Data Source

The final week of each unit is designed to provide you some space for independent analysis. For this assignment, you are to demonstrate your ability to formulate a basic research question, wrangle and analyze relational data, and create a simple data product to illustrate key findings. Your primary goal for this analysis is to examine node or network characteristics that produce tie formation by applying the knowledge and skills acquired from the course readings and case study. Grading for this week is fairly lenient and you’ll receive 1 point (6 points total) for completing each of the following tasks:

  1. Identify a data source. I’ve included a data folder located the Unit 4 Analysis Project in our RStudio Cloud ECI 589 Workspace that contains datasets I’ve created, as well as those from our SNA and Education course text described here. You are welcome to chose from those or to identify your own data source related to an area of professional interest.

I will be using the dlt1-edges and dlt1-nodes dataset.

Formulate a Question

  1. Formulate a question. I recommend keeping this simple and limiting to no more than one or two questions. Your question(s) should be appropriate to your data set and ideally be answered by applying concepts and skills from our course readings and case study. For example, you may be interested in determining whether gender predicts confidential exchanges between school and district leaders using the Alan Daly school leader dataset.

Does years of experience predict participation in the discussion thread “Most Important Change for Your School or District?”

I hypothesize that those educators in the 6 to 10 years or 11 to 20 years experience brackets will be the most participatory in this discussion thread. In my experience, new teachers (less than 6 years of experience) are less likely to have ideas for change because they are still learning the nuances and power developments at play within a school and district. Likewise, teachers closest to retirement (20 years or more) are also less likely to have ideas for change because at this point, many have resigned themselves to the fact that things will never change, and they are counting down the days until they can collect a pension. (I know that’s bleak; it’s also true.)

  1. Analyze the data. I highly recommend creating a new R script in the Unit 4 Analysis project space to use as you work through data wrangling and analysis. Your R script will likely contain code that doesn’t make it into your R Markdown presentation or report since you will likely experiment with different approaches and figure out code that works and code that does not.

Import Datasets

library(readr)
dlt1_edges <- read_csv("data/dlt1-edges.csv")
## Rows: 2529 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (7): Timestamp, Discussion Title, Discussion Category, Parent Category, ...
## dbl (3): Sender, Receiver, Comment ID
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
(dlt1_edges)
## # A tibble: 2,529 × 10
##    Sender Receiver Timestamp  `Discussion Ti…` `Discussion Ca…` `Parent Catego…`
##     <dbl>    <dbl> <chr>      <chr>            <chr>            <chr>           
##  1    360      444 4/4/13 16… Most important … Group N          Units 1-3 Discu…
##  2    356      444 4/4/13 18… Most important … Group D-L        Units 1-3 Discu…
##  3    356      444 4/4/13 18… DLT Resources—C… Group D-L        Units 1-3 Discu…
##  4    344      444 4/4/13 18… Most important … Group O-T        Units 1-3 Discu…
##  5    392      444 4/4/13 19… Most important … Group U-Z        Units 1-3 Discu…
##  6    219      444 4/4/13 19… Most important … Group M          Units 1-3 Discu…
##  7    318      444 4/4/13 19… Most important … Group M          Units 1-3 Discu…
##  8      4      444 4/4/13 19… Most important … Group N          Units 1-3 Discu…
##  9    355      356 4/4/13 20… DLT Resources—C… Group D-L        Units 1-3 Discu…
## 10    355      444 4/4/13 20… Most important … Group D-L        Units 1-3 Discu…
## # … with 2,519 more rows, and 4 more variables: `Category Text` <chr>,
## #   `Discussion Identifier` <chr>, `Comment ID` <dbl>, `Discussion ID` <chr>
library(readr)
dlt1_nodes <- read_csv("data/dlt1-nodes.csv")
## Rows: 445 Columns: 13
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (10): role1, experience2, grades, location, region, country, group, gend...
## dbl  (3): UID, Facilitator, experience
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
(dlt1_nodes)
## # A tibble: 445 × 13
##      UID Facilitator role1 experience experience2 grades location region country
##    <dbl>       <dbl> <chr>      <dbl> <chr>       <chr>  <chr>    <chr>  <chr>  
##  1     1           0 libm…          1 6 to 10     secon… VA       South  US     
##  2     2           0 clas…          1 6 to 10     secon… FL       South  US     
##  3     3           0 dist…          2 11 to 20    gener… PA       North… US     
##  4     4           0 clas…          2 11 to 20    middle NC       South  US     
##  5     5           0 othe…          3 20+         gener… AL       South  US     
##  6     6           0 clas…          1 4 to 5      gener… AL       South  US     
##  7     7           0 inst…          2 11 to 20    gener… SD       Midwe… US     
##  8     8           0 spec…          1 6 to 10     secon… BE       Inter… BE     
##  9     9           0 clas…          1 6 to 10     middle NC       South  US     
## 10    10           0 scho…          2 11 to 20    middle NC       South  US     
## # … with 435 more rows, and 4 more variables: group <chr>, gender <chr>,
## #   expert <chr>, connect <chr>

Wrangle

Load Libraries

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(igraph)
## 
## Attaching package: 'igraph'
## The following objects are masked from 'package:dplyr':
## 
##     as_data_frame, groups, union
## The following objects are masked from 'package:stats':
## 
##     decompose, spectrum
## The following object is masked from 'package:base':
## 
##     union
library(tidygraph)
## 
## Attaching package: 'tidygraph'
## The following object is masked from 'package:igraph':
## 
##     groups
## The following object is masked from 'package:stats':
## 
##     filter
library(statnet)
## Loading required package: tergm
## Loading required package: ergm
## Loading required package: network
## 
## 'network' 1.17.1 (2021-06-12), part of the Statnet Project
## * 'news(package="network")' for changes since last version
## * 'citation("network")' for citation information
## * 'https://statnet.org' for help, support, and other information
## 
## Attaching package: 'network'
## The following objects are masked from 'package:igraph':
## 
##     %c%, %s%, add.edges, add.vertices, delete.edges, delete.vertices,
##     get.edge.attribute, get.edges, get.vertex.attribute, is.bipartite,
##     is.directed, list.edge.attributes, list.vertex.attributes,
##     set.edge.attribute, set.vertex.attribute
## 
## 'ergm' 4.1.2 (2021-07-26), part of the Statnet Project
## * 'news(package="ergm")' for changes since last version
## * 'citation("ergm")' for citation information
## * 'https://statnet.org' for help, support, and other information
## 'ergm' 4 is a major update that introduces some backwards-incompatible
## changes. Please type 'news(package="ergm")' for a list of major
## changes.
## Loading required package: networkDynamic
## 
## 'networkDynamic' 0.11.0 (2021-06-12), part of the Statnet Project
## * 'news(package="networkDynamic")' for changes since last version
## * 'citation("networkDynamic")' for citation information
## * 'https://statnet.org' for help, support, and other information
## Registered S3 method overwritten by 'tergm':
##   method                   from
##   simulate_formula.network ergm
## 
## 'tergm' 4.0.2 (2021-07-28), part of the Statnet Project
## * 'news(package="tergm")' for changes since last version
## * 'citation("tergm")' for citation information
## * 'https://statnet.org' for help, support, and other information
## 
## Attaching package: 'tergm'
## The following object is masked from 'package:ergm':
## 
##     snctrl
## Loading required package: ergm.count
## 
## 'ergm.count' 4.0.2 (2021-06-18), part of the Statnet Project
## * 'news(package="ergm.count")' for changes since last version
## * 'citation("ergm.count")' for citation information
## * 'https://statnet.org' for help, support, and other information
## Loading required package: sna
## Loading required package: statnet.common
## 
## Attaching package: 'statnet.common'
## The following object is masked from 'package:ergm':
## 
##     snctrl
## The following objects are masked from 'package:base':
## 
##     attr, order
## sna: Tools for Social Network Analysis
## Version 2.6 created on 2020-10-5.
## copyright (c) 2005, Carter T. Butts, University of California-Irvine
##  For citation information, type citation("sna").
##  Type help(package="sna") to get started.
## 
## Attaching package: 'sna'
## The following objects are masked from 'package:igraph':
## 
##     betweenness, bonpow, closeness, components, degree, dyad.census,
##     evcent, hierarchy, is.connected, neighborhood, triad.census
## Loading required package: tsna
## 
## 'statnet' 2019.6 (2019-06-13), part of the Statnet Project
## * 'news(package="statnet")' for changes since last version
## * 'citation("statnet")' for citation information
## * 'https://statnet.org' for help, support, and other information
library(ggraph)
## Loading required package: ggplot2

Extract Data

Since I will only be looking at one discussion topic from the dlt1-edges document, I first need to select the appropriate columns and filter for those who participated in this discussion.

dlt1edges2 <- select(dlt1_edges, "Sender", "Receiver", "Discussion Title", "Discussion Identifier")
dlt1edges2
## # A tibble: 2,529 × 4
##    Sender Receiver `Discussion Title`                           `Discussion Id…`
##     <dbl>    <dbl> <chr>                                        <chr>           
##  1    360      444 Most important change for your school or di… Most important …
##  2    356      444 Most important change for your school or di… Most important …
##  3    356      444 DLT Resources—Comments and Suggestions       DLT Resources—C…
##  4    344      444 Most important change for your school or di… Most important …
##  5    392      444 Most important change for your school or di… Most important …
##  6    219      444 Most important change for your school or di… Most important …
##  7    318      444 Most important change for your school or di… Most important …
##  8      4      444 Most important change for your school or di… Most important …
##  9    355      356 DLT Resources—Comments and Suggestions       DLT Resources—C…
## 10    355      444 Most important change for your school or di… Most important …
## # … with 2,519 more rows
Change Column Names
colnames(dlt1edges2)[colnames(dlt1edges2) == "Discussion Title"] <- "Discussion_Title"

colnames(dlt1edges2)[colnames(dlt1edges2) == "Sender"] <- "UID"
dlt1edges2
## # A tibble: 2,529 × 4
##      UID Receiver Discussion_Title                              `Discussion Id…`
##    <dbl>    <dbl> <chr>                                         <chr>           
##  1   360      444 Most important change for your school or dis… Most important …
##  2   356      444 Most important change for your school or dis… Most important …
##  3   356      444 DLT Resources—Comments and Suggestions        DLT Resources—C…
##  4   344      444 Most important change for your school or dis… Most important …
##  5   392      444 Most important change for your school or dis… Most important …
##  6   219      444 Most important change for your school or dis… Most important …
##  7   318      444 Most important change for your school or dis… Most important …
##  8     4      444 Most important change for your school or dis… Most important …
##  9   355      356 DLT Resources—Comments and Suggestions        DLT Resources—C…
## 10   355      444 Most important change for your school or dis… Most important …
## # … with 2,519 more rows

**Note: from this point on, the column “UID” within the edges dataset will represent the Sender. This is to ease joining in a step later on.

Filter for Specific Discussion
dlt1edges3 <- filter(dlt1edges2, Discussion_Title == "Most important change for your school or district?")
dlt1edges3
## # A tibble: 327 × 4
##      UID Receiver Discussion_Title                              `Discussion Id…`
##    <dbl>    <dbl> <chr>                                         <chr>           
##  1   360      444 Most important change for your school or dis… Most important …
##  2   356      444 Most important change for your school or dis… Most important …
##  3   344      444 Most important change for your school or dis… Most important …
##  4   392      444 Most important change for your school or dis… Most important …
##  5   219      444 Most important change for your school or dis… Most important …
##  6   318      444 Most important change for your school or dis… Most important …
##  7     4      444 Most important change for your school or dis… Most important …
##  8   355      444 Most important change for your school or dis… Most important …
##  9   248      444 Most important change for your school or dis… Most important …
## 10   150      444 Most important change for your school or dis… Most important …
## # … with 317 more rows
class(dlt1edges3)
## [1] "tbl_df"     "tbl"        "data.frame"
Select Edge Columns for Analysis
dlt1edges4 <- select(dlt1edges3, "UID", "Receiver")
dlt1edges4
## # A tibble: 327 × 2
##      UID Receiver
##    <dbl>    <dbl>
##  1   360      444
##  2   356      444
##  3   344      444
##  4   392      444
##  5   219      444
##  6   318      444
##  7     4      444
##  8   355      444
##  9   248      444
## 10   150      444
## # … with 317 more rows
Select Node Columns for Analysis
dlt1nodes2 <- select(dlt1_nodes, "UID", "experience2")
dlt1nodes2
## # A tibble: 445 × 2
##      UID experience2
##    <dbl> <chr>      
##  1     1 6 to 10    
##  2     2 6 to 10    
##  3     3 11 to 20   
##  4     4 11 to 20   
##  5     5 20+        
##  6     6 4 to 5     
##  7     7 11 to 20   
##  8     8 6 to 10    
##  9     9 6 to 10    
## 10    10 11 to 20   
## # … with 435 more rows
Convert Experience2 Column Data to Reflect 4-point Scale

I decided to convert the original data scale, which combined years 0 to 10 into Level 1, into two separate experience levels. Based on my own experience in the classroom and working with other teachers, there is a significant difference between a teacher with 2 years of experience and a teacher with 9 years of experience, and I do not think it is appropriate to include this in one group. Therefore, I recoded the data so that Level 1 = 0 to 5 years and Level 2 = 6 to 10 years of experience.

dlt1nodeslevel2 <- filter(dlt1nodes2, experience2=="6 to 10")
dlt1nodeslevel2
## # A tibble: 68 × 2
##      UID experience2
##    <dbl> <chr>      
##  1     1 6 to 10    
##  2     2 6 to 10    
##  3     8 6 to 10    
##  4     9 6 to 10    
##  5    22 6 to 10    
##  6    32 6 to 10    
##  7    38 6 to 10    
##  8    41 6 to 10    
##  9    63 6 to 10    
## 10    70 6 to 10    
## # … with 58 more rows
dlt1nodeslevel1 <- filter(dlt1nodes2, experience2=="0 to 3" | experience2=="4 to 5")
dlt1nodeslevel1
## # A tibble: 47 × 2
##      UID experience2
##    <dbl> <chr>      
##  1     6 4 to 5     
##  2    14 0 to 3     
##  3    16 0 to 3     
##  4    17 0 to 3     
##  5    18 4 to 5     
##  6    20 0 to 3     
##  7    21 0 to 3     
##  8    27 0 to 3     
##  9    31 4 to 5     
## 10    55 4 to 5     
## # … with 37 more rows
dlt1nodeslevel3 <- filter(dlt1nodes2, experience2=="11 to 20")
dlt1nodeslevel3
## # A tibble: 150 × 2
##      UID experience2
##    <dbl> <chr>      
##  1     3 11 to 20   
##  2     4 11 to 20   
##  3     7 11 to 20   
##  4    10 11 to 20   
##  5    13 11 to 20   
##  6    24 11 to 20   
##  7    25 11 to 20   
##  8    29 11 to 20   
##  9    35 11 to 20   
## 10    36 11 to 20   
## # … with 140 more rows
dlt1nodeslevel4 <- filter(dlt1nodes2, experience2=="20+")
dlt1nodeslevel4
## # A tibble: 179 × 2
##      UID experience2
##    <dbl> <chr>      
##  1     5 20+        
##  2    11 20+        
##  3    12 20+        
##  4    15 20+        
##  5    19 20+        
##  6    23 20+        
##  7    26 20+        
##  8    28 20+        
##  9    30 20+        
## 10    33 20+        
## # … with 169 more rows
joined_datasets <- full_join(dlt1nodeslevel1, dlt1nodeslevel2)
## Joining, by = c("UID", "experience2")
joined_datasets
## # A tibble: 115 × 2
##      UID experience2
##    <dbl> <chr>      
##  1     6 4 to 5     
##  2    14 0 to 3     
##  3    16 0 to 3     
##  4    17 0 to 3     
##  5    18 4 to 5     
##  6    20 0 to 3     
##  7    21 0 to 3     
##  8    27 0 to 3     
##  9    31 4 to 5     
## 10    55 4 to 5     
## # … with 105 more rows
joined_datasets <- full_join(joined_datasets, dlt1nodeslevel3)
## Joining, by = c("UID", "experience2")
joined_datasets
## # A tibble: 265 × 2
##      UID experience2
##    <dbl> <chr>      
##  1     6 4 to 5     
##  2    14 0 to 3     
##  3    16 0 to 3     
##  4    17 0 to 3     
##  5    18 4 to 5     
##  6    20 0 to 3     
##  7    21 0 to 3     
##  8    27 0 to 3     
##  9    31 4 to 5     
## 10    55 4 to 5     
## # … with 255 more rows
joined_datasets <- full_join(joined_datasets, dlt1nodeslevel4)
## Joining, by = c("UID", "experience2")
joined_datasets
## # A tibble: 444 × 2
##      UID experience2
##    <dbl> <chr>      
##  1     6 4 to 5     
##  2    14 0 to 3     
##  3    16 0 to 3     
##  4    17 0 to 3     
##  5    18 4 to 5     
##  6    20 0 to 3     
##  7    21 0 to 3     
##  8    27 0 to 3     
##  9    31 4 to 5     
## 10    55 4 to 5     
## # … with 434 more rows
discussion_edges_list <- inner_join(joined_datasets, dlt1edges4)
## Joining, by = "UID"
discussion_edges_list
## # A tibble: 327 × 3
##      UID experience2 Receiver
##    <dbl> <chr>          <dbl>
##  1    14 0 to 3           193
##  2    17 0 to 3           444
##  3    18 4 to 5           444
##  4    27 0 to 3            66
##  5    27 0 to 3           356
##  6    59 0 to 3           444
##  7    62 0 to 3           444
##  8    79 4 to 5            88
##  9    88 0 to 3           444
## 10   110 4 to 5           444
## # … with 317 more rows
discussion_edges_list2 <- discussion_edges_list |>
   mutate(experience_level = case_when(experience2 == "0 to 3" ~ 1,
                   experience2 == "4 to 5" ~ 1,
                   experience2 == "6 to 10" ~ 2,
                   experience2 == "11 to 20" ~ 3,
                   experience2 == "20+" ~ 4))
discussion_edges_list2
## # A tibble: 327 × 4
##      UID experience2 Receiver experience_level
##    <dbl> <chr>          <dbl>            <dbl>
##  1    14 0 to 3           193                1
##  2    17 0 to 3           444                1
##  3    18 4 to 5           444                1
##  4    27 0 to 3            66                1
##  5    27 0 to 3           356                1
##  6    59 0 to 3           444                1
##  7    62 0 to 3           444                1
##  8    79 4 to 5            88                1
##  9    88 0 to 3           444                1
## 10   110 4 to 5           444                1
## # … with 317 more rows
discussion_edges_list2 <- select(discussion_edges_list2, "UID", "Receiver", "experience_level")
discussion_edges_list2
## # A tibble: 327 × 3
##      UID Receiver experience_level
##    <dbl>    <dbl>            <dbl>
##  1    14      193                1
##  2    17      444                1
##  3    18      444                1
##  4    27       66                1
##  5    27      356                1
##  6    59      444                1
##  7    62      444                1
##  8    79       88                1
##  9    88      444                1
## 10   110      444                1
## # … with 317 more rows

We now have a dataset containing just the 327 threads in the “Most important change” discussion. In order to create a node list for this discussion, without any duplicates, we will need to extract the appropriate data using the select() function to create a dataset with only information about the senders and then filtering out duplicates. In order to do this, we will use the distinct() function.

discussion_node_list <- discussion_edges_list2 |>
  select(UID, experience_level) |>
  distinct()
  
discussion_node_list
## # A tibble: 246 × 2
##      UID experience_level
##    <dbl>            <dbl>
##  1    14                1
##  2    17                1
##  3    18                1
##  4    27                1
##  5    59                1
##  6    62                1
##  7    79                1
##  8    88                1
##  9   110                1
## 10   157                1
## # … with 236 more rows

From this, we see that there are 246 unique participants (i.e. Senders) in the “Most important change” discussion.

Convert datasets to matrices
node_matrix <- discussion_node_list |> 
  as.matrix()
node_matrix
##        UID experience_level
##   [1,]  14                1
##   [2,]  17                1
##   [3,]  18                1
##   [4,]  27                1
##   [5,]  59                1
##   [6,]  62                1
##   [7,]  79                1
##   [8,]  88                1
##   [9,] 110                1
##  [10,] 157                1
##  [11,] 163                1
##  [12,] 196                1
##  [13,] 205                1
##  [14,] 241                1
##  [15,] 242                1
##  [16,] 245                1
##  [17,] 248                1
##  [18,] 288                1
##  [19,] 309                1
##  [20,] 343                1
##  [21,] 360                1
##  [22,] 367                1
##  [23,] 397                1
##  [24,] 405                1
##  [25,]   1                2
##  [26,]   8                2
##  [27,]  22                2
##  [28,]  63                2
##  [29,]  82                2
##  [30,]  94                2
##  [31,] 118                2
##  [32,] 128                2
##  [33,] 132                2
##  [34,] 134                2
##  [35,] 149                2
##  [36,] 150                2
##  [37,] 170                2
##  [38,] 181                2
##  [39,] 201                2
##  [40,] 214                2
##  [41,] 218                2
##  [42,] 221                2
##  [43,] 240                2
##  [44,] 243                2
##  [45,] 266                2
##  [46,] 284                2
##  [47,] 295                2
##  [48,] 304                2
##  [49,] 322                2
##  [50,] 333                2
##  [51,] 346                2
##  [52,] 373                2
##  [53,] 378                2
##  [54,] 390                2
##  [55,] 394                2
##  [56,] 398                2
##  [57,] 404                2
##  [58,]   4                3
##  [59,]   7                3
##  [60,]  24                3
##  [61,]  25                3
##  [62,]  35                3
##  [63,]  36                3
##  [64,]  39                3
##  [65,]  44                3
##  [66,]  45                3
##  [67,]  54                3
##  [68,]  60                3
##  [69,]  64                3
##  [70,]  65                3
##  [71,]  66                3
##  [72,]  72                3
##  [73,]  87                3
##  [74,]  91                3
##  [75,]  96                3
##  [76,]  98                3
##  [77,] 103                3
##  [78,] 105                3
##  [79,] 107                3
##  [80,] 115                3
##  [81,] 121                3
##  [82,] 123                3
##  [83,] 126                3
##  [84,] 127                3
##  [85,] 129                3
##  [86,] 131                3
##  [87,] 138                3
##  [88,] 139                3
##  [89,] 142                3
##  [90,] 143                3
##  [91,] 144                