Nama : Muhammad Ridho

NIM : 210605110102

Kelas : Liniear Algebra (C)

Dosen Pengempu : Prof. Dr. Suhartono, M.Kom

Universitas : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Jurusan : Teknik Informatika

Pengertian Pivot Table

pivot table adalah ringkasan data yang dikemas dalam tabel interaktif agar memudahkan dan membantu kamu untuk membuat laporan dan menganalisisnya dengan melihat perbandingan data yang kamu miliki.

Singkatnya, gunanya pivot table adalah untuk merangkum, mengelompokkan, mengeksplorasi, mempresentasikan, menghitung, dan menganalisa data.

library(readxl)
dataoutflowjawa <- read_excel(path = "outflow tahunan1.xlsx")
dataoutflowjawa
## # A tibble: 6 x 12
##   Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
##   <chr>     <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
## 1 Jawa     83511. 1.11e5 98969. 1.47e5 1.72e5 1.91e5 2.29e5 2.53e5 2.72e5 2.51e5
## 2 Jawa Ba~ 20782. 2.89e4 23067. 4.09e4 4.71e4 4.94e4 5.38e4 6.14e4 6.17e4 5.72e4
## 3 Jawa Te~ 19975. 2.85e4 29529. 3.91e4 4.68e4 5.37e4 6.28e4 6.94e4 7.24e4 7.23e4
## 4 Yogyaka~  7538. 9.49e3  9708. 1.32e4 1.41e4 1.30e4 1.68e4 2.04e4 2.14e4 1.66e4
## 5 Jawa Ti~ 35217. 4.45e4 36665. 5.39e4 6.36e4 7.45e4 9.34e4 9.80e4 1.06e5 9.34e4
## 6 Banten       0  0          0  0      0      0      2.11e3 4.05e3 1.10e4 1.18e4
## # ... with 1 more variable: `2021` <dbl>
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.3
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.6     v dplyr   1.0.7
## v tidyr   1.2.0     v stringr 1.4.0
## v readr   2.1.2     v forcats 0.5.1
## Warning: package 'tidyr' was built under R version 4.1.3
## Warning: package 'readr' was built under R version 4.1.3
## Warning: package 'forcats' was built under R version 4.1.3
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()

Kasus Data outflow Uang Kartal di Pulau jawa pada periode 2011-2021

datalongerjawa <- dataoutflowjawa %>% 
  pivot_longer(!Provinsi, names_to = "Tahun", values_to = "Kasus")
datalongerjawa
## # A tibble: 66 x 3
##    Provinsi Tahun   Kasus
##    <chr>    <chr>   <dbl>
##  1 Jawa     2011   83511.
##  2 Jawa     2012  111363.
##  3 Jawa     2013   98969.
##  4 Jawa     2014  147069.
##  5 Jawa     2015  171568.
##  6 Jawa     2016  190568.
##  7 Jawa     2017  228905.
##  8 Jawa     2018  253125.
##  9 Jawa     2019  271957.
## 10 Jawa     2020  251363.
## # ... with 56 more rows

Pivot Data outflow Uang Kartal di Pulau jawa Berdasarkan Kasus

library(dplyr)
jawa2 <- select(datalongerjawa, Provinsi, Kasus)
jawa2
## # A tibble: 66 x 2
##    Provinsi   Kasus
##    <chr>      <dbl>
##  1 Jawa      83511.
##  2 Jawa     111363.
##  3 Jawa      98969.
##  4 Jawa     147069.
##  5 Jawa     171568.
##  6 Jawa     190568.
##  7 Jawa     228905.
##  8 Jawa     253125.
##  9 Jawa     271957.
## 10 Jawa     251363.
## # ... with 56 more rows

Kasus Data outflow Uang Kartal di provinsi Jawa Timur Periode 2011-2021

library(dplyr)
jawa3 <- datalongerjawa  %>%
    filter(Provinsi == 'Jawa Timur') %>%
    select('Provinsi', 'Tahun', 'Kasus')
jawa3 
## # A tibble: 11 x 3
##    Provinsi   Tahun   Kasus
##    <chr>      <chr>   <dbl>
##  1 Jawa Timur 2011   35217.
##  2 Jawa Timur 2012   44489.
##  3 Jawa Timur 2013   36665.
##  4 Jawa Timur 2014   53931.
##  5 Jawa Timur 2015   63585.
##  6 Jawa Timur 2016   74491.
##  7 Jawa Timur 2017   93396.
##  8 Jawa Timur 2018   97995.
##  9 Jawa Timur 2019  105514.
## 10 Jawa Timur 2020   93374.
## 11 Jawa Timur 2021   46029.

Kasus Data outflow Uang Kartal di provinsi Jawa Timur Tahun 2021

jawa4 <- datalongerjawa %>%
  filter(Provinsi == 'Jawa Timur', Tahun == '2021') %>%
 select('Provinsi', 'Tahun', 'Kasus')
jawa4
## # A tibble: 1 x 3
##   Provinsi   Tahun  Kasus
##   <chr>      <chr>  <dbl>
## 1 Jawa Timur 2021  46029.

Visualisasi Pivot Data outflow Uang Kartal di pulau jawa Berdasarkan Provinsi

ggplot(data = datalongerjawa, mapping = aes(x = Tahun, y = Kasus)) +
  geom_point() +
  facet_wrap( ~ Provinsi) +
  theme(axis.text.x = element_text(angle = 90))

Visualisasi Pivot Data outflow Uang Kartal di pulau jawa Berdasarkan Tahun

ggplot(data = datalongerjawa, mapping = aes(x = Provinsi, y = Kasus)) +
  geom_point() +
  facet_wrap( ~ Tahun) +
  theme(axis.text.x = element_text(angle = 90))