Nama : Muhammad Ridho

NIM : 210605110102

Kelas : Liniear Algebra (C)

Dosen Pengempu : Prof. Dr. Suhartono, M.Kom

Universitas : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Jurusan : Teknik Informatika

Pengertian Pivot Table

pivot table adalah ringkasan data yang dikemas dalam tabel interaktif agar memudahkan dan membantu kamu untuk membuat laporan dan menganalisisnya dengan melihat perbandingan data yang kamu miliki.

Singkatnya, gunanya pivot table adalah untuk merangkum, mengelompokkan, mengeksplorasi, mempresentasikan, menghitung, dan menganalisa data.

library(readxl)
dataoutflowbalinusra <- read_excel(path = "outflow tahunan.xlsx")
dataoutflowbalinusra
## # A tibble: 4 x 12
##   Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
##   <chr>     <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
## 1 Bali Nu~ 16424. 19421. 29399. 23391. 26728. 31941. 34160. 37260. 38680. 31224.
## 2 Bali      8912. 10782.  7248. 13104. 14471. 18140. 17822. 20434. 20654. 14323.
## 3 Nusa Te~  3819.  4379. 10628.  5620.  6728.  8149.  8770.  9271. 10288.  8546.
## 4 Nusa Te~  3693.  4260. 11524.  4668.  5530.  5652.  7569.  7555.  7738.  8356.
## # ... with 1 more variable: `2021` <dbl>
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.3
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.6     v dplyr   1.0.7
## v tidyr   1.2.0     v stringr 1.4.0
## v readr   2.1.2     v forcats 0.5.1
## Warning: package 'tidyr' was built under R version 4.1.3
## Warning: package 'readr' was built under R version 4.1.3
## Warning: package 'forcats' was built under R version 4.1.3
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()

Kasus Data outflow Uang Kartal di Pulau Bali nusra pada periode 2011-2021

datalongerbalinusra <- dataoutflowbalinusra %>% 
  pivot_longer(!Provinsi, names_to = "Tahun", values_to = "Kasus")
datalongerbalinusra
## # A tibble: 44 x 3
##    Provinsi   Tahun  Kasus
##    <chr>      <chr>  <dbl>
##  1 Bali Nusra 2011  16424.
##  2 Bali Nusra 2012  19421.
##  3 Bali Nusra 2013  29399.
##  4 Bali Nusra 2014  23391.
##  5 Bali Nusra 2015  26728.
##  6 Bali Nusra 2016  31941.
##  7 Bali Nusra 2017  34160.
##  8 Bali Nusra 2018  37260.
##  9 Bali Nusra 2019  38680.
## 10 Bali Nusra 2020  31224.
## # ... with 34 more rows

Pivot Data outflow Uang Kartal di Pulau Bali nusra Berdasarkan Kasus

library(dplyr)
balinusra2 <- select(datalongerbalinusra, Provinsi, Kasus)
balinusra2
## # A tibble: 44 x 2
##    Provinsi    Kasus
##    <chr>       <dbl>
##  1 Bali Nusra 16424.
##  2 Bali Nusra 19421.
##  3 Bali Nusra 29399.
##  4 Bali Nusra 23391.
##  5 Bali Nusra 26728.
##  6 Bali Nusra 31941.
##  7 Bali Nusra 34160.
##  8 Bali Nusra 37260.
##  9 Bali Nusra 38680.
## 10 Bali Nusra 31224.
## # ... with 34 more rows

Kasus Data outflow Uang Kartal di provinsi Bali Periode 2011-2021

library(dplyr)
bali <- datalongerbalinusra  %>%
    filter(Provinsi == 'Bali') %>%
    select('Provinsi', 'Tahun', 'Kasus')
bali 
## # A tibble: 11 x 3
##    Provinsi Tahun  Kasus
##    <chr>    <chr>  <dbl>
##  1 Bali     2011   8912.
##  2 Bali     2012  10782.
##  3 Bali     2013   7248.
##  4 Bali     2014  13104.
##  5 Bali     2015  14471.
##  6 Bali     2016  18140.
##  7 Bali     2017  17822.
##  8 Bali     2018  20434.
##  9 Bali     2019  20654.
## 10 Bali     2020  14323.
## 11 Bali     2021   6531.

Kasus Data outflow Uang Kartal di provinsi Bali Barat Tahun 2021

bali1 <- datalongerbalinusra %>%
  filter(Provinsi == 'Bali', Tahun == '2021') %>%
 select('Provinsi', 'Tahun', 'Kasus')
bali1
## # A tibble: 1 x 3
##   Provinsi Tahun Kasus
##   <chr>    <chr> <dbl>
## 1 Bali     2021  6531.

Visualisasi Pivot Data outflow Uang Kartal di pulau Bali nusra Berdasarkan Provinsi

ggplot(data = datalongerbalinusra, mapping = aes(x = Tahun, y = Kasus)) +
  geom_point() +
  facet_wrap( ~ Provinsi) +
  theme(axis.text.x = element_text(angle = 90))

Visualisasi Pivot Data outflow Uang Kartal di pulau Bali nusra Berdasarkan Tahun

ggplot(data = datalongerbalinusra, mapping = aes(x = Provinsi, y = Kasus)) +
  geom_point() +
  facet_wrap( ~ Tahun) +
  theme(axis.text.x = element_text(angle = 90))