# Our model
lm1=plm(MDR_lead~MDR+EBIT_TA+MB+DEP_TA+FA_TA+lnTA+IndMed,index="pid",model="within",data=regdtc)
stargazer(lm1,type="text")
##
## =========================================
## Dependent variable:
## ----------------------------
## MDR_lead
## -----------------------------------------
## MDR 0.580***
## (0.004)
##
## EBIT_TA -0.032***
## (0.003)
##
## MB -0.001***
## (0.0002)
##
## DEP_TA -0.017
## (0.022)
##
## FA_TA 0.049***
## (0.005)
##
## lnTA 0.019***
## (0.001)
##
## IndMed -0.107***
## (0.011)
##
## -----------------------------------------
## Observations 64,024
## R2 0.351
## Adjusted R2 0.278
## F Statistic 4,444.871*** (df = 7; 57522)
## =========================================
## Note: *p<0.1; **p<0.05; ***p<0.01
# Predictions
regdtc[,MDRp:=lm1$model[[1]]-lm1$residuals]
# Residuals
regdtc[,err:=as.numeric(residuals(lm1))]
# Fixed Effects
d=as.data.frame(fixef(lm1))
names <- rownames(d)
rownames(d) <- NULL
fe <- cbind(names,d)
names(fe)=c("pid","fe")
regdtc=merge(regdtc,fe,by="pid")
# Lambda and betas
lambda=1-coefficients(lm1)[[1]]
#according to flannery MDR_lead-lambda*beta*Xvect+(1-lambda)MDR+err+fe
#the coefficients are thus lmbda*beta
c_EBIT_TA=coefficients(lm1)[[2]]/lambda
c_MB=coefficients(lm1)[[3]]/lambda
c_DEP_TA=coefficients(lm1)[[4]]/lambda
c_FA_TA=coefficients(lm1)[[5]]/lambda
c_lnTA=coefficients(lm1)[[6]]/lambda
c_IndMed=coefficients(lm1)[[7]]/lambda
c_fe=1/lambda
# Target Debt Ratio (tdr)
# Question here: Does fe have coefficient? At least 1/lambda
regdtc[,tdr:=as.numeric(c_EBIT_TA*EBIT_TA+c_MB*MB+c_DEP_TA*DEP_TA+c_FA_TA*FA_TA+c_lnTA*lnTA+c_IndMed*IndMed+c_fe*fe)]
#summary(regdtc$tdr)
#unique(regdtc[tdr<0]$pid) There are some negatives
#regdtc[,delta_MDR:=MDR_lead-MDR]
regdtc[,delta_MDR:=MDRp-MDR] #with the predicted
#regdtc[,delta_MDR:=MDRp-MDR]
regdtc[,gap:=tdr-MDR]#deviation from the optimal
regdtc[,lambda_gap:=lambda*gap]#variation of the optimal
regdtc[gap!=0,lambda_i:=delta_MDR/gap]
#regdtc[gap!=0,lambda_i:=delta_MDR2/gap]
#regdtc[,Delta_EBIT_TA:=shift(EBIT_TA,n=1,type="lead")-EBIT_TA,by=pid]
#regdtc[,Delta_lnTA:=shift(lnTA,n=1,type="lead")-lnTA,by=pid]
# lm1=plm(MDR_lead~MDR+EBIT_TA+MB+DEP_TA+FA_TA+lnTA+IndMed,index="pid",model="within",data=regdtc)
# lm2=plm(MDR_lead~MDR+EBIT_TA+MB+DEP_TA+FA_TA+lnTA+IndMed+Delta_EBIT_TA+Delta_lnTA,index="pid",model="within",data=regdtc)
# lm3=plm(MDR_lead~MDR+IndMed+EBIT_TA+lnTA+Delta_EBIT_TA+Delta_lnTA,index="pid",model="within",data=regdtc)
# stargazer(lm1,lm2,lm3,type="text")
Covariates, prediction, fixed effects and residuals over time:
# MOODY'S CORP
regdtc[pid=="N06966",.(entity_name,year,MDR,MDR_lead,MDRp,tdr,delta_MDR,gap,lambda_i,fe, IndMed)]
Chart over time:
g1=ggplot(regdtc[pid=="N06966"])+theme_minimal(base_size=8)+
geom_line(aes(year,MDR,color="AMDR"))+geom_point(aes(year,MDR,color="AMDR"))+
geom_line(aes(year,tdr,color="TMDR"))+ geom_point(aes(year,tdr,color="TMDR"))+geom_line(aes(year,IndMed,color="IndMed"))+ geom_point(aes(year,IndMed,color="IndMed"))+
