setwd("/Volumes/GoogleDrive/Mi unidad/Agrosavia/Colaboraciones/Fabricio/Yesid/growth")
datos<-read.table("ult.csv", header=T, sep=',')
datos$gen<-as.factor(datos$gen)
datos$Shade<-as.factor(datos$Shade)
datos$bloque<-as.factor(datos$bloque)
attach(datos)
library(ggplot2)
library(emmeans)
#General anova
aov.diam<-aov(Kg.ha.carbon.shoot~gen*Shade+bloque)
aov.diam1<-aov(Kg.ha.carbon.total~gen*Shade+bloque)
aov.diam2<-aov(Mg.ha.carbon.shoot~gen*Shade+bloque)
aov.diam3<-aov(Mg.ha.carbon.total~gen*Shade+bloque)
summary(aov.diam)
##              Df   Sum Sq Mean Sq F value   Pr(>F)    
## gen           2  3468070 1734035   6.861  0.00141 ** 
## Shade         2   331480  165740   0.656  0.52051    
## bloque        2  6813726 3406863  13.480 4.13e-06 ***
## gen:Shade     4  3516261  879065   3.478  0.00951 ** 
## Residuals   150 37909987  252733                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov.diam1)
##              Df   Sum Sq Mean Sq F value   Pr(>F)    
## gen           2  5659362 2829681   6.843  0.00143 ** 
## Shade         2   510002  255001   0.617  0.54112    
## bloque        2 11343577 5671789  13.715 3.39e-06 ***
## gen:Shade     4  5773839 1443460   3.491  0.00932 ** 
## Residuals   150 62030093  413534                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov.diam2)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## gen           2   3.47   1.734   6.861  0.00141 ** 
## Shade         2   0.33   0.166   0.656  0.52051    
## bloque        2   6.81   3.407  13.480 4.13e-06 ***
## gen:Shade     4   3.52   0.879   3.478  0.00951 ** 
## Residuals   150  37.91   0.253                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov.diam3)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## gen           2   5.66   2.830   6.843  0.00143 ** 
## Shade         2   0.51   0.255   0.617  0.54112    
## bloque        2  11.34   5.672  13.715 3.39e-06 ***
## gen:Shade     4   5.77   1.443   3.491  0.00932 ** 
## Residuals   150  62.03   0.414                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Anova with covariable
aov.diam.c<-aov(Kg.ha.carbon.shoot~gen*Shade+bloque+Kg.shoot)
aov.diam1.c<-aov(Kg.ha.carbon.total~gen*Shade+bloque+Kg.total)
aov.diam2.c<-aov(Mg.ha.carbon.shoot~gen*Shade+bloque+Mg.shoot)
aov.diam3.c<-aov(Mg.ha.carbon.total~gen*Shade+bloque+Mg.total)
summary(aov.diam.c)
##              Df   Sum Sq Mean Sq F value   Pr(>F)    
## gen           2  3468070 1734035   6.861  0.00141 ** 
## Shade         2   331480  165740   0.656  0.52051    
## bloque        2  6813726 3406863  13.480 4.13e-06 ***
## Kg.shoot      1   359692  359692   1.423  0.23476    
## gen:Shade     3  3156570 1052190   4.163  0.00726 ** 
## Residuals   150 37909987  252733                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov.diam1.c)
##              Df   Sum Sq Mean Sq F value   Pr(>F)    
## gen           2  5659362 2829681   6.843  0.00143 ** 
## Shade         2   510002  255001   0.617  0.54112    
## bloque        2 11343577 5671789  13.715 3.39e-06 ***
## Kg.total      1   612347  612347   1.481  0.22557    
## gen:Shade     3  5161492 1720497   4.160  0.00729 ** 
## Residuals   150 62030093  413534                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov.diam2.c)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## gen           2   3.47   1.734   6.861  0.00141 ** 
## Shade         2   0.33   0.166   0.656  0.52051    
## bloque        2   6.81   3.407  13.480 4.13e-06 ***
## Mg.shoot      1   0.36   0.360   1.423  0.23476    
## gen:Shade     3   3.16   1.052   4.163  0.00726 ** 
## Residuals   150  37.91   0.253                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov.diam3.c)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## gen           2   5.66   2.830   6.843  0.00143 ** 
## Shade         2   0.51   0.255   0.617  0.54112    
## bloque        2  11.34   5.672  13.715 3.39e-06 ***
## Mg.total      1   0.61   0.612   1.481  0.22557    
## gen:Shade     3   5.16   1.720   4.160  0.00729 ** 
## Residuals   150  62.03   0.414                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Kg.ha.carbon.shoot
#Gen
contrast <- emmeans(aov.diam, ~gen)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Estimated marginal mean (Kg C ha-1)", ylab = "Genotype")

medias.gen <- emmeans(aov.diam, pairwise ~ gen)
## NOTE: Results may be misleading due to involvement in interactions
medias.gen
