coord[, 1]
options(survey.lonely.psu = "adjust")
hw7design <- svydesign(ids = ~PPSU,
strata = ~PSTRATUM,
weights = ~FPWT,
data = hw7data,
nest = TRUE)
ggplot(aes(x=parent_educ, y=pc1, group=parent_educ),
data = hw7data)+
geom_boxplot()
As parent education level increases, so does the Index of Student Success.
ggplot(aes(x=race_eth, y=pc1, group=race_eth),
data = hw7data)+
geom_boxplot()
Minimal variation in the Index of Student Success across race/ethnicity, but the NH Asian group does show a higher Index when compared to the other four groups.
ggplot(aes(x=expectation, y=pc1, group=expectation),
data = hw7data)+
geom_boxplot()
In general, as parents’ expectation of child’s education potential increases, so does the Index of Student Success.
fit.1 <- svyglm (pc1 ~ parent_educ + race_eth + expectation,
hw7design,
family = gaussian)
summary(fit.1)
##
## Call:
## svyglm(formula = pc1 ~ parent_educ + race_eth + expectation,
## design = hw7design, family = gaussian)
##
## Survey design:
## svydesign(ids = ~PPSU, strata = ~PSTRATUM, weights = ~FPWT, data = hw7data,
## nest = TRUE)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.275053 0.213701 -1.287 0.19809
## parent_educ0Less than HS 0.060653 0.086299 0.703 0.48218
## parent_educ2Some College 0.003155 0.056112 0.056 0.95517
## parent_educ3College Grad 0.131267 0.056012 2.344 0.01912 *
## parent_educ4Grad School 0.277128 0.056019 4.947 7.64e-07 ***
## race_ethHispanic -0.009476 0.041120 -0.230 0.81775
## race_ethNH Asian 0.145571 0.068269 2.132 0.03300 *
## race_ethNH Black -0.069241 0.056612 -1.223 0.22133
## race_ethOther -0.150604 0.078989 -1.907 0.05659 .
## expectation1HS Grad -0.591335 0.233139 -2.536 0.01121 *
## expectation2Vocational Technical -0.600834 0.221059 -2.718 0.00658 **
## expectation3Two Yrs College -0.040153 0.212822 -0.189 0.85035
## expectation4Bachelors 0.301327 0.207867 1.450 0.14719
## expectation5Graduate Degree 0.484918 0.207057 2.342 0.01920 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 1.318032)
##
## Number of Fisher Scoring iterations: 2
In general, the Index of Student Success increases with higher parent education level (significant at College Grad and Grad School levels) and parent expectation of child’s education potential (significant at HS Grad, Vocational Technical, and Graduate Degree levels). There is minimal variation in the Index of Student Success between race/ethnic groups, except for the NH Asian group, which has a significantly higher level in the Index of Student Success.