geom_vline(xintercept = 2001)+geom_vline(xintercept = 2002)+scale_color_manual(values=moocols[c(1,2,3)])+
geom_vline(xintercept = 2017)+geom_vline(xintercept = 2016)+geom_vline(xintercept = 1999)+geom_vline(xintercept = 2000)
g2=ggplot(regdtc[pid=="N06966"])+theme_minimal(base_size=8)+
geom_line(aes(year,EBIT_TA,color="EBIT_TA"))+geom_point(aes(year,EBIT_TA,color="EBIT_TA"))+
geom_line(aes(year,DEP_TA,color="DEP_TA"))+ geom_point(aes(year,DEP_TA,color="DEP_TA"))+geom_line(aes(year,FA_TA,color="FA_TA"))+ geom_point(aes(year,FA_TA,color="FA_TA"))+
geom_vline(xintercept = 2001)+geom_vline(xintercept = 2002)+scale_color_manual(values=moocols[c(4,5,6)])+
geom_vline(xintercept = 2017)+geom_vline(xintercept = 2016)+geom_vline(xintercept = 1999)+geom_vline(xintercept = 2000)
g3=ggplot(regdtc[pid=="N06966"])+theme_minimal(base_size=8)+
geom_line(aes(year,lnTA,color="lnTA"))+ geom_point(aes(year,lnTA,color="lnTA"))+
geom_vline(xintercept = 2001)+geom_vline(xintercept = 2002)+scale_color_manual(values=moocols[c(7)])+
geom_vline(xintercept = 2017)+geom_vline(xintercept = 2016)+geom_vline(xintercept = 1999)+geom_vline(xintercept = 2000)
grid.arrange(g1,g2,g3,nrow=3,top="Target Debt Ratio and Drivers over time | MOODY'S CORP.")
Interpretation:
Lower panel: Actual (MDR_current, driver), Predicted for \(t+1\), and Target. At each year, \(MDR_{i,t+1}-MDR_{i,t} = \lambda (MDR_{i,t+1}^*-MDR_{i,t}) \implies PMDR - AMDR Lagged = 0.39 (TMDR-AMDR Lagged)\)
Check that this holds for all firms:
summary(winsorize(as.numeric(regdtc$lambda_i)))
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.4197 0.4197 0.4197 0.4197 0.4197 0.4197 8
Overall
Distribution by sector
Distribution by size
Distribution by length of history
Let’s investigate the importance of the length of history further
##
## ====================================================================
## Dependent variable:
## -------------------------------------------------------
## MDR_lead
## (1) (2)
## --------------------------------------------------------------------
## MDR 0.572*** 0.339***
## (0.006) (0.008)
##
## EBIT_TA -0.038*** -0.043***
## (0.005) (0.005)
##
## MB -0.001 -0.001
## (0.0004) (0.001)
##
## DEP_TA 0.011 0.029
## (0.037) (0.045)
##
## FA_TA 0.038*** 0.020*
## (0.008) (0.011)
##
## lnTA 0.031*** 0.044***
## (0.002) (0.003)
##
## IndMed -0.127*** -0.179***
## (0.018) (0.025)
##
## --------------------------------------------------------------------
## Observations 26,930 21,115
## R2 0.341 0.135
## Adjusted R2 0.268 -0.082
## F Statistic 1,794.352*** (df = 7; 24230) 376.493*** (df = 7; 16885)
## ====================================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
Correlation of actual and predicted, at the firm level
“Cov” means correlation with lagged MDR (covariate) and “act” with actual MDR (what we aim to predict)## Observations: 64,024