## $emmeans
##  gen   emmean   SE  df lower.CL upper.CL
##  CCN51    894 68.4 150      759     1029
##  TCS01   1043 68.4 150      908     1178
##  TCS19    687 69.1 150      550      823
## 
## Results are averaged over the levels of: Shade, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE  df t.ratio p.value
##  CCN51 - TCS01     -149 96.7 150  -1.536  0.2772
##  CCN51 - TCS19      207 97.2 150   2.132  0.0869
##  TCS01 - TCS19      356 97.2 150   3.660  0.0010
## 
## Results are averaged over the levels of: Shade, bloque 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean   SE  df lower.CL upper.CL .group
##  TCS01   1043 68.4 150      908     1178  A    
##  CCN51    894 68.4 150      759     1029  AB   
##  TCS19    687 69.1 150      550      823   B   
## 
## Results are averaged over the levels of: Shade, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Shade
contrast <- emmeans(aov.diam, ~Shade)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab = expression ("Estimated marginal mean, Kg C ha"^"-1"), 
     ylab = expression ("Shade tree"))

medias.gen <- emmeans(aov.diam, pairwise ~ Shade)
## NOTE: Results may be misleading due to involvement in interactions
medias.gen
## $emmeans
##  Shade         emmean   SE  df lower.CL upper.CL
##  C. pyriformis    937 68.4 150      802     1072
##  T. rosea         837 69.1 150      701      974
##  T. superba       849 68.4 150      714      984
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                   estimate   SE  df t.ratio p.value
##  C. pyriformis - T. rosea       99.5 97.2 150   1.023  0.5632
##  C. pyriformis - T. superba     87.6 96.7 150   0.905  0.6377
##  T. rosea - T. superba         -11.9 97.2 150  -0.123  0.9918
## 
## Results are averaged over the levels of: gen, bloque 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  Shade         emmean   SE  df lower.CL upper.CL .group
##  C. pyriformis    937 68.4 150      802     1072  A    
##  T. superba       849 68.4 150      714      984  A    
##  T. rosea         837 69.1 150      701      974  A    
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Shade*Gen
contrast <- emmeans(aov.diam, ~gen|Shade)
plot(contrast, comparisons = TRUE, xlab = expression ("Estimated marginal mean, Kg C ha"^"-1"), 
     ylab = expression ("Genotype"))

medias.Shade.gen <- emmeans(aov.diam, pairwise ~ gen*Shade)
medias.Shade.gen
## $emmeans
##  gen   Shade         emmean  SE  df lower.CL upper.CL
##  CCN51 C. pyriformis    789 118 150      555     1023
##  TCS01 C. pyriformis   1305 118 150     1070     1539
##  TCS19 C. pyriformis    717 118 150      483      951
##  CCN51 T. rosea        1050 118 150      816     1284
##  TCS01 T. rosea         732 118 150      498      966
##  TCS19 T. rosea         730 122 150      489      971
##  CCN51 T. superba       844 118 150      609     1078
##  TCS01 T. superba      1091 118 150      857     1326
##  TCS19 T. superba       613 118 150      379      847
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                                  estimate  SE  df t.ratio p.value
##  CCN51 C. pyriformis - TCS01 C. pyriformis  -515.51 168 150  -3.076  0.0610
##  CCN51 C. pyriformis - TCS19 C. pyriformis    71.77 168 150   0.428  1.0000
##  CCN51 C. pyriformis - CCN51 T. rosea       -260.80 168 150  -1.556  0.8265
##  CCN51 C. pyriformis - TCS01 T. rosea         56.83 168 150   0.339  1.0000
##  CCN51 C. pyriformis - TCS19 T. rosea         58.75 170 150   0.346  1.0000
##  CCN51 C. pyriformis - CCN51 T. superba      -54.51 168 150  -0.325  1.0000
##  CCN51 C. pyriformis - TCS01 T. superba     -302.37 168 150  -1.804  0.6793
##  CCN51 C. pyriformis - TCS19 T. superba      175.93 168 150   1.050  0.9801
##  TCS01 C. pyriformis - TCS19 C. pyriformis   587.28 168 150   3.505  0.0171
##  TCS01 C. pyriformis - CCN51 T. rosea        254.71 168 150   1.520  0.8445
##  TCS01 C. pyriformis - TCS01 T. rosea        572.34 168 150   3.415  0.0226
##  TCS01 C. pyriformis - TCS19 T. rosea        574.26 170 150   3.377  0.0254
##  TCS01 C. pyriformis - CCN51 T. superba      460.99 168 150   2.751  0.1394
##  TCS01 C. pyriformis - TCS01 T. superba      213.14 168 150   1.272  0.9379
##  TCS01 C. pyriformis - TCS19 T. superba      691.44 168 150   4.126  0.0019
##  TCS19 C. pyriformis - CCN51 T. rosea       -332.57 168 150  -1.985  0.5565
##  TCS19 C. pyriformis - TCS01 T. rosea        -14.93 168 150  -0.089  1.0000
##  TCS19 C. pyriformis - TCS19 T. rosea        -13.01 170 150  -0.077  1.0000
##  TCS19 C. pyriformis - CCN51 T. superba     -126.28 168 150  -0.754  0.9978
##  TCS19 C. pyriformis - TCS01 