CONTINUOUS INDEPENDENT TRIALS

Exercise 11 (Page 363)

The price of one share of stock in the Pilsdorff Beer Company (see Exercise 8.2.12) is given by \(Y_n\) on the nth day of the year. Finn observes that the differences \(X_n = Y_n+1 - Y_n\) appear to be independent random variables with a common distribution having mean \(\mu = 0\) and variance \(\sigma^2 = \frac{1}{4}\). If \(Y_1 = 100\), estimate the probability that \(Y_{365}\) is

(a) \(\geq 100\).

(b) \(\geq 110\).

(c) \(\geq 120\).


SOLUTION:

We know that:

A regular year has 365 days.

\(\mu = 0\)

\(\sigma^2 = \frac{1}{4}\)

\(\sigma = \sqrt{\frac{1}{4}} = \frac{1}{2}\)

\(Y_n = Y_1 + \sum_{i=1}^{365-1} x_i\)

\(E(X) = \frac{\sum_{i=1}^{365-1} x_i}{365-1} = 0\)

Let \(z = \frac{\sum_{i=1}^{365-1} X_i - n E(x)}{\delta \sqrt{n-1}} = \frac{Y_n-Y_1-n\mu}{\delta \sqrt{365-1}}\)


(a) \(Y_{365} \geq 100\).

v <- (365-1) * (1/4)
x <- pnorm((100-100), mean = 0, sd = sqrt(v), lower.tail = FALSE)
x
#> [1] 0.5


(b) \(Y_{365} \geq 110\).


v <- (365-1) * (1/4)
x <- pnorm((110-100), mean = 0, sd = sqrt(v), lower.tail = FALSE)
x
#> [1] 0.1472537


(c) \(Y_{365} \geq 120\).

v <- (365-1) * (1/4)
x <-pnorm((120-100), mean = 0, sd = sqrt(v), lower.tail = FALSE)
x
#> [1] 0.01801584


Calculate the expected value using binomial distribution

Calculate the expected value and variance of the binomial distribution using the moment generating function.


SOLUTION:

The moment generating function \(g(t)\) can be defined as:

\[\begin{align} g(t) & = \sum_{j=0}^{n} e^{tj} \binom{n}{j} p^j q^{n-j}\\ & = \sum_{j=0}^{n} \binom{n}{j} (pe^t) q^{n-j}\\ & = (pe^t + q)^ n \end{align}\]

Assuming \(t = 0\) the expected value \(\mu_1\) can be calculated as:

\[\begin{align} \mu_1 & = g'(0)\\ & = n(pe^t + q)^{n-1} pe^t\\ & = np \end{align}\]

The variance \(\mu_2\) can be calculated as:

\[\begin{align} \mu_2 & = g''(0)\\ & = n(n - 1)p^2 + np\\ & = np \delta^2\\ & = \mu_2 - \mu_1^2\\ & = np(1-p) \end{align}\]


Calculate the expected value and variance of the exponential distribution

Calculate the expected value and variance of the exponential distribution using the moment generating function.

SOLUTION:

The moment generating function \(g(t)\) can be defined as:

\[\begin{align} g(t) & = \int_{0}^{\infty} e^{tx} \lambda e^{-\lambda e} \,dx\\ & = \frac{\lambda e^{(t-\lambda)x}}{t-\lambda} |{0}^{\infty}\\ & = \frac{\lambda e^{(t-\lambda)\infty}}{t-\lambda} - \frac{\lambda e^{(t-\lambda)0}}{t-\lambda}\\ & = \frac{\lambda}{\lambda-t} \end{align}\]

The expected value \(\mu_1\) can be calculated as:

\[\begin{align} E(X) & = M'_x(0)\\ & = \frac{\lambda}{(\lambda-t)^2}\\ & = \frac{1}{\lambda} \end{align}\]

The variance \(E(X^2)\) can be calculated as:

\[\begin{align} E(X^2) & = (M_x)^{2}(0)\\ & = \frac{2 \lambda}{(\lambda - t)^3}\\ & = \frac{2}{\lambda^2} \delta^2\\ & = E(X^2) - E(X)\\ & = \frac{2}{\lambda^2} - \frac{1}{\lambda^2}\\ & = \frac{1}{\lambda^2} \end{align}\]