## Variables: 24
## $ pid <chr> "000360", "000360", "000360", "000360", "000360", "0…
## $ entity_name <chr> "AAON, INC.", "AAON, INC.", "AAON, INC.", "AAON, INC…
## $ year <int> 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006…
## $ ndy <chr> "N34", "N34", "N34", "N34", "N34", "N34", "N34", "N3…
## $ sector <chr> "Business_Products", "Business_Products", "Business_…
## $ MDR <dbl> 0.1052741950, 0.0620750346, 0.1026217066, 0.01069722…
## $ EBIT_TA <dbl> 0.18221597, 0.27238475, 0.27112135, 0.29939052, 0.24…
## $ MB <dbl> 2.4917398, 2.2475484, 2.0791963, 3.1502759, 2.334089…
## $ DEP_TA <dbl> 0.05638934, 0.05221972, 0.04510662, 0.05740874, 0.05…
## $ FA_TA <dbl> 0.3673425, 0.3781199, 0.3835039, 0.4459270, 0.493179…
## $ lnTA <dbl> 3.922092, 4.071690, 4.341439, 4.334607, 4.518664, 4.…
## $ lnTAcpi <dbl> 3.547762, 3.719004, 4.021964, 4.043002, 4.242794, 4.…
## $ lnSALES <dbl> 4.670780, 4.852304, 5.043309, 5.057850, 5.043909, 5.…
## $ lnSALEScpi <dbl> 4.296449, 4.499617, 4.723834, 4.766244, 4.768039, 4.…
## $ MDR_lead <dbl> 0.0620750346, 0.1026217066, 0.0106972233, 0.01894497…
## $ IndMed <dbl> 0.25556764, 0.27299627, 0.27437743, 0.25822034, 0.27…
## $ MDRp <dbl> 0.035878725, 0.009738089, 0.038941505, -0.011865025,…
## $ err <dbl> 0.026196310, 0.092883618, -0.028244282, 0.030810003,…
## $ fe <dbl> -0.08276884, -0.08276884, -0.08276884, -0.08276884, …
## $ tdr <dbl> -0.060088609, -0.062638929, -0.049122156, -0.0430664…
## $ delta_MDR <dbl> -0.069395470, -0.052336946, -0.063680202, -0.0225622…
## $ gap <dbl> -0.165362804, -0.124713964, -0.151743863, -0.0537636…
## $ lambda_gap <dbl> -0.069395470, -0.052336946, -0.063680202, -0.0225622…
## $ lambda_i <dbl> 0.4196559, 0.4196559, 0.4196559, 0.4196559, 0.419655…
Alternative models
##
## ==============================================================
## Dependent variable:
## ---------------------------------------------
## MDR_lead
## F&R2006 AR1 F&R2006+Growth AR1+Growth
## (1) (2) (3) (4)
## --------------------------------------------------------------
## MDR 0.581*** 0.604*** 0.598*** 0.608***
## (0.004) (0.004) (0.004) (0.004)
## EBIT_TA -0.031*** -0.094*** -0.091***
## (0.003) (0.004) (0.003)
## MB -0.001*** -0.002***
## (0.0002) (0.0002)
## DEP_TA -0.016 -0.012
## (0.022) (0.023)
## FA_TA 0.050*** 0.053***
## (0.005) (0.005)
## lnTAcpi 0.018*** 0.023*** 0.027***
## (0.001) (0.001) (0.001)
## IndMed -0.114*** -0.087*** -0.064*** -0.053***
## (0.012) (0.012) (0.012) (0.012)
## Delta_EBIT_TA -0.098*** -0.097***
## (0.003) (0.003)
## Delta_lnTAcpi 0.049*** 0.043***
## (0.002) (0.002)
## Delta_lnSALEScpi -0.002 -0.001
## (0.001) (0.001)
## --------------------------------------------------------------
## Observations 63,385 63,385 57,529 57,529
## R2 0.351 0.339 0.368 0.365
## Adjusted R2 0.285 0.272 0.296 0.293
## ==============================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
By size:
Takeaways
What if they matter?
TDR is upwards sloping which makes sense