T. superba     -374.13 168 150  -2.233  0.3903
##  TCS19 C. pyriformis - TCS19 T. superba      104.17 168 150   0.622  0.9995
##  CCN51 T. rosea - TCS01 T. rosea             317.63 168 150   1.895  0.6179
##  CCN51 T. rosea - TCS19 T. rosea             319.56 170 150   1.879  0.6291
##  CCN51 T. rosea - CCN51 T. superba           206.29 168 150   1.231  0.9484
##  CCN51 T. rosea - TCS01 T. superba           -41.57 168 150  -0.248  1.0000
##  CCN51 T. rosea - TCS19 T. superba           436.73 168 150   2.606  0.1929
##  TCS01 T. rosea - TCS19 T. rosea               1.92 170 150   0.011  1.0000
##  TCS01 T. rosea - CCN51 T. superba          -111.35 168 150  -0.664  0.9991
##  TCS01 T. rosea - TCS01 T. superba          -359.20 168 150  -2.144  0.4481
##  TCS01 T. rosea - TCS19 T. superba           119.10 168 150   0.711  0.9986
##  TCS19 T. rosea - CCN51 T. superba          -113.27 170 150  -0.666  0.9991
##  TCS19 T. rosea - TCS01 T. superba          -361.12 170 150  -2.124  0.4614
##  TCS19 T. rosea - TCS19 T. superba           117.18 170 150   0.689  0.9989
##  CCN51 T. superba - TCS01 T. superba        -247.85 168 150  -1.479  0.8636
##  CCN51 T. superba - TCS19 T. superba         230.45 168 150   1.375  0.9054
##  TCS01 T. superba - TCS19 T. superba         478.30 168 150   2.854  0.1087
## 
## Results are averaged over the levels of: bloque 
## P value adjustment: tukey method for comparing a family of 9 estimates
cld_Shade_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_Shade_gen
## Shade = C. pyriformis:
##  gen   emmean  SE  df lower.CL upper.CL .group
##  TCS01   1305 118 150     1070     1539  A    
##  CCN51    789 118 150      555     1023   B   
##  TCS19    717 118 150      483      951   B   
## 
## Shade = T. rosea:
##  gen   emmean  SE  df lower.CL upper.CL .group
##  CCN51   1050 118 150      816     1284  A    
##  TCS01    732 118 150      498      966  A    
##  TCS19    730 122 150      489      971  A    
## 
## Shade = T. superba:
##  gen   emmean  SE  df lower.CL upper.CL .group
##  TCS01   1091 118 150      857     1326  A    
##  CCN51    844 118 150      609     1078  AB   
##  TCS19    613 118 150      379      847   B   
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Kg.ha.carbon.total
#Gen
contrast <- emmeans(aov.diam1, ~gen)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Estimated marginal mean (Kg C ha-1)", ylab = "Genotype")

medias.gen <- emmeans(aov.diam1, pairwise ~ gen)
## NOTE: Results may be misleading due to involvement in interactions
medias.gen
## $emmeans
##  gen   emmean   SE  df lower.CL upper.CL
##  CCN51   1170 87.5 150      997     1343
##  TCS01   1362 87.5 150     1189     1535
##  TCS19    907 88.4 150      732     1082
## 
## Results are averaged over the levels of: Shade, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate  SE  df t.ratio p.value
##  CCN51 - TCS01     -192 124 150  -1.552  0.2700
##  CCN51 - TCS19      263 124 150   2.113  0.0907
##  TCS01 - TCS19      455 124 150   3.657  0.0010
## 
## Results are averaged over the levels of: Shade, bloque 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean   SE  df lower.CL upper.CL .group
##  TCS01   1362 87.5 150     1189     1535  A    
##  CCN51   1170 87.5 150      997     1343  AB   
##  TCS19    907 88.4 150      732     1082   B   
## 
## Results are averaged over the levels of: Shade, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Shade
contrast <- emmeans(aov.diam1, ~Shade)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab = expression ("Estimated marginal mean, Kg C ha"^"-1"), 
     ylab = expression ("Shade tree"))

medias.gen <- emmeans(aov.diam1, pairwise ~ Shade)
## NOTE: Results may be misleading due to involvement in interactions
medias.gen
## $emmeans
##  Shade         emmean   SE  df lower.CL upper.CL
##  C. pyriformis   1223 87.5 150     1050     1396
##  T. rosea        1099 88.4 150      925     1274
##  T. superba      1116 87.5 150      943     1288
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                   estimate  SE  df t.ratio p.value
##  C. pyriformis - T. rosea      123.9 124 150   0.996  0.5805
##  C. pyriformis - T. superba    107.7 124 150   0.870  0.6597
##  T. rosea - T. superba         -16.2 124 150  -0.130  0.9907
## 
## Results are averaged over the levels of: gen, bloque 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  Shade         emmean   SE  df lower.CL upper.CL .group
##  C. pyriformis   1223 87.5 150     1050     1396  A    
##  T. superba      1116 87.5 150      943     1288  A    
##  T. rosea        1099 88.4 150      925     1274  A    
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Shade*Gen