LS0tDQp0aXRsZTogIkRBVEE2MDUgLSBIb21ld29yayAwOSINCmF1dGhvcjogIkVzdGViYW4gQXJhbWF5byINCmRhdGU6ICIyMDIyLTAzLTI3Ig0Kb3V0cHV0OiBvcGVuaW50cm86OmxhYl9yZXBvcnQNCi0tLQ0KDQpgYGB7ciBnbG9iYWwtb3B0aW9ucywgaW5jbHVkZT1GQUxTRX0NCmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvPVRSVUUsIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2U9RkFMU0UsDQogICAgICAgICAgICAgICAgICAgICAgY29sbGFwc2UgPSBUUlVFLA0KICAgICAgICAgICAgICAgICAgICAgIGNvbW1lbnQgPSAiIz4iICkNCmBgYA0KDQoNCg0KIyMgQ09OVElOVU9VUyBJTkRFUEVOREVOVCBUUklBTFMNCg0KDQojIyMgRXhlcmNpc2UgMTEgKFBhZ2UgMzYzKQ0KDQpUaGUgcHJpY2Ugb2Ygb25lIHNoYXJlIG9mIHN0b2NrIGluIHRoZSBQaWxzZG9yZmYgQmVlciBDb21wYW55IChzZWUgRXhlcmNpc2UgOC4yLjEyKSBpcyBnaXZlbiBieSAkWV9uJCBvbiB0aGUgbnRoIGRheSBvZiB0aGUgeWVhci4gRmlubiBvYnNlcnZlcyB0aGF0IHRoZSBkaWZmZXJlbmNlcyAkWF9uID0gWV9uKzEgLSBZX24kIGFwcGVhciB0byBiZSBpbmRlcGVuZGVudCByYW5kb20gdmFyaWFibGVzIHdpdGggYSBjb21tb24gZGlzdHJpYnV0aW9uIGhhdmluZyBtZWFuICRcbXUgPSAwJCBhbmQgdmFyaWFuY2UgJFxzaWdtYV4yID0gXGZyYWN7MX17NH0kLiBJZiAkWV8xID0gMTAwJCwgZXN0aW1hdGUgdGhlIHByb2JhYmlsaXR5IHRoYXQgJFlfezM2NX0kIGlzDQoNCiMjIyMgKGEpICRcZ2VxIDEwMCQuDQojIyMjIChiKSAkXGdlcSAxMTAkLg0KIyMjIyAoYykgJFxnZXEgMTIwJC4NCg0KPGJyPg0KDQoqKlNPTFVUSU9OOioqDQoNCldlIGtub3cgdGhhdDoNCg0KQSByZWd1bGFyIHllYXIgaGFzIDM2NSBkYXlzLg0KDQokXG11ID0gMCQgDQoNCiRcc2lnbWFeMiA9IFxmcmFjezF9ezR9JA0KDQokXHNpZ21hID0gXHNxcnR7XGZyYWN7MX17NH19ID0gXGZyYWN7MX17Mn0kDQoNCiRZX24gPSBZXzEgKyBcc3VtX3tpPTF9XnszNjUtMX0geF9pJA0KDQokRShYKSA9IFxmcmFje1xzdW1fe2k9MX1eezM2NS0xfSB4X2l9ezM2NS0xfSA9IDAkDQoNCkxldCAgJHogPSBcZnJhY3tcc3VtX3tpPTF9XnszNjUtMX0gWF9pIC0gbiBFKHgpfXtcZGVsdGEgXHNxcnR7bi0xfX0gPSBcZnJhY3tZX24tWV8xLW5cbXV9e1xkZWx0YSBcc3FydHszNjUtMX19JA0KDQoNCjxicj4NCg0KIyMjIyAoYSkgJFlfezM2NX0gXGdlcSAxMDAkLg0KDQoNCg0KDQpgYGB7cn0NCnYgPC0gKDM2NS0xKSAqICgxLzQpDQp4IDwtIHBub3JtKCgxMDAtMTAwKSwgbWVhbiA9IDAsIHNkID0gc3FydCh2KSwgbG93ZXIudGFpbCA9IEZBTFNFKQ0KeA0KYGBgDQoNCjxicj4NCg0KIyMjIyAoYikgJFlfezM2NX0gXGdlcSAxMTAkLg0KDQo8YnI+DQoNCg0KYGBge3J9DQp2IDwtICgzNjUtMSkgKiAoMS80KQ0KeCA8LSBwbm9ybSgoMTEwLTEwMCksIG1lYW4gPSAwLCBzZCA9IHNxcnQodiksIGxvd2VyLnRhaWwgPSBGQUxTRSkNCngNCmBgYA0KDQo8YnI+DQoNCiMjIyMgKGMpICRZX3szNjV9IFxnZXEgMTIwJC4NCg0KDQoNCmBgYHtyfQ0KdiA8LSAoMzY1LTEpICogKDEvNCkNCnggPC1wbm9ybSgoMTIwLTEwMCksIG1lYW4gPSAwLCBzZCA9IHNxcnQodiksIGxvd2VyLnRhaWwgPSBGQUxTRSkNCngNCmBgYA0KDQoNCg0KPGJyPg0KDQojIyMgQ2FsY3VsYXRlIHRoZSBleHBlY3RlZCB2YWx1ZSB1c2luZyBiaW5vbWlhbCBkaXN0cmlidXRpb24NCg0KQ2FsY3VsYXRlIHRoZSBleHBlY3RlZCB2YWx1ZSBhbmQgdmFyaWFuY2Ugb2YgdGhlIGJpbm9taWFsIGRpc3RyaWJ1dGlvbiB1c2luZyB0aGUgbW9tZW50IGdlbmVyYXRpbmcgZnVuY3Rpb24uDQoNCjxicj4NCg0KU09MVVRJT046DQoNClRoZSBtb21lbnQgZ2VuZXJhdGluZyBmdW5jdGlvbiAkZyh0KSQgY2FuIGJlIGRlZmluZWQgYXM6DQoNClxiZWdpbnthbGlnbn0NCg0KZyh0KSAmID0gXHN1bV97aj0wfV57bn0gZV57dGp9IFxiaW5vbXtufXtqfSBwXmogcV57bi1qfVxcDQoNCiYgPSBcc3VtX3tqPTB9XntufSBcYmlub217bn17an0gKHBlXnQpIHFee24tan1cXA0KDQomID0gKHBlXnQgKyBxKV4gbg0KDQpcZW5ke2FsaWdufQ0KDQoNCkFzc3VtaW5nICR0ID0gMCQgdGhlIGV4cGVjdGVkIHZhbHVlICRcbXVfMSQgY2FuIGJlIGNhbGN1bGF0ZWQgYXM6DQoNClxiZWdpbnthbGlnbn0NCg0KXG11XzEgJiA9IGcnKDApXFwNCg0KJiA9IG4ocGVedCArIHEpXntuLTF9IHBlXnRcXA0KDQomID0gbnAgICAgICAgDQoNClxlbmR7YWxpZ259IA0KDQoNClRoZSB2YXJpYW5jZSAkXG11XzIkIGNhbiBiZSBjYWxjdWxhdGVkIGFzOg0KDQpcYmVnaW57YWxpZ259DQoNClxtdV8yICYgPSBnJycoMClcXA0KDQomID0gbihuIC0gMSlwXjIgKyBucFxcDQoNCiYgPSBucCBcZGVsdGFeMlxcDQoNCiYgPSBcbXVfMiAtIFxtdV8xXjJcXA0KDQomID0gbnAoMS1wKQ0KDQpcZW5ke2FsaWdufSANCg0KPGJyPg0KDQoNCiMjIyBDYWxjdWxhdGUgdGhlIGV4cGVjdGVkIHZhbHVlIGFuZCB2YXJpYW5jZSBvZiB0aGUgZXhwb25lbnRpYWwgZGlzdHJpYnV0aW9uDQoNCkNhbGN1bGF0ZSB0aGUgZXhwZWN0ZWQgdmFsdWUgYW5kIHZhcmlhbmNlIG9mIHRoZSBleHBvbmVudGlhbCBkaXN0cmlidXRpb24gdXNpbmcgdGhlIG1vbWVudCBnZW5lcmF0aW5nIGZ1bmN0aW9uLg0KDQoNClNPTFVUSU9OOg0KDQpUaGUgbW9tZW50IGdlbmVyYXRpbmcgZnVuY3Rpb24gJGcodCkkIGNhbiBiZSBkZWZpbmVkIGFzOg0KDQpcYmVnaW57YWxpZ259DQoNCmcodCkgJiA9ICBcaW50X3swfV57XGluZnR5fSBlXnt0eH0gXGxhbWJkYSBlXnstXGxhbWJkYSBlfSBcLGR4XFwNCg0KJiA9ICBcZnJhY3tcbGFtYmRhIGVeeyh0LVxsYW1iZGEpeH19e3QtXGxhbWJkYX0gfHswfV57XGluZnR5fVxcDQoNCiYgPSAgXGZyYWN7XGxhbWJkYSBlXnsodC1cbGFtYmRhKVxpbmZ0eX19e3QtXGxhbWJkYX0gLSBcZnJhY3tcbGFtYmRhIGVeeyh0LVxsYW1iZGEpMH19e3QtXGxhbWJkYX1cXA0KDQomID0gIFxmcmFje1xsYW1iZGF9e1xsYW1iZGEtdH0NCg0KXGVuZHthbGlnbn0NCg0KDQpUaGUgZXhwZWN0ZWQgdmFsdWUgJFxtdV8xJCBjYW4gYmUgY2FsY3VsYXRlZCBhczoNCg0KXGJlZ2lue2FsaWdufQ0KDQpFKFgpICYgPSAgTSdfeCgwKVxcDQoNCiYgPSAgXGZyYWN7XGxhbWJkYX17KFxsYW1iZGEtdCleMn1cXA0KDQomID0gXGZyYWN7MX17XGxhbWJkYX0NCg0KXGVuZHthbGlnbn0NCg0KDQoNClRoZSB2YXJpYW5jZSAkRShYXjIpJCBjYW4gYmUgY2FsY3VsYXRlZCBhczoNCg0KXGJlZ2lue2FsaWdufQ0KDQpFKFheMikgJiA9IChNX3gpXnsyfSgwKVxcDQoNCiYgPSBcZnJhY3syIFxsYW1iZGF9eyhcbGFtYmRhIC0gdCleM31cXA0KDQomID0gXGZyYWN7Mn17XGxhbWJkYV4yfSBcZGVsdGFeMlxcDQoNCiYgPSBFKFheMikgLSBFKFgpXFwNCg0KJiA9IFxmcmFjezJ9e1xsYW1iZGFeMn0gLSBcZnJhY3sxfXtcbGFtYmRhXjJ9XFwNCg0KJiA9IFxmcmFjezF9e1xsYW1iZGFeMn0NCg0KXGVuZHthbGlnbn0gDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg==