Nama : Muhammad Ridho
NIM : 210605110102
Kelas : Liniear Algebra (C)
Dosen Pengempu : Prof. Dr. Suhartono, M.Kom
Universitas : Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jurusan : Teknik Informatika
pivot table adalah ringkasan data yang dikemas dalam tabel interaktif agar memudahkan dan membantu kamu untuk membuat laporan dan menganalisisnya dengan melihat perbandingan data yang kamu miliki.
Singkatnya, gunanya pivot table adalah untuk merangkum, mengelompokkan, mengeksplorasi, mempresentasikan, menghitung, dan menganalisa data.
library(readxl)
datainflowjawa <- read_excel(path = "inflow tahunan1.xlsx")
datainflowjawa
## # A tibble: 6 x 12
## Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Jawa 1.24e5 1.60e5 1.35e5 2.17e5 2.30e5 2.62e5 2.78e5 3.07e5 3.25e5 2.59e5
## 2 Jawa Ba~ 4.38e4 6.06e4 3.52e4 7.87e4 8.13e4 8.80e4 8.32e4 8.72e4 9.48e4 7.69e4
## 3 Jawa Te~ 3.51e4 4.33e4 4.22e4 6.05e4 6.52e4 7.28e4 7.70e4 8.78e4 9.08e4 8.50e4
## 4 Yogyaka~ 6.49e3 9.17e3 8.94e3 1.39e4 1.48e4 1.74e4 1.75e4 2.06e4 2.09e4 7.35e3
## 5 Jawa Ti~ 3.85e4 4.74e4 4.87e4 6.43e4 6.88e4 8.34e4 9.84e4 1.06e5 1.14e5 8.68e4
## 6 Banten 0 0 0 0 0 0 1.49e3 4.83e3 4.48e3 3.40e3
## # ... with 1 more variable: `2021` <dbl>
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.3
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.6 v dplyr 1.0.7
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## Warning: package 'tidyr' was built under R version 4.1.3
## Warning: package 'readr' was built under R version 4.1.3
## Warning: package 'forcats' was built under R version 4.1.3
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
datalongerjawa <- datainflowjawa %>%
pivot_longer(!Provinsi, names_to = "Tahun", values_to = "Kasus")
datalongerjawa
## # A tibble: 66 x 3
## Provinsi Tahun Kasus
## <chr> <chr> <dbl>
## 1 Jawa 2011 123917.
## 2 Jawa 2012 160482.
## 3 Jawa 2013 134998.
## 4 Jawa 2014 217303.
## 5 Jawa 2015 230141.
## 6 Jawa 2016 261607.
## 7 Jawa 2017 277609.
## 8 Jawa 2018 306911.
## 9 Jawa 2019 324624.
## 10 Jawa 2020 259444.
## # ... with 56 more rows
library(dplyr)
jawa2 <- select(datalongerjawa, Provinsi, Kasus)
jawa2
## # A tibble: 66 x 2
## Provinsi Kasus
## <chr> <dbl>
## 1 Jawa 123917.
## 2 Jawa 160482.
## 3 Jawa 134998.
## 4 Jawa 217303.
## 5 Jawa 230141.
## 6 Jawa 261607.
## 7 Jawa 277609.
## 8 Jawa 306911.
## 9 Jawa 324624.
## 10 Jawa 259444.
## # ... with 56 more rows
library(dplyr)
jawa3 <- datalongerjawa %>%
filter(Provinsi == 'Jawa Timur') %>%
select('Provinsi', 'Tahun', 'Kasus')
jawa3
## # A tibble: 11 x 3
## Provinsi Tahun Kasus
## <chr> <chr> <dbl>
## 1 Jawa Timur 2011 38515.
## 2 Jawa Timur 2012 47383.
## 3 Jawa Timur 2013 48687.
## 4 Jawa Timur 2014 64276.
## 5 Jawa Timur 2015 68808.
## 6 Jawa Timur 2016 83439.
## 7 Jawa Timur 2017 98380.
## 8 Jawa Timur 2018 106433.
## 9 Jawa Timur 2019 113651.
## 10 Jawa Timur 2020 86848.
## 11 Jawa Timur 2021 58986.
jawa4 <- datalongerjawa %>%
filter(Provinsi == 'Jawa Timur', Tahun == '2021') %>%
select('Provinsi', 'Tahun', 'Kasus')
jawa4
## # A tibble: 1 x 3
## Provinsi Tahun Kasus
## <chr> <chr> <dbl>
## 1 Jawa Timur 2021 58986.
ggplot(data = datalongerjawa, mapping = aes(x = Tahun, y = Kasus)) +
geom_point() +
facet_wrap( ~ Provinsi) +
theme(axis.text.x = element_text(angle = 90))
ggplot(data = datalongerjawa, mapping = aes(x = Provinsi, y = Kasus)) +
geom_point() +
facet_wrap( ~ Tahun) +
theme(axis.text.x = element_text(angle = 90))