contrast <- emmeans(aov.diam1, ~gen|Shade)
plot(contrast, comparisons = TRUE, xlab = expression ("Estimated marginal mean, Kg C ha"^"-1"), 
     ylab = expression ("Genotype"))

medias.Shade.gen <- emmeans(aov.diam1, pairwise ~ gen*Shade)
medias.Shade.gen
## $emmeans
##  gen   Shade         emmean  SE  df lower.CL upper.CL
##  CCN51 C. pyriformis   1031 152 150      731     1330
##  TCS01 C. pyriformis   1693 152 150     1394     1993
##  TCS19 C. pyriformis    946 152 150      646     1245
##  CCN51 T. rosea        1371 152 150     1071     1670
##  TCS01 T. rosea         965 152 150      666     1265
##  TCS19 T. rosea         962 156 150      654     1270
##  CCN51 T. superba      1108 152 150      808     1407
##  TCS01 T. superba      1426 152 150     1127     1726
##  TCS19 T. superba       813 152 150      513     1112
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                                  estimate  SE  df t.ratio p.value
##  CCN51 C. pyriformis - TCS01 C. pyriformis  -662.89 214 150  -3.092  0.0583
##  CCN51 C. pyriformis - TCS19 C. pyriformis    84.75 214 150   0.395  1.0000
##  CCN51 C. pyriformis - CCN51 T. rosea       -340.28 214 150  -1.587  0.8102
##  CCN51 C. pyriformis - TCS01 T. rosea         65.38 214 150   0.305  1.0000
##  CCN51 C. pyriformis - TCS19 T. rosea         68.41 218 150   0.314  1.0000
##  CCN51 C. pyriformis - CCN51 T. superba      -76.98 214 150  -0.359  1.0000
##  CCN51 C. pyriformis - TCS01 T. superba     -395.81 214 150  -1.847  0.6512
##  CCN51 C. pyriformis - TCS19 T. superba      217.85 214 150   1.016  0.9838
##  TCS01 C. pyriformis - TCS19 C. pyriformis   747.63 214 150   3.488  0.0180
##  TCS01 C. pyriformis - CCN51 T. rosea        322.60 214 150   1.505  0.8517
##  TCS01 C. pyriformis - TCS01 T. rosea        728.27 214 150   3.397  0.0239
##  TCS01 C. pyriformis - TCS19 T. rosea        731.30 218 150   3.362  0.0266
##  TCS01 C. pyriformis - CCN51 T. superba      585.90 214 150   2.733  0.1452
##  TCS01 C. pyriformis - TCS01 T. superba      267.07 214 150   1.246  0.9447
##  TCS01 C. pyriformis - TCS19 T. superba      880.73 214 150   4.109  0.0021
##  TCS19 C. pyriformis - CCN51 T. rosea       -425.03 214 150  -1.983  0.5577
##  TCS19 C. pyriformis - TCS01 T. rosea        -19.37 214 150  -0.090  1.0000
##  TCS19 C. pyriformis - TCS19 T. rosea        -16.34 218 150  -0.075  1.0000
##  TCS19 C. pyriformis - CCN51 T. superba     -161.73 214 150  -0.754  0.9978
##  TCS19 C. pyriformis - TCS01 T. superba     -480.56 214 150  -2.242  0.3845
##  TCS19 C. pyriformis - TCS19 T. superba      133.10 214 150   0.621  0.9995
##  CCN51 T. rosea - TCS01 T. rosea             405.66 214 150   1.892  0.6200
##  CCN51 T. rosea - TCS19 T. rosea             408.69 218 150   1.879  0.6293
##  CCN51 T. rosea - CCN51 T. superba           263.30 214 150   1.228  0.9490
##  CCN51 T. rosea - TCS01 T. superba           -55.53 214 150  -0.259  1.0000
##  CCN51 T. rosea - TCS19 T. superba           558.13 214 150   2.604  0.1939
##  TCS01 T. rosea - TCS19 T. rosea               3.03 218 150   0.014  1.0000
##  TCS01 T. rosea - CCN51 T. superba          -142.36 214 150  -0.664  0.9991
##  TCS01 T. rosea - TCS01 T. superba          -461.19 214 150  -2.152  0.4428
##  TCS01 T. rosea - TCS19 T. superba           152.47 214 150   0.711  0.9986
##  TCS19 T. rosea - CCN51 T. superba          -145.40 218 150  -0.668  0.9991
##  TCS19 T. rosea - TCS01 T. superba          -464.22 218 150  -2.134  0.4544
##  TCS19 T. rosea - TCS19 T. superba           149.44 218 150   0.687  0.9989
##  CCN51 T. superba - TCS01 T. superba        -318.83 214 150  -1.487  0.8598
##  CCN51 T. superba - TCS19 T. superba         294.83 214 150   1.375  0.9053
##  TCS01 T. superba - TCS19 T. superba         613.66 214 150   2.863  0.1064
## 
## Results are averaged over the levels of: bloque 
## P value adjustment: tukey method for comparing a family of 9 estimates
cld_Shade_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_Shade_gen
## Shade = C. pyriformis:
##  gen   emmean  SE  df lower.CL upper.CL .group
##  TCS01   1693 152 150     1394     1993  A    
##  CCN51   1031 152 150      731     1330   B   
##  TCS19    946 152 150      646     1245   B   
## 
## Shade = T. rosea:
##  gen   emmean  SE  df lower.CL upper.CL .group
##  CCN51   1371 152 150     1071     1670  A    
##  TCS01    965 152 150      666     1265  A    
##  TCS19    962 156 150      654     1270  A    
## 
## Shade = T. superba:
##  gen   emmean  SE  df lower.CL upper.CL .group
##  TCS01   1426 152 150     1127     1726  A    
##  CCN51   1108 152 150      808     1407  AB   
##  TCS19    813 152 150      513     1112   B   
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Mg.ha.carbon.shoot
#Gen
contrast <- emmeans(aov.diam2, ~gen)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Estimated marginal mean (Mg C ha-1)", ylab = "Genotype")

medias.gen <- emmeans(aov.diam2, pairwise ~ gen)
## NOTE: Results may be misleading due to involvement in interactions
medias.gen
## $emmeans
##  gen   emmean     SE  df lower.CL upper.CL
##  CCN51  0.894 0.0684 150    0.759    1.029
##  TCS01  1.043 0.0684 150    0.908    1.178
##  TCS19  0.687 0.0691 150    0.550    0.823
## 
## Results are averaged over the levels of: Shade, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate     SE  df t.ratio p.value
##  CCN51 - TCS01   -0.149 0.0967 150  -1.536  0.2772
##  CCN51 - TCS19    0.207 0.0972 150   2.132  0.0869
##  TCS01 - TCS19    0.356 0.0972 150   3.660  0.0010
## 
## Results are averaged over the levels of: Shade, bloque 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean     SE  df lower.CL upper.CL .group
##  TCS01  1.043 0.0684 150    0.908    1.178  A    
##  CCN51  0.894 0.0684 150    0.759    1.029  AB   
##  TCS19  0.687 0.0691 150    0.550    0.823   B   
## 
## Results are averaged over the levels of: Shade, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Shade
contrast <- emmeans(aov.diam2, ~Shade)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab = expression ("Estimated marginal mean, Mg C ha"^"-1"), 
     ylab = expression ("Shade tree"))

medias.gen <- emmeans(aov.diam2, pairwise ~ Shade)
## NOTE: Results may be misleading due to involvement in interactions
medias.gen
## $emmeans
##  Shade         emmean     SE  df lower.CL upper.CL
##  C. pyriformis  0.937 0.0684 150    0.802    1.072
##  T. rosea       0.837 0.0691 150    0.701    0.974
##  T. superba     0.849 0.0684 150    0.714    0.984
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                   estimate     SE  df t.ratio p.value
##  C. pyriformis - T. rosea     0.0995 0.0972 150   1.023  0.5632
##  C. pyriformis - T. superba   0.0876 0.0967 150   0.905  0.6377
##  T. rosea - T. superba       -0.0119 0.0972 150  -0.123  0.9918
## 
## Results are averaged over the levels of: gen, bloque 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  Shade         emmean     SE  df lower.CL upper.CL .group
##  C. pyriformis  0.937 0.0684 150    0.802    1.072  A    
##  T. superba     0.849 0.0684 150    0.714    0.984  A    
##  T. rosea       0.837 0.0691 150    0.701    0.974  A    
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Shade*Gen
contrast <- emmeans(aov.diam2, ~gen|Shade)
plot(contrast, comparisons = TRUE, xlab = expression ("Estimated marginal mean, Mg C ha"^"-1"), 
     ylab = expression ("Genotype"))

medias.Shade.gen <- emmeans(aov.diam2, pairwise ~ gen*Shade)
medias.Shade.gen
## $emmeans
##  gen   Shade         emmean    SE  df lower.CL upper.CL
##  CCN51 C. pyriformis  0.789 0.118 150    0.555    1.023
##  TCS01 C. pyriformis  1.305 0.118 150    1.070    1.539
##  TCS19 C. pyriformis  0.717 0.118 150    0.483    0.951
##  CCN51 T. rosea       1.050 0.118 150    0.816    1.284
##  TCS01 T. rosea       0.732 0.118 150    0.498    0.966
##  TCS19 T. rosea       0.730 0.122 150    0.489    0.971
##  CCN51 T. superba     0.844 0.118 150    0.609    1.078
##  TCS01 T. superba     1.091 0.118 150    0.857    1.326
##  TCS19 T. superba     0.613 0.118 150    0.379    0.847
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                                  estimate    SE  df t.ratio p.value
##  CCN51 C. pyriformis - TCS01 C. pyriformis -0.51551 0.168 150  -3.076  0.0610
##  CCN51 C. pyriformis - TCS19 C. pyriformis  0.07177 0.168 150   0.428  1.0000
##  CCN51 C. pyriformis - CCN51 T. rosea      -0.26080 0.168 150  -1.556  0.8265
##  CCN51 C. pyriformis - TCS01 T. rosea       0.05683 0.168 150   0.339  1.0000
##  CCN51 C. pyriformis - TCS19 T. rosea       0.05875 0.170 150   0.346  1.0000
##  CCN51 C. pyriformis - CCN51 T. superba    -0.05451 0.168 150  -0.325  1.0000
##  CCN51 C. pyriformis - TCS01 T. superba    -0.30237 0.168 150  -1.804  0.6793
##  CCN51 C. pyriformis - TCS19 T. superba     0.17593 0.168 150   1.050  0.9801
##  TCS01 C. pyriformis - TCS19 C. pyriformis  0.58728 0.168 150   3.505  0.0171
##  TCS01 