Ejercicio 1
Sea \(f(x)=\sqrt{x}-\cos x\). Usa el método de la bisección para encontrar \(x\in [0,1]\) tal que \(f(x)=0\).
Ejercicio 2
Usa el método de la bisección para encontrar una raíz con una precisión de \(10^{-2}\) para \(x^3-7x^2+14x-6=0\) en cada intervalo.
\[\begin{equation} ``` a) [0,1]\qquad\qquad ``` ``` ## $aprox ## [1] 0.5000000 0.7500000 0.6250000 0.5625000 0.5937500 0.5781250 0.5859375 ## ## $precision ## [1] 0.0078125 ## ## $iteraciones ## [1] 7 ``` El método de bisección después de 20 iteraciones y una precisión de 9.536743e^-07 la raíz es 0.5857859 ``` bisect(f_2, 0, 1) ``` ``` ## $root ## [1] 0.5857864 ## ## $f.root ## [1] -8.881784e-16 ## ## $iter ## [1] 54 ## ## $estim.prec ## [1] 1.110223e-16 ``` ``` b) [1, 3.2]\qquad\qquad ``` ``` ## $aprox ## [1] 2.100000 2.650000 2.925000 3.062500 2.993750 3.028125 3.010938 3.002344 ``` ``` ## ## $precision ## [1] 0.00859375 ## ## $iteraciones ## [1] 8 ``` El método de bisección después de 8 iteraciones y una precisión de 0.00859375 la raíz es 3.002344 ``` bisect(f_2, 1, 3.2) ``` ``` ## $root ## [1] 3 ## ## $f.root ## [1] 7.105427e-15 ## ## $iter ## [1] 54 ## ## $estim.prec ## [1] 4.440892e-16 ``` ``` c)[3.2, 4] \end{equation}\]
$aprox
[1] 3.60000 3.40000 3.50000 3.45000 3.42500 3.41250 3.41875
$precision
[1] 0.00625
$iteraciones
[1] 7
El método de bisección después de 7 iteraciones y una precisión de 0.000625 la raíz es 3.41875
bisect(f_2, 3.2, 4) ## $root ## [1] 3.414214 ## ## $f.root ## [1] -2.131628e-14 ## ## $iter ## [1] 52 ## ## $estim.prec ## [1] 4.440892e-16
# Ejercicio 3
Usa el metodo de la bisección para encontrar las soluciones con una precisión de $10^{-5}$ para los siguientes problemas.
a) $x-2^{-x}=0$ para $0\leq x\leq 1$
```{=html}
<div id="htmlwidget-6c7874bed3cba443b93c" style="width:672px;height:480px;" class="plotly html-widget"></div>
<script type="application/json" data-for="htmlwidget-6c7874bed3cba443b93c">{"x":{"data":[{"x":[0,0],"y":[-1086.19995117188,62.198974609375],"text":"xintercept: 0","type":"scatter","mode":"lines","line":{"width":1.88976377952756,"color":"rgba(0,0,0,1)","dash":"dash"},"hoveron":"points","showlegend":false,"xaxis":"x","yaxis":"y","hoverinfo":"text","frame":null},{"x":[-11,11],"y":[0,0],"text":"yintercept: 0","type":"scatter","mode":"lines","line":{"width":1.88976377952756,"color":"rgba(0,0,0,1)","dash":"dash"},"hoveron":"points","showlegend":false,"xaxis":"x","yaxis":"y","hoverinfo":"text","frame":null},{"x":[-10,-9.9,-9.8,-9.7,-9.6,-9.5,-9.4,-9.3,-9.2,-9.1,-9,-8.9,-8.8,-8.7,-8.6,-8.5,-8.4,-8.3,-8.2,-8.1,-8,-7.9,-7.8,-7.7,-7.6,-7.5,-7.4,-7.3,-7.2,-7.1,-7,-6.9,-6.8,-6.7,-6.6,-6.5,-6.4,-6.3,-6.2,-6.1,-6,-5.9,-5.8,-5.7,-5.6,-5.5,-5.4,-5.3,-5.2,-5.1,-5,-4.9,-4.8,-4.7,-4.6,-4.5,-4.4,-4.3,-4.2,-4.1,-4,-3.9,-3.8,-3.7,-3.6,-3.5,-3.4,-3.3,-3.2,-3.1,-3,-2.9,-2.8,-2.7,-2.6,-2.5,-2.4,-2.3,-2.2,-2.1,-2,-1.9,-1.8,-1.7,-1.6,-1.5,-1.4,-1.3,-1.2,-1.1,-1,-0.9,-0.799999999999999,-0.699999999999999,-0.6,-0.5,-0.399999999999999,-0.299999999999999,-0.199999999999999,-0.0999999999999996,0,0.100000000000001,0.200000000000001,0.300000000000001,0.4,0.5,0.600000000000001,0.700000000000001,0.800000000000001,0.9,1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3,3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,4,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6,6.1,6.2,6.3,6.4,6.5,6.6,6.7,6.8,6.9,7,7.1,7.2,7.3,7.4,7.5,7.6,7.7,7.8,7.9,8,8.1,8.2,8.3,8.4,8.5,8.6,8.7,8.8,8.9,9,9.1,9.2,9.3,9.4,9.5,9.6,9.7,9.8,9.9,10],"y":[-1034,-965.325783333691,-901.243776815232,-841.446453868785,-785.646882053324,-733.577343935025,-684.988050315722,-639.645939632597,-597.333557758482,-557.848012818582,-521,-486.612891666845,-454.521888407616,-424.573226934392,-396.623441026662,-370.538671967512,-346.194025157861,-323.472969816299,-302.266778879241,-282.474006409291,-264,-246.756445833423,-230.660944203808,-215.636613467196,-201.611720513331,-188.519335983756,-176.297012578931,-164.886484908149,-154.23338943962,-144.287003204645,-135,-126.328222916711,-118.230472101904,-110.668306733598,-103.605860256665,-97.0096679918781,-90.8485062894653,-85.0932424540746,-79.7166947198102,-74.6935016023227,-70,-65.6141114583557,-61.5152360509519,-57.6841533667991,-54.1029301283327,-50.754833995939,-47.6242531447326,-44.6966212270373,-41.9583473599051,-39.3967508011614,-37,-34.7570557291778,-32.657618025476,-30.6920766833995,-28.8514650641664,-27.1274169979695,-25.5121265723663,-23.9983106135187,-22.5791736799526,-21.2483754005807,-20,-18.8285278645889,-17.728809012738,-16.6960383416998,-15.7257325320832,-14.8137084989848,-13.9560632861831,-13.1491553067593,-12.3895868399763,-11.6741877002903,-11,-10.3642639322945,-9.76440450636899,-9.19801917084988,-8.66286626604159,-8.15685424949238,-7.67803164309157,-7.22457765337966,-6.79479341998814,-6.38709385014517,-6,-5.63213196614723,-5.28220225318449,-4.94900958542494,-4.6314331330208,-4.32842712474619,-4.03901582154579,-3.76228882668983,-3.49739670999407,-3.24354692507259,-3,-2.76606598307362,-2.54110112659225,-2.32450479271247,-2.1157165665104,-1.9142135623731,-1.71950791077289,-1.53114441334491,-1.34869835499703,-1.17177346253629,-1,-0.833032991536805,-0.670550563296122,-0.512252396356234,-0.357858283255199,-0.207106781186548,-0.059753955386445,0.0844277933275434,0.225650822501483,0.364113268731854,0.5,0.633483504231598,0.764724718351939,0.893873801821883,1.0210708583724,1.14644660940673,1.27012302230678,1.39221389666377,1.51282541125074,1.63205663436593,1.75,1.8667417521158,1.98236235917597,2.09693690091094,2.2105354291862,2.32322330470336,2.43506151115339,2.54610694833189,2.65641270562537,2.76602831718296,2.875,2.9833708760579,3.09118117958799,3.19846845045547,3.3052677145931,3.41161165235168,3.5175307555767,3.62305347416594,3.72820635281269,3.83301415859148,3.9375,4.04168543802895,4.14559058979399,4.24923422522774,4.35263385729655,4.45580582617584,4.55876537778835,4.66152673708297,4.76410317640634,4.86650707929574,4.96875,5.07084271901448,5.172795294897,5.27461711261387,5.37631692864828,5.47790291308792,5.57938268889418,5.68076336854149,5.78205158820317,5.88325353964787,5.984375,6.08542135950724,6.1863976474485,6.28730855630693,6.38815846432414,6.48895145654396,6.58969134444709,6.69038168427074,6.79102579410159,6.89162676982394,6.9921875,7.09271067975362,7.19319882372425,7.29365427815347,7.39407923216207,7.49447572827198,7.59484567222354,7.69519084213537,7.79551289705079,7.89581338491197,7.99609375,8.09635533987681,8.19659941186212,8.29682713907673,8.39703961608104,8.49723786413599,8.59742283611177,8.69759542106769,8.7977564485254,8.89790669245599,8.998046875,9.09817766993841,9.19829970593107,9.29841356953837,9.39851980804052,9.49861893206799,9.59871141805589,9.69879771053385,9.7988782242627,9.89895334622799,9.9990234375],"text":["x_3a: -10.0<br />y_3a: -1.034000e+03","x_3a: -9.9<br />y_3a: -9.653258e+02","x_3a: -9.8<br />y_3a: -9.012438e+02","x_3a: -9.7<br />y_3a: -8.414465e+02","x_3a: -9.6<br />y_3a: -7.856469e+02","x_3a: -9.5<br />y_3a: -7.335773e+02","x_3a: -9.4<br />y_3a: -6.849881e+02","x_3a: -9.3<br />y_3a: -6.396459e+02","x_3a: -9.2<br />y_3a: -5.973336e+02","x_3a: -9.1<br />y_3a: -5.578480e+02","x_3a: -9.0<br />y_3a: -5.210000e+02","x_3a: -8.9<br />y_3a: -4.866129e+02","x_3a: -8.8<br />y_3a: -4.545219e+02","x_3a: -8.7<br />y_3a: -4.245732e+02","x_3a: -8.6<br />y_3a: -3.966234e+02","x_3a: -8.5<br />y_3a: -3.705387e+02","x_3a: -8.4<br />y_3a: -3.461940e+02","x_3a: -8.3<br />y_3a: -3.234730e+02","x_3a: -8.2<br />y_3a: -3.022668e+02","x_3a: -8.1<br />y_3a: -2.824740e+02","x_3a: -8.0<br />y_3a: -2.640000e+02","x_3a: -7.9<br />y_3a: -2.467564e+02","x_3a: -7.8<br />y_3a: -2.306609e+02","x_3a: -7.7<br />y_3a: -2.156366e+02","x_3a: -7.6<br />y_3a: -2.016117e+02","x_3a: -7.5<br />y_3a: -1.885193e+02","x_3a: -7.4<br />y_3a: -1.762970e+02","x_3a: -7.3<br />y_3a: -1.648865e+02","x_3a: -7.2<br />y_3a: -1.542334e+02","x_3a: -7.1<br />y_3a: -1.442870e+02","x_3a: -7.0<br />y_3a: -1.350000e+02","x_3a: -6.9<br />y_3a: -1.263282e+02","x_3a: -6.8<br />y_3a: -1.182305e+02","x_3a: -6.7<br />y_3a: -1.106683e+02","x_3a: -6.6<br />y_3a: -1.036059e+02","x_3a: -6.5<br />y_3a: -9.700967e+01","x_3a: -6.4<br />y_3a: -9.084851e+01","x_3a: -6.3<br />y_3a: -8.509324e+01","x_3a: -6.2<br />y_3a: -7.971669e+01","x_3a: -6.1<br />y_3a: -7.469350e+01","x_3a: -6.0<br />y_3a: -7.000000e+01","x_3a: -5.9<br />y_3a: -6.561411e+01","x_3a: -5.8<br />y_3a: -6.151524e+01","x_3a: -5.7<br />y_3a: -5.768415e+01","x_3a: -5.6<br />y_3a: -5.410293e+01","x_3a: -5.5<br />y_3a: -5.075483e+01","x_3a: -5.4<br />y_3a: -4.762425e+01","x_3a: -5.3<br />y_3a: -4.469662e+01","x_3a: -5.2<br />y_3a: -4.195835e+01","x_3a: -5.1<br />y_3a: -3.939675e+01","x_3a: -5.0<br />y_3a: -3.700000e+01","x_3a: -4.9<br />y_3a: -3.475706e+01","x_3a: -4.8<br />y_3a: -3.265762e+01","x_3a: -4.7<br />y_3a: -3.069208e+01","x_3a: -4.6<br />y_3a: -2.885147e+01","x_3a: -4.5<br />y_3a: -2.712742e+01","x_3a: -4.4<br />y_3a: -2.551213e+01","x_3a: -4.3<br />y_3a: -2.399831e+01","x_3a: -4.2<br />y_3a: -2.257917e+01","x_3a: -4.1<br />y_3a: -2.124838e+01","x_3a: -4.0<br />y_3a: -2.000000e+01","x_3a: -3.9<br />y_3a: -1.882853e+01","x_3a: -3.8<br />y_3a: -1.772881e+01","x_3a: -3.7<br />y_3a: -1.669604e+01","x_3a: -3.6<br />y_3a: -1.572573e+01","x_3a: -3.5<br />y_3a: -1.481371e+01","x_3a: -3.4<br />y_3a: -1.395606e+01","x_3a: -3.3<br />y_3a: -1.314916e+01","x_3a: -3.2<br />y_3a: -1.238959e+01","x_3a: -3.1<br />y_3a: -1.167419e+01","x_3a: -3.0<br />y_3a: -1.100000e+01","x_3a: -2.9<br />y_3a: -1.036426e+01","x_3a: -2.8<br />y_3a: -9.764405e+00","x_3a: -2.7<br />y_3a: -9.198019e+00","x_3a: -2.6<br />y_3a: -8.662866e+00","x_3a: -2.5<br />y_3a: -8.156854e+00","x_3a: -2.4<br />y_3a: -7.678032e+00","x_3a: -2.3<br />y_3a: -7.224578e+00","x_3a: -2.2<br />y_3a: -6.794793e+00","x_3a: -2.1<br />y_3a: -6.387094e+00","x_3a: -2.0<br />y_3a: -6.000000e+00","x_3a: -1.9<br />y_3a: -5.632132e+00","x_3a: -1.8<br />y_3a: -5.282202e+00","x_3a: -1.7<br />y_3a: -4.949010e+00","x_3a: -1.6<br />y_3a: -4.631433e+00","x_3a: -1.5<br />y_3a: -4.328427e+00","x_3a: -1.4<br />y_3a: -4.039016e+00","x_3a: -1.3<br />y_3a: -3.762289e+00","x_3a: -1.2<br />y_3a: -3.497397e+00","x_3a: -1.1<br />y_3a: -3.243547e+00","x_3a: -1.0<br />y_3a: -3.000000e+00","x_3a: -0.9<br />y_3a: -2.766066e+00","x_3a: -0.8<br />y_3a: -2.541101e+00","x_3a: -0.7<br />y_3a: -2.324505e+00","x_3a: -0.6<br />y_3a: -2.115717e+00","x_3a: -0.5<br />y_3a: -1.914214e+00","x_3a: -0.4<br />y_3a: -1.719508e+00","x_3a: -0.3<br />y_3a: -1.531144e+00","x_3a: -0.2<br />y_3a: -1.348698e+00","x_3a: -0.1<br />y_3a: -1.171773e+00","x_3a: 0.0<br />y_3a: -1.000000e+00","x_3a: 0.1<br />y_3a: -8.330330e-01","x_3a: 0.2<br />y_3a: -6.705506e-01","x_3a: 0.3<br />y_3a: -5.122524e-01","x_3a: 0.4<br />y_3a: -3.578583e-01","x_3a: 0.5<br />y_3a: -2.071068e-01","x_3a: 0.6<br />y_3a: -5.975396e-02","x_3a: 0.7<br />y_3a: 8.442779e-02","x_3a: 0.8<br />y_3a: 2.256508e-01","x_3a: 0.9<br />y_3a: 3.641133e-01","x_3a: 1.0<br />y_3a: 5.000000e-01","x_3a: 1.1<br />y_3a: 6.334835e-01","x_3a: 1.2<br />y_3a: 7.647247e-01","x_3a: 1.3<br />y_3a: 8.938738e-01","x_3a: 1.4<br />y_3a: 1.021071e+00","x_3a: 1.5<br />y_3a: 1.146447e+00","x_3a: 1.6<br />y_3a: 1.270123e+00","x_3a: 1.7<br />y_3a: 1.392214e+00","x_3a: 1.8<br />y_3a: 1.512825e+00","x_3a: 1.9<br />y_3a: 1.632057e+00","x_3a: 2.0<br />y_3a: 1.750000e+00","x_3a: 2.1<br />y_3a: 1.866742e+00","x_3a: 2.2<br />y_3a: 1.982362e+00","x_3a: 2.3<br />y_3a: 2.096937e+00","x_3a: 2.4<br />y_3a: 2.210535e+00","x_3a: 2.5<br />y_3a: 2.323223e+00","x_3a: 2.6<br />y_3a: 2.435062e+00","x_3a: 2.7<br />y_3a: 2.546107e+00","x_3a: 2.8<br />y_3a: 2.656413e+00","x_3a: 2.9<br />y_3a: 2.766028e+00","x_3a: 3.0<br />y_3a: 2.875000e+00","x_3a: 3.1<br />y_3a: 2.983371e+00","x_3a: 3.2<br />y_3a: 3.091181e+00","x_3a: 3.3<br />y_3a: 3.198468e+00","x_3a: 3.4<br />y_3a: 3.305268e+00","x_3a: 3.5<br />y_3a: 3.411612e+00","x_3a: 3.6<br />y_3a: 3.517531e+00","x_3a: 3.7<br />y_3a: 3.623053e+00","x_3a: 3.8<br />y_3a: 3.728206e+00","x_3a: 3.9<br />y_3a: 3.833014e+00","x_3a: 4.0<br />y_3a: 3.937500e+00","x_3a: 4.1<br />y_3a: 4.041685e+00","x_3a: 4.2<br />y_3a: 4.145591e+00","x_3a: 4.3<br />y_3a: 4.249234e+00","x_3a: 4.4<br />y_3a: 4.352634e+00","x_3a: 4.5<br />y_3a: 4.455806e+00","x_3a: 4.6<br />y_3a: 4.558765e+00","x_3a: 4.7<br />y_3a: 4.661527e+00","x_3a: 4.8<br />y_3a: 4.764103e+00","x_3a: 4.9<br />y_3a: 4.866507e+00","x_3a: 5.0<br />y_3a: 4.968750e+00","x_3a: 5.1<br />y_3a: 5.070843e+00","x_3a: 5.2<br />y_3a: 5.172795e+00","x_3a: 5.3<br />y_3a: 5.274617e+00","x_3a: 5.4<br />y_3a: 5.376317e+00","x_3a: 5.5<br />y_3a: 5.477903e+00","x_3a: 5.6<br />y_3a: 5.579383e+00","x_3a: 5.7<br />y_3a: 5.680763e+00","x_3a: 5.8<br />y_3a: 5.782052e+00","x_3a: 5.9<br />y_3a: 5.883254e+00","x_3a: 6.0<br />y_3a: 5.984375e+00","x_3a: 6.1<br />y_3a: 6.085421e+00","x_3a: 6.2<br />y_3a: 6.186398e+00","x_3a: 6.3<br />y_3a: 6.287309e+00","x_3a: 6.4<br />y_3a: 6.388158e+00","x_3a: 6.5<br />y_3a: 6.488951e+00","x_3a: 6.6<br />y_3a: 6.589691e+00","x_3a: 6.7<br />y_3a: 6.690382e+00","x_3a: 6.8<br />y_3a: 6.791026e+00","x_3a: 6.9<br />y_3a: 6.891627e+00","x_3a: 7.0<br />y_3a: 6.992188e+00","x_3a: 7.1<br />y_3a: 7.092711e+00","x_3a: 7.2<br />y_3a: 7.193199e+00","x_3a: 7.3<br />y_3a: 7.293654e+00","x_3a: 7.4<br />y_3a: 7.394079e+00","x_3a: 7.5<br />y_3a: 7.494476e+00","x_3a: 7.6<br />y_3a: 7.594846e+00","x_3a: 7.7<br />y_3a: 7.695191e+00","x_3a: 7.8<br />y_3a: 7.795513e+00","x_3a: 7.9<br />y_3a: 7.895813e+00","x_3a: 8.0<br />y_3a: 7.996094e+00","x_3a: 8.1<br />y_3a: 8.096355e+00","x_3a: 8.2<br />y_3a: 8.196599e+00","x_3a: 8.3<br />y_3a: 8.296827e+00","x_3a: 8.4<br />y_3a: 8.397040e+00","x_3a: 8.5<br />y_3a: 8.497238e+00","x_3a: 8.6<br />y_3a: 8.597423e+00","x_3a: 8.7<br />y_3a: 8.697595e+00","x_3a: 8.8<br />y_3a: 8.797756e+00","x_3a: 8.9<br />y_3a: 8.897907e+00","x_3a: 9.0<br />y_3a: 8.998047e+00","x_3a: 9.1<br />y_3a: 9.098178e+00","x_3a: 9.2<br />y_3a: 9.198300e+00","x_3a: 9.3<br />y_3a: 9.298414e+00","x_3a: 9.4<br />y_3a: 9.398520e+00","x_3a: 9.5<br />y_3a: 9.498619e+00","x_3a: 9.6<br />y_3a: 9.598711e+00","x_3a: 9.7<br />y_3a: 9.698798e+00","x_3a: 9.8<br />y_3a: 9.798878e+00","x_3a: 9.9<br />y_3a: 9.898953e+00","x_3a: 10.0<br />y_3a: 9.999023e+00"],"type":"scatter","mode":"lines","line":{"width":3.77952755905512,"color":"rgba(160,32,240,1)","dash":"solid"},"hoveron":"points","showlegend":false,"xaxis":"x","yaxis":"y","hoverinfo":"text","frame":null}],"layout":{"margin":{"t":43.7625570776256,"r":7.30593607305936,"b":40.1826484018265,"l":54.7945205479452},"plot_bgcolor":"rgba(255,255,255,1)","paper_bgcolor":"rgba(255,255,255,1)","font":{"color":"rgba(0,0,0,1)","family":"","size":14.6118721461187},"title":{"text":"Método de bisección","font":{"color":"rgba(0,0,0,1)","family":"","size":17.5342465753425},"x":0,"xref":"paper"},"xaxis":{"domain":[0,1],"automargin":true,"type":"linear","autorange":false,"range":[-11,11],"tickmode":"array","ticktext":["-10","-5","0","5","10"],"tickvals":[-10,-5,0,5,10],"categoryorder":"array","categoryarray":["-10","-5","0","5","10"],"nticks":null,"ticks":"outside","tickcolor":"rgba(51,51,51,1)","ticklen":3.65296803652968,"tickwidth":0.66417600664176,"showticklabels":true,"tickfont":{"color":"rgba(77,77,77,1)","family":"","size":11.689497716895},"tickangle":-0,"showline":false,"linecolor":null,"linewidth":0,"showgrid":true,"gridcolor":"rgba(235,235,235,1)","gridwidth":0.66417600664176,"zeroline":false,"anchor":"y","title":{"text":"x","font":{"color":"rgba(0,0,0,1)","family":"","size":14.6118721461187}},"hoverformat":".2f"},"yaxis":{"domain":[0,1],"automargin":true,"type":"linear","autorange":false,"range":[-1086.19995117188,62.198974609375],"tickmode":"array","ticktext":["-1000","-750","-500","-250","0"],"tickvals":[-1000,-750,-500,-250,0],"categoryorder":"array","categoryarray":["-1000","-750","-500","-250","0"],"nticks":null,"ticks":"outside","tickcolor":"rgba(51,51,51,1)","ticklen":3.65296803652968,"tickwidth":0.66417600664176,"showticklabels":true,"tickfont":{"color":"rgba(77,77,77,1)","family":"","size":11.689497716895},"tickangle":-0,"showline":false,"linecolor":null,"linewidth":0,"showgrid":true,"gridcolor":"rgba(235,235,235,1)","gridwidth":0.66417600664176,"zeroline":false,"anchor":"x","title":{"text":"f(x)","font":{"color":"rgba(0,0,0,1)","family":"","size":14.6118721461187}},"hoverformat":".2f"},"shapes":[{"type":"rect","fillcolor":"transparent","line":{"color":"rgba(51,51,51,1)","width":0.66417600664176,"linetype":"solid"},"yref":"paper","xref":"paper","x0":0,"x1":1,"y0":0,"y1":1}],"showlegend":false,"legend":{"bgcolor":"rgba(255,255,255,1)","bordercolor":"transparent","borderwidth":1.88976377952756,"font":{"color":"rgba(0,0,0,1)","family":"","size":11.689497716895}},"hovermode":"closest","barmode":"relative"},"config":{"doubleClick":"reset","modeBarButtonsToAdd":["hoverclosest","hovercompare"],"showSendToCloud":false},"source":"A","attrs":{"633c69961575":{"xintercept":{},"type":"scatter"},"633cf9e21d6":{"yintercept":{}},"633c1ed3255c":{"x":{},"y":{}}},"cur_data":"633c69961575","visdat":{"633c69961575":["function (y) ","x"],"633cf9e21d6":["function (y) ","x"],"633c1ed3255c":["function (y) ","x"]},"highlight":{"on":"plotly_click","persistent":false,"dynamic":false,"selectize":false,"opacityDim":0.2,"selected":{"opacity":1},"debounce":0},"shinyEvents":["plotly_hover","plotly_click","plotly_selected","plotly_relayout","plotly_brushed","plotly_brushing","plotly_clickannotation","plotly_doubleclick","plotly_deselect","plotly_afterplot","plotly_sunburstclick"],"base_url":"https://plot.ly"},"evals":[],"jsHooks":[]}</script>
metodo_biseccion(f_3a, 0, 1, 10^-5, 100)
## $aprox
## [1] 0.5000000 0.7500000 0.6250000 0.6875000 0.6562500 0.6406250 0.6484375
## [8] 0.6445312 0.6425781 0.6416016 0.6411133 0.6413574 0.6412354 0.6411743
## [15] 0.6412048 0.6411896 0.6411819
##
## $precisión
## [1] 7.629395e-06
##
## $iteraciones
## [1] 17
El método de bisección después de 17 iteraciones y una precisión de 7.629395e^-06, la raíz es 0.6411819
bisect(f_3a, 0, 1)
## $root
## [1] 0.6411857
##
## $f.root
## [1] 0
##
## $iter
## [1] 54
##
## $estim.prec
## [1] 1.110223e-16
- \(e^x-x^2+3x-2=0\) para \(0\leq x\leq 1\)
metodo_biseccion(f_3b, 0, 1, 10^-5, 100)
## $aprox
## [1] 0.5000000 0.2500000 0.3750000 0.3125000 0.2812500 0.2656250 0.2578125
## [8] 0.2539062 0.2558594 0.2568359 0.2573242 0.2575684 0.2574463 0.2575073
## [15] 0.2575378 0.2575226 0.2575302
##
## $precision
## [1] 7.629395e-06
##
## $iteraciones
## [1] 17
El método de bisección después de 17 iteraciones y una precisión de 7.629395e^-06, la raíz es 0.2575302
bisect(f_3b, 0, 1)
## $root
## [1] 0.2575303
##
## $f.root
## [1] -4.440892e-16
##
## $iter
## [1] 55
##
## $estim.prec
## [1] 5.551115e-17
- \(2x\cos (2x)-(x+1)^2=0\) para \(-3\leq x\leq -2\) y \(-1\leq x \leq 0\)
metodo_biseccion(f_3c, -3, -2, 10^-5, 100)
## $aprox
## [1] -2.500000 -2.250000 -2.125000 -2.187500 -2.218750 -2.203125 -2.195312
## [8] -2.191406 -2.189453 -2.190430 -2.190918 -2.191162 -2.191284 -2.191345
## [15] -2.191315 -2.191299 -2.191307
##
## $precision
## [1] 7.629395e-06
##
## $iteraciones
## [1] 17
El método de bisección después de 17 iteraciones y una precisión 7.629395e^-06, la raíz es -2.191307
bisect(f_3c, -3, -2)
## $root
## [1] -2.191308
##
## $f.root
## [1] -3.108624e-15
##
## $iter
## [1] 52
##
## $estim.prec
## [1] 4.440892e-16
- \(x\cos x-2x^2+3x-1=0\) para \(0.2\leq x\leq 0.3\) y \(1.2\leq x \leq 1.3\)
metodo_biseccion(f_3d, 1.2, 1.3, 10^-5, 100)
## $aprox
## [1] 1.250000 1.275000 1.262500 1.256250 1.259375 1.257812 1.257031 1.256641
## [9] 1.256445 1.256543 1.256592 1.256616 1.256628 1.256622
##
## $precision
## [1] 6.103516e-06
##
## $iteraciones
## [1] 14
El método de bisección después de 14 iteraciones y una precisión 6.103516e^-06, la raíz es 1.256622
bisect(f_3d, .2, .3)
## $root
## [1] 0.2975302
##
## $f.root
## [1] 0
##
## $iter
## [1] 52
##
## $estim.prec
## [1] 5.551115e-17
Ejercicio 4
Considera las funciones \(f(x)=x\) y \(g(x)=2 \sin x\). Usa el método de la bisección para encontrar una aproximación con una precisión de \(10^{-5}\) para el primer valor positivo \(x\) tal que \(f(x)=g(x)\).
g(x)=f(x) 2senx=x =====> 2senx-x=0 h(x)=2senx-x
metodo_biseccion(f_4, -0.2, -0.3, 10^-5, 100)
## $aprox
## [1] -0.25
##
## $precision
## [1] -0.05
##
## $iteraciones
## [1] 1
El método de bisección después de 1 iteracion y una precisión -0.05, la raíz es -0.25
bisect(f_4, -3, 2)
## $root
## [1] 0
##
## $f.root
## [1] 0
##
## $iter
## [1] 2
##
## $estim.prec
## [1] 0
Ejercicio 5
Sea \(f(x)=(x+2)(x+1)x(x-1)^3(x-2)\). ¿A cuál raíz de \(f\) converge el método de la bisección cuando se aplica a los siguientes intervalos?
\[\begin{equation} a) [-3,2.5]\qquad \qquad ```r metodo_biseccion(f_5, -3, 2.5, 10^-6, 100) ``` ``` ## $aprox ## [1] -0.250000 1.125000 1.812500 2.156250 1.984375 2.070312 2.027344 ## [8] 2.005859 1.995117 2.000488 1.997803 1.999146 1.999817 2.000153 ## [15] 1.999985 2.000069 2.000027 2.000006 1.999995 2.000000 1.999998 ## [22] 1.999999 2.000000 ## ## $precision ## [1] 6.556511e-07 ## ## $iteraciones ## [1] 23 ``` El método de bisección después de 23 iteraciones y una precisión 6.556511e^-07, la raíz es 2.000000 ```r bisect(f_4, -3, 2.5) ``` ``` ## $root ## [1] 0 ## ## $f.root ## [1] 0 ## ## $iter ## [1] 2 ## ## $estim.prec ## [1] 0 ``` b) [-2.5, 3]\qquad\qquad ```r metodo_biseccion(f_5, -2.5, 3, 10^-5, 100) ``` ``` ## $aprox ## [1] 0.250000 -1.125000 -1.812500 -2.156250 -1.984375 -2.070312 -2.027344 ## [8] -2.005859 -1.995117 -2.000488 -1.997803 -1.999146 -1.999817 -2.000153 ## [15] -1.999985 -2.000069 -2.000027 -2.000006 -1.999995 -2.000000 ## ## $precision ## [1] 5.245209e-06 ## ## $iteraciones ## [1] 20 ``` El método de bisección después de 20 iteraciones y una precisión 5.245209e^-067, la raíz es -2.000000 ```r bisect(f_4, -2.5, 3) ``` ``` ## $root ## [1] 0 ## ## $f.root ## [1] 0 ## ## $iter ## [1] 2 ## ## $estim.prec ## [1] 0 ``` c)[-1.75, 1.5]\qquad\qquad ```r metodo_biseccion(f_5, -1.75, 1.5, 10^-5, 100) ``` ``` ## $aprox ## [1] -0.1250000 -0.9375000 -1.3437500 -1.1406250 -1.0390625 -0.9882812 ## [7] -1.0136719 -1.0009766 -0.9946289 -0.9978027 -0.9993896 -1.0001831 ## [13] -0.9997864 -0.9999847 -1.0000839 -1.0000343 -1.0000095 -0.9999971 ## [19] -1.0000033 ## ## $precision ## [1] 6.198883e-06 ## ## $iteraciones ## [1] 19 ``` El método de bisección después de 19 iteraciones y una precisión 6.198883e^-06, la raíz es -1.0000033 ```r bisect(f_4, -1.75, 1.5) ``` ``` ## $root ## [1] 0 ## ## $f.root ## [1] 0 ## ## $iter ## [1] 2 ## ## $estim.prec ## [1] 0 ``` d) [-1.5, 1.75] \end{equation}\]
metodo_biseccion(f_5, -1.5, 1.75, 10^-7, 100)
## $aprox
## [1] 0.1250000 0.9375000 1.3437500 1.1406250 1.0390625 0.9882812 1.0136719
## [8] 1.0009766 0.9946289 0.9978027 0.9993896 1.0001831 0.9997864 0.9999847
## [15] 1.0000839 1.0000343 1.0000095 0.9999971 1.0000033 1.0000002 0.9999987
## [22] 0.9999995 0.9999999 1.0000000 0.9999999
##
## $precision
## [1] 9.685755e-08
##
## $iteraciones
## [1] 25
El método de bisección después de 25 iteraciones y una precisión 9.685755e-08, la raíz es 0.9999999
bisect(f_4, -1.5, 1.5)
## $root
## [1] 0
##
## $f.root
## [1] 0
##
## $iter
## [1] 2
##
## $estim.prec
## [1] 0
Ejercicio 6
En cada una de las siguientes ecuaciones, determina un intervalo \([a,b]\) en que convergerá la iteración de punto fijo. Estima la cantidad de iteraciones necesarias para obtener aproximaciones con una exactitud de \(10^{-5}\) y realiza los cálculos.
it_pf <- function(g, q0, pr=1e-5, N=100){
cond <- 1
it <- 1
q <- q0
while(cond==1){
if(it<=N){
q[it+1] = g(q[it]) # iteración de la función
pr_it <- abs(q[it+1]-q[it]) # precisión en la iteración
if(pr_it<pr){
resultados <- list(sucesion=q, precision=pr_it, iteraciones=it)
return(resultados)
cond <- 0
}#final del segundo if
else{it <- it+1}
}#final del primer if
else{
print("Se alcanzo el maximo de iteraciones")
cond <- 0
}#fin del else
}#final del while
}# final de la función- \(\quad x=\frac{2-e^{x}+x^{2}}{3}\)
f_6 <- function(x){x}
g_6a<- function(x){(2-exp(x)+x^2)/3}
x_6a <- seq(from=-0.5, to=2.5, by=0.01)
y_f_6a <- f_6(x_6a)
y_g_6a <- g_6a(x_6a)
graf_6a <- ggplot()+
geom_vline(xintercept = 0, linetype="dashed")+ #eje x
geom_hline(yintercept = 0, linetype="dashed")+ #eje y
geom_line(aes(x=x_6a, y=y_f_6a), color="orange", size=1)+
geom_line(aes(x=x_6a, y=y_g_6a), color="forestgreen", size=1)+
coord_fixed(ratio = 1)+ #misma escala en los ejes
labs(x="x", y="f(x)", title="Punto fijo gráfica 6a ")+
theme_bw()
#plot(graf_6a)
ggplotly(graf_6a)it_pf(g_6a, 2.9, 1e-8, 50)
## $sucesion
## [1] 2.9000000 -2.5880485 2.8742761 -2.4837113 2.6951296 -1.8479048
## [7] 1.7523950 -0.2325044 0.4205040 0.2180316 0.2679705 0.2548332
## [13] 0.2582312 0.2573484 0.2575775 0.2575180 0.2575335 0.2575295
## [19] 0.2575305 0.2575302 0.2575303 0.2575303 0.2575303
##
## $precision
## [1] 4.719076e-09
##
## $iteraciones
## [1] 22
Después de 22 iteraciones y una precisión 4.719076e-09, el punto fijo de x=(2-ex+x2/3) es 0.2575303
- \(\quad x=\frac{5}{x^{2}}+2\)
f_6<- function(x){x}
g_6b<- function(x){(5/(x^2))+2}
x_6b <- seq(from=2, to=3, by=0.01)
y_f_6b <- f_6(x_6b)
y_g_6b <- g_6b(x_6b)
graf_6b <- ggplot()+
#geom_vline(xintercept = 0, linetype="dashed")+ #eje x
#geom_hline(yintercept = 0, linetype="dashed")+ #eje y
geom_line(aes(x=x_6b, y=y_f_6b), color="orange", size=0.5)+
geom_line(aes(x=x_6b, y=y_g_6b), color="forestgreen", size=0.5)+
geom_polygon(aes(x=c(2.9,2.4,2.4,2.9), y=c (3, 3, 2.4, 2.4)), size=0.5, color= "blue", fill=NA)+
coord_fixed(ratio=1)+
labs(x="x", y="f(x)", title="Punto fijo ejercicio 6 b")+
theme_bw()
#plot(graf_6b)
ggplotly(graf_6b)it_pf(g_6b, 0.2, 1e-8, 50)
## $sucesion
## [1] 0.200000 127.000000 2.000310 3.249613 2.473486 2.817243
## [7] 2.629972 2.722882 2.674392 2.699069 2.686344 2.692862
## [13] 2.689512 2.691231 2.690348 2.690801 2.690569 2.690688
## [19] 2.690627 2.690658 2.690642 2.690650 2.690646 2.690648
## [25] 2.690647 2.690648 2.690647 2.690647 2.690647 2.690647
## [31] 2.690647 2.690647 2.690647
##
## $precision
## [1] 5.412974e-09
##
## $iteraciones
## [1] 32
Después de 32 iteraciones y una precisión 5.412974e^-09, el punto fijo de x=(5/x^2)+2 es 2.690647
- \(\quad x=\left(e^{x} / 3\right)^{1 / 2}\)
f_6<- function(x){x}
g_6c<- function(x){sqrt(exp(x)/3)}
x_6c <- seq(from=-1, to=2, by=0.01)
y_f_6c <- f_6(x_6c)
y_g_6c <- g_6c(x_6c)
graf_6c <- ggplot()+
geom_vline(xintercept = 0, linetype="dashed")+ #eje x
geom_hline(yintercept = 0, linetype="dashed")+ #eje y
geom_line(aes(x=x_6c, y=y_f_6c), color="orange", size=0.5)+
geom_line(aes(x=x_6c, y=y_g_6c), color="forestgreen", size=0.5)+
geom_polygon(aes(x=c(0.5,1,1,0.5), y=c (0.5, 0.5, 1, 1)), size=0.5, color= "blue", fill=NA)+
coord_fixed(ratio=1)+
labs(x="x", y="f(x)", title="Punto fijo ejercicio 6 c")+
theme_bw()
#plot(graf_6a)
ggplotly(graf_6c)it_pf (g_6c, 1, 1e-8, 50)
## $sucesion
## [1] 1.0000000 0.9518897 0.9292650 0.9188121 0.9140225 0.9118362 0.9108400
## [8] 0.9103864 0.9101800 0.9100860 0.9100433 0.9100238 0.9100150 0.9100109
## [15] 0.9100091 0.9100083 0.9100079 0.9100077 0.9100076 0.9100076 0.9100076
## [22] 0.9100076
##
## $precision
## [1] 7.397953e-09
##
## $iteraciones
## [1] 21
Después de 21 iteraciones con una preicisión de 7.397953e^-09 el punto fijo de x=((ex/3))1/2 es 0.9100076
- \(\quad x=5^{-x}\)
f_6<- function(x){x}
g_6d<- function(x){5^(-x)}
x_6d <- seq(from=-.3, to=4, by=0.01)
y_f_6d <- f_6(x_6d)
y_g_6d <- g_6d(x_6d)
graf_6d <- ggplot()+
geom_vline(xintercept = 0, linetype="dashed")+ #eje x
geom_hline(yintercept = 0, linetype="dashed")+ #eje y
geom_line(aes(x=x_6d, y=y_f_6d), color="orange", size=0.5)+
geom_line(aes(x=x_6d, y=y_g_6d), color="forestgreen", size=0.5)+
geom_polygon(aes(x=c(.3, .6, .6, .3), y=c (.3, .3, .6, .6)), size=0.5, color= "blue", fill=NA)+
coord_fixed(ratio=1)+
labs(x="x", y="f(x)", title="Punto fijo ejercicio 6 d")+
theme_bw()
#plot(graf_6a)
ggplotly(graf_6d)it_pf(g_6d, 0.3, 1e-8, 100)
## $sucesion
## [1] 0.3000000 0.6170339 0.3704349 0.5509056 0.4120345 0.5152290 0.4363856
## [8] 0.4954269 0.4505173 0.4842860 0.4586682 0.4779745 0.4633511 0.4743856
## [15] 0.4660352 0.4723407 0.4675715 0.4711743 0.4684501 0.4705085 0.4689523
## [22] 0.4701283 0.4692393 0.4699112 0.4694034 0.4697872 0.4694971 0.4697163
## [29] 0.4695506 0.4696758 0.4695812 0.4696527 0.4695986 0.4696395 0.4696086
## [36] 0.4696320 0.4696143 0.4696277 0.4696176 0.4696252 0.4696194 0.4696238
## [43] 0.4696205 0.4696230 0.4696211 0.4696225 0.4696215 0.4696223 0.4696217
## [50] 0.4696221 0.4696218 0.4696220 0.4696218 0.4696220 0.4696219 0.4696220
## [57] 0.4696219 0.4696219 0.4696219 0.4696219 0.4696219 0.4696219 0.4696219
## [64] 0.4696219
##
## $precision
## [1] 9.208277e-09
##
## $iteraciones
## [1] 63
Después de 63 iteraciones con una preicisión de 9.208277e^-09 el punto fijo de x=5^-x es 0.4696219
- \(\quad x=6^{-x}\)
f_6<- function(x){x}
g_6e<- function(x){6^(-x)}
x_6e <- seq(from=-0, to=4, by=0.01)
y_f_6e <- f_6(x_6e)
y_g_6e <- g_6e(x_6e)
graf_6e <- ggplot()+
geom_vline(xintercept = 0, linetype="dashed")+ #eje x
geom_hline(yintercept = 0, linetype="dashed")+ #eje y
geom_line(aes(x=x_6e, y=y_f_6e), color="orange", size=0.5)+
geom_line(aes(x=x_6e, y=y_g_6e), color="forestgreen", size=0.5)+
geom_polygon(aes(x=c(.3, .6, .3, .6), y=c (.3, .3, .6, .6)), size=0.5, color= "blue", fill=NA)+
coord_fixed(ratio=1)+
labs(x="x", y="f(x)", title="Punto fijo ejercicio 6 e")+
theme_bw()
#plot(graf_6a)
ggplotly(graf_6e)it_pf(g_6e, .3, 1e-8, 100)
## $sucesion
## [1] 0.3000000 0.5841907 0.3510842 0.5330935 0.3847447 0.5018922 0.4068665
## [8] 0.4823878 0.4213367 0.4700416 0.4307612 0.4621710 0.4368789 0.4571325
## [15] 0.4408408 0.4538990 0.4434023 0.4518205 0.4450567 0.4504832 0.4461244
## [22] 0.4496222 0.4468131 0.4490677 0.4472573 0.4487105 0.4475436 0.4484803
## [29] 0.4477283 0.4483320 0.4478473 0.4482364 0.4479240 0.4481748 0.4479734
## [36] 0.4481351 0.4480053 0.4481095 0.4480258 0.4480930 0.4480391 0.4480823
## [43] 0.4480476 0.4480755 0.4480531 0.4480711 0.4480566 0.4480682 0.4480589
## [50] 0.4480664 0.4480604 0.4480652 0.4480614 0.4480645 0.4480620 0.4480640
## [57] 0.4480624 0.4480637 0.4480626 0.4480634 0.4480628 0.4480633 0.4480629
## [64] 0.4480632 0.4480630 0.4480632 0.4480630 0.4480631 0.4480630 0.4480631
## [71] 0.4480630 0.4480631 0.4480631 0.4480631 0.4480631 0.4480631 0.4480631
## [78] 0.4480631 0.4480631 0.4480631 0.4480631
##
## $precision
## [1] 8.248957e-09
##
## $iteraciones
## [1] 80
Después de 80 iteraciones con una precisión de 8.248957e^-09 el punto fijo de x=6^-x es 0.4480631
- \(\quad x=0.5(\sin x+\cos x)\)
f_6<- function(x){x}
g_6f<- function(x){0.5*(sin(x)+cos(x))}
x_6f <- seq(from=-5, to=5, by=0.01)
y_f_6f <- f_6(x_6f)
y_g_6f <- g_6f(x_6f)
graf_6f <- ggplot()+
geom_vline(xintercept = 0, linetype="dashed")+ #eje x
geom_hline(yintercept = 0, linetype="dashed")+ #eje y
geom_line(aes(x=x_6f, y=y_f_6f), color="orange", size=0.5)+
geom_line(aes(x=x_6f, y=y_g_6f), color="forestgreen", size=0.5)+
geom_polygon(aes(x=c(0,1,1,0), y=c (0, 0, 1, 1)), size=0.5, color= "blue", fill=NA)+
coord_fixed(ratio=1)+
labs(x="x", y="f(x)", title="Punto fijo ejercicio 6 f")+
theme_bw()
#plot(graf_6a)
ggplotly(graf_6f)it_pf(g_6a, 0.2, 1e-8, 50)
## $sucesion
## [1] 0.2000000 0.2728657 0.2535773 0.2585582 0.2572636 0.2575995 0.2575123
## [8] 0.2575349 0.2575291 0.2575306 0.2575302 0.2575303 0.2575303 0.2575303
##
## $precision
## [1] 6.919711e-09
##
## $iteraciones
## [1] 13
Después de 13 iteraciones con una precisión de 6.919711e^-09 el punto fijo de x=0.5(sin(x)+cos(x)) es 0.2575303