C. pyriformis - CCN51 T. rosea       0.25471 0.168 150   1.520  0.8445
##  TCS01 C. pyriformis - TCS01 T. rosea       0.57234 0.168 150   3.415  0.0226
##  TCS01 C. pyriformis - TCS19 T. rosea       0.57426 0.170 150   3.377  0.0254
##  TCS01 C. pyriformis - CCN51 T. superba     0.46099 0.168 150   2.751  0.1394
##  TCS01 C. pyriformis - TCS01 T. superba     0.21314 0.168 150   1.272  0.9379
##  TCS01 C. pyriformis - TCS19 T. superba     0.69144 0.168 150   4.126  0.0019
##  TCS19 C. pyriformis - CCN51 T. rosea      -0.33257 0.168 150  -1.985  0.5565
##  TCS19 C. pyriformis - TCS01 T. rosea      -0.01493 0.168 150  -0.089  1.0000
##  TCS19 C. pyriformis - TCS19 T. rosea      -0.01301 0.170 150  -0.077  1.0000
##  TCS19 C. pyriformis - CCN51 T. superba    -0.12628 0.168 150  -0.754  0.9978
##  TCS19 C. pyriformis - TCS01 T. superba    -0.37413 0.168 150  -2.233  0.3903
##  TCS19 C. pyriformis - TCS19 T. superba     0.10417 0.168 150   0.622  0.9995
##  CCN51 T. rosea - TCS01 T. rosea            0.31763 0.168 150   1.895  0.6179
##  CCN51 T. rosea - TCS19 T. rosea            0.31956 0.170 150   1.879  0.6291
##  CCN51 T. rosea - CCN51 T. superba          0.20629 0.168 150   1.231  0.9484
##  CCN51 T. rosea - TCS01 T. superba         -0.04157 0.168 150  -0.248  1.0000
##  CCN51 T. rosea - TCS19 T. superba          0.43673 0.168 150   2.606  0.1929
##  TCS01 T. rosea - TCS19 T. rosea            0.00192 0.170 150   0.011  1.0000
##  TCS01 T. rosea - CCN51 T. superba         -0.11135 0.168 150  -0.664  0.9991
##  TCS01 T. rosea - TCS01 T. superba         -0.35920 0.168 150  -2.144  0.4481
##  TCS01 T. rosea - TCS19 T. superba          0.11910 0.168 150   0.711  0.9986
##  TCS19 T. rosea - CCN51 T. superba         -0.11327 0.170 150  -0.666  0.9991
##  TCS19 T. rosea - TCS01 T. superba         -0.36112 0.170 150  -2.124  0.4614
##  TCS19 T. rosea - TCS19 T. superba          0.11718 0.170 150   0.689  0.9989
##  CCN51 T. superba - TCS01 T. superba       -0.24785 0.168 150  -1.479  0.8636
##  CCN51 T. superba - TCS19 T. superba        0.23045 0.168 150   1.375  0.9054
##  TCS01 T. superba - TCS19 T. superba        0.47830 0.168 150   2.854  0.1087
## 
## Results are averaged over the levels of: bloque 
## P value adjustment: tukey method for comparing a family of 9 estimates
cld_Shade_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_Shade_gen
## Shade = C. pyriformis:
##  gen   emmean    SE  df lower.CL upper.CL .group
##  TCS01  1.305 0.118 150    1.070    1.539  A    
##  CCN51  0.789 0.118 150    0.555    1.023   B   
##  TCS19  0.717 0.118 150    0.483    0.951   B   
## 
## Shade = T. rosea:
##  gen   emmean    SE  df lower.CL upper.CL .group
##  CCN51  1.050 0.118 150    0.816    1.284  A    
##  TCS01  0.732 0.118 150    0.498    0.966  A    
##  TCS19  0.730 0.122 150    0.489    0.971  A    
## 
## Shade = T. superba:
##  gen   emmean    SE  df lower.CL upper.CL .group
##  TCS01  1.091 0.118 150    0.857    1.326  A    
##  CCN51  0.844 0.118 150    0.609    1.078  AB   
##  TCS19  0.613 0.118 150    0.379    0.847   B   
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Mg.ha.carbon.total
#Gen
contrast <- emmeans(aov.diam3, ~gen)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Estimated marginal mean (Mg C ha-1)", ylab = "Genotype")

medias.gen <- emmeans(aov.diam3, pairwise ~ gen)
## NOTE: Results may be misleading due to involvement in interactions
medias.gen
## $emmeans
##  gen   emmean     SE  df lower.CL upper.CL
##  CCN51  1.170 0.0875 150    0.997     1.34
##  TCS01  1.362 0.0875 150    1.189     1.53
##  TCS19  0.907 0.0884 150    0.732     1.08
## 
## Results are averaged over the levels of: Shade, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate    SE  df t.ratio p.value
##  CCN51 - TCS01   -0.192 0.124 150  -1.552  0.2700
##  CCN51 - TCS19    0.263 0.124 150   2.113  0.0907
##  TCS01 - TCS19    0.455 0.124 150   3.657  0.0010
## 
## Results are averaged over the levels of: Shade, bloque 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean     SE  df lower.CL upper.CL .group
##  TCS01  1.362 0.0875 150    1.189     1.53  A    
##  CCN51  1.170 0.0875 150    0.997     1.34  AB   
##  TCS19  0.907 0.0884 150    0.732     1.08   B   
## 
## Results are averaged over the levels of: Shade, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Shade
contrast <- emmeans(aov.diam3, ~Shade)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab = expression ("Estimated marginal mean, Mg C ha"^"-1"), 
     ylab = expression ("Shade tree"))

medias.gen <- emmeans(aov.diam3, pairwise ~ Shade)
## NOTE: Results may be misleading due to involvement in interactions
medias.gen
## $emmeans
##  Shade         emmean     SE  df lower.CL upper.CL
##  C. pyriformis   1.22 0.0875 150    1.050     1.40
##  T. rosea        1.10 0.0884 150    0.925     1.27
##  T. superba      1.12 0.0875 150    0.943     1.29
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                   estimate    SE  df t.ratio p.value
##  C. pyriformis - T. rosea     0.1239 0.124 150   0.996  0.5805
##  C. pyriformis - T. superba   0.1077 0.124 150   0.870  0.6597
##  T. rosea - T. superba       -0.0162 0.124 150  -0.130  0.9907
## 
## Results are averaged over the levels of: gen, bloque 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  Shade         emmean     SE  df lower.CL upper.CL .group
##  C. pyriformis   1.22 0.0875 150    1.050     1.40  A    
##  T. superba      1.12 0.0875 150    0.943     1.29  A    
##  T. rosea        1.10 0.0884 150    0.925     1.27  A    
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Shade*Gen
contrast <- emmeans(aov.diam3, ~gen|Shade)
MgC<-plot(contrast, comparisons = TRUE, xlab = expression ("Estimated marginal mean, Mg C ha"^"-1"), 
     ylab = expression ("Genotype"))
MgC

medias.Shade.gen <- emmeans(aov.diam3, pairwise ~ gen*Shade)
medias.Shade.gen
## $emmeans
##  gen   Shade         emmean    SE  df lower.CL upper.CL
##  CCN51 C. pyriformis  1.031 0.152 150    0.731     1.33
##  TCS01 C. pyriformis  1.693 0.152 150    1.394     1.99
##  TCS19 C. pyriformis  0.946 0.152 150    0.646     1.25
##  CCN51 T. rosea       1.371 0.152 150    1.071     1.67
##  TCS01 T. rosea       0.965 0.152 150    0.666     1.26
##  TCS19 T. rosea       0.962 0.156 150    0.654     1.27
##  CCN51 T. superba     1.108 0.152 150    0.808     1.41
##  TCS01 T. superba     1.426 0.152 150    1.127     1.73
##  TCS19 T. superba     0.813 0.152 150    0.513     1.11
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                                  estimate    SE  df t.ratio p.value
##  CCN51 C. pyriformis - TCS01 C. pyriformis -0.66289 0.214 150  -3.092  0.0583
##  CCN51 C. pyriformis - TCS19 C. pyriformis  0.08475 0.214 150   0.395  1.0000
##  CCN51 C. pyriformis - CCN51 T. rosea      -0.34028 0.214 150  -1.587  0.8102
##  CCN51 C. pyriformis - TCS01 T. rosea       0.06538 0.214 150   0.305  1.0000
##  CCN51 C. pyriformis - TCS19 T. rosea       0.06841 0.218 150   0.314  1.0000
##  CCN51 C. pyriformis - CCN51 T. superba    -0.07698 0.214 150  -0.359  1.0000
##  CCN51 C. pyriformis - TCS01 T. superba    -0.39581 0.214 150  -1.847  0.6512
##  CCN51 C. pyriformis - TCS19 T. superba     0.21785 0.214 150   1.016  0.9838
##  TCS01 C. pyriformis - TCS19 C. pyriformis  0.74763 0.214 150   3.488  0.0180
##  TCS01 C. pyriformis - CCN51 T. rosea       0.32260 0.214 150   1.505  0.8517
##  TCS01 C. pyriformis - TCS01 T. rosea       0.72827 0.214 150   3.397  0.0239
##  TCS01 C. pyriformis - TCS19 T. rosea       0.73130 0.218 150   3.362  0.0266
##  TCS01 C. pyriformis - CCN51 T. superba     0.58590 0.214 150   2.733  0.1452
##  TCS01 C. pyriformis - TCS01 T. superba     0.26707 0.214 150   1.246  0.9447
##  TCS01 C. pyriformis - TCS19 T. superba     0.88073 0.214 150   4.109  0.0021
##  TCS19 C. pyriformis - CCN51 T. rosea      -0.42503 0.214 150  -1.983  0.5577
##  TCS19 C. pyriformis - TCS01 T. rosea      -0.01937 0.214 150  -0.090  1.0000
##  TCS19 C. pyriformis - TCS19 T. rosea      -0.01633 0.218 150  -0.075  1.0000
##  TCS19 C. pyriformis - CCN51 T. superba    -0.16173 0.214 150  -0.754  0.9978
##  TCS19 C. pyriformis - TCS01 T. superba    -0.48056 0.214 150  -2.242  0.3845
##  TCS19 C. pyriformis - TCS19 T. superba     0.13310 0.214 150   0.621  0.9995
##  CCN51 T. rosea - TCS01 T. rosea            0.40566 0.214 150   1.892  0.6200
##  CCN51 T. rosea - TCS19 T. rosea            0.40869 0.218 150   1.879  0.6293
##  CCN51 T. rosea - CCN51 T. superba          0.26330 0.214 150   1.228  0.9490
##  CCN51 T. rosea - TCS01 T. superba         -0.05553 0.214 150  -0.259  1.0000
##  CCN51 T. rosea - TCS19 T. superba          0.55813 0.214 150   2.604  0.1939
##  TCS01 T. rosea - TCS19 T. rosea            0.00303 0.218 150   0.014  1.0000
##  TCS01 T. rosea - CCN51 T. superba         -0.14236 0.214 150  -0.664  0.9991
##  TCS01 T. rosea - TCS01 T. superba         -0.46119 0.214 150  -2.152  0.4428
##  TCS01 T. rosea - TCS19 T. superba          0.15247 0.214 150   0.711  0.9986
##  TCS19 T. rosea - CCN51 T. superba         -0.14540 0.218 150  -0.668  0.9991
##  TCS19 T. rosea - TCS01 T. superba         -0.46422 0.218 150  -2.134  0.4544
##  TCS19 T. rosea - TCS19 T. superba          0.14944 0.218 150   0.687  0.9989
##  CCN51 T. superba - TCS01 T. superba       -0.31883 0.214 150  -1.487  0.8598
##  CCN51 T. superba - TCS19 T. superba        0.29483 0.214 150   1.375  0.9053
##  TCS01 T. superba - TCS19 T. superba        0.61366 0.214 150   2.863  0.1064
## 
## Results are averaged over the levels of: bloque 
## P value adjustment: tukey method for comparing a family of 9 estimates
cld_Shade_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_Shade_gen
## Shade = C. pyriformis:
##  gen   emmean    SE  df lower.CL upper.CL .group
##  TCS01  1.693 0.152 150    1.394     1.99  A    
##  CCN51  1.031 0.152 150    0.731     1.33   B   
##  TCS19  0.946 0.152 150    0.646     1.25   B   
## 
## Shade = T. rosea:
##  gen   emmean    SE  df lower.CL upper.CL .group
##  CCN51  1.371 0.152 150    1.071     1.67  A    
##  TCS01  0.965 0.152 150    0.666     1.26  A    
##  TCS19  0.962 0.156 150    0.654     1.27  A    
## 
## Shade = T. superba:
##  gen   emmean    SE  df lower.CL upper.CL .group
##  TCS01  1.426 0.152 150    1.127     1.73  A    
##  CCN51  1.108 0.152 150    0.808     1.41  AB   
##  TCS19  0.813 0.152 150    0.513     1.11   B   
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
ggsave("mgC.tiff", plot= MgC, width = 16, height = 12, units= c("cm"), dpi = 1000)
# Analisisi "A" faltante
detach(datos)
dat<-read.table("photo.csv", header=T, sep=',')
attach(dat)
dat
##    Shade Genotype   A bloque
## 1     Ab    CCN51 4.5      1
## 2     Ab    CCN51 6.4      1
## 3     Ab    CCN51 6.3      1
## 4     Ab    CCN51 6.1      2
## 5     Ab    CCN51 6.1      2
## 6     Ab    CCN51 5.3      2
## 7     Ab    CCN51 3.7      3
## 8     Ab    CCN51 7.7      3
## 9     Ab    CCN51 5.3      3
## 10    Ab    TCS01 6.9      1
## 11    Ab    TCS01 6.8      1
## 12    Ab    TCS01 6.0      1
## 13    Ab    TCS01 4.5      2
## 14    Ab    TCS01 5.6      2
## 15    Ab    TCS01 6.1      2
## 16    Ab    TCS01 7.8      3
## 17    Ab    TCS01 3.8      3
## 18    Ab    TCS01 5.0      3
## 19    Ab    TCS19 5.5      1
## 20    Ab    TCS19 3.9      1
## 21    Ab    TCS19 1.3      1
## 22    Ab    TCS19 7.0      2
## 23    Ab    TCS19 4.6      2
## 24    Ab    TCS19 8.2      2
## 25    Ab    TCS19 8.2      3
## 26    Ab    TCS19 6.8      3
## 27    Ab    TCS19 5.2      3
## 28    Ro    CCN51 6.4      1
## 29    Ro    CCN51 4.5      1
## 30    Ro    CCN51 9.0      1
## 31    Ro    CCN51 5.4      2
## 32    Ro    CCN51 7.6      2
## 33    Ro    CCN51 6.4      2
## 34    Ro    CCN51 4.8      3
## 35    Ro    CCN51 8.4      3
## 36    Ro    CCN51 8.3      3
## 37    Ro    TCS01 6.1      1
## 38    Ro    TCS01 1.7      1
## 39    Ro    TCS01 7.0      1
## 40    Ro    TCS01 4.6      2
## 41    Ro    TCS01 8.0      2
## 42    Ro    TCS01 6.5      2
## 43    Ro    TCS01 5.4      3
## 44    Ro    TCS01 6.4      3
## 45    Ro    TCS01 8.6      3
## 46    Ro    TCS19 9.0      1
## 47    Ro    TCS19 7.5      1
## 48    Ro    TCS19 3.5      1
## 49    Ro    TCS19 2.2      2
## 50    Ro    TCS19 6.0      2
## 51    Ro    TCS19 4.4      2
## 52    Ro    TCS19 6.7      3
## 53    Ro    TCS19 5.2      3
## 54    Ro    TCS19 7.0      3
## 55   Ter    CCN51 7.0      1
## 56   Ter    CCN51 4.8      1
## 57   Ter    CCN51 7.6      1
## 58   Ter    CCN51 4.2      2
## 59   Ter    CCN51 6.1      2
## 60   Ter    CCN51 5.5      2
## 61   Ter    CCN51 3.2      3
## 62   Ter    CCN51 7.7      3
## 63   Ter    CCN51 9.3      3
## 64   Ter    TCS01 7.8      1
## 65   Ter    TCS01 4.9      1
## 66   Ter    TCS01 5.8      1
## 67   Ter    TCS01 5.0      2
## 68   Ter    TCS01 4.5      2
## 69   Ter    TCS01 5.7      2
## 70   Ter    TCS01 2.3      3
## 71   Ter    TCS01 6.7      3
## 72   Ter    TCS01 6.4      3
## 73   Ter    TCS19 6.8      1
## 74   Ter    TCS19 6.7      1
## 75   Ter    TCS19 7.2      1
## 76   Ter    TCS19 5.3      2
## 77   Ter    TCS19 5.2      2
## 78   Ter    TCS19 6.2      2
## 79   Ter    TCS19 9.1      3
## 80   Ter    TCS19 8.0      3
## 81   Ter    TCS19 7.8      3
aov.diam<-aov(A~Shade*Genotype+bloque)
summary(aov.diam)
##                Df Sum Sq Mean Sq F value Pr(>F)
## Shade           2   3.62   1.808   0.604  0.550
## Genotype        2   2.72   1.361   0.454  0.637
## bloque          1   3.58   3.578   1.195  0.278
## Shade:Genotype  4  12.21   3.052   1.019  0.403
## Residuals      71 212.61   2.994