3
##  [92,] 147                3
##  [93,] 151                3
##  [94,] 152                3
##  [95,] 159                3
##  [96,] 164                3
##  [97,] 171                3
##  [98,] 172                3
##  [99,] 173                3
## [100,] 176                3
## [101,] 178                3
## [102,] 179                3
## [103,] 183                3
## [104,] 185                3
## [105,] 193                3
## [106,] 198                3
## [107,] 200                3
## [108,] 202                3
## [109,] 204                3
## [110,] 206                3
## [111,] 213                3
## [112,] 223                3
## [113,] 235                3
## [114,] 247                3
## [115,] 249                3
## [116,] 255                3
## [117,] 261                3
## [118,] 271                3
## [119,] 283                3
## [120,] 300                3
## [121,] 301                3
## [122,] 314                3
## [123,] 318                3
## [124,] 319                3
## [125,] 329                3
## [126,] 331                3
## [127,] 347                3
## [128,] 350                3
## [129,] 354                3
## [130,] 355                3
## [131,] 356                3
## [132,] 362                3
## [133,] 365                3
## [134,] 366                3
## [135,] 368                3
## [136,] 371                3
## [137,] 374                3
## [138,] 376                3
## [139,] 377                3
## [140,] 379                3
## [141,] 381                3
## [142,] 382                3
## [143,] 386                3
## [144,] 388                3
## [145,] 393                3
## [146,] 395                3
## [147,] 396                3
## [148,] 399                3
## [149,] 401                3
## [150,] 402                3
## [151,] 406                3
## [152,] 414                3
## [153,] 416                3
## [154,]   5                4
## [155,]  11                4
## [156,]  15                4
## [157,]  19                4
## [158,]  30                4
## [159,]  49                4
## [160,]  50                4
## [161,]  61                4
## [162,]  69                4
## [163,]  71                4
## [164,]  75                4
## [165,]  78                4
## [166,]  81                4
## [167,]  83                4
## [168,]  89                4
## [169,]  90                4
## [170,] 102                4
## [171,] 104                4
## [172,] 109                4
## [173,] 120                4
## [174,] 133                4
## [175,] 136                4
## [176,] 137                4
## [177,] 141                4
## [178,] 154                4
## [179,] 156                4
## [180,] 158                4
## [181,] 160                4
## [182,] 165                4
## [183,] 167                4
## [184,] 169                4
## [185,] 188                4
## [186,] 192                4
## [187,] 194                4
## [188,] 195                4
## [189,] 203                4
## [190,] 217                4
## [191,] 219                4
## [192,] 226                4
## [193,] 230                4
## [194,] 232                4
## [195,] 246                4
## [196,] 253                4
## [197,] 254                4
## [198,] 256                4
## [199,] 258                4
## [200,] 260                4
## [201,] 265                4
## [202,] 276                4
## [203,] 279                4
## [204,] 280                4
## [205,] 281                4
## [206,] 296                4
## [207,] 297                4
## [208,] 298                4
## [209,] 299                4
## [210,] 302                4
## [211,] 303                4
## [212,] 305                4
## [213,] 317                4
## [214,] 320                4
## [215,] 330                4
## [216,] 335                4
## [217,] 337                4
## [218,] 338                4
## [219,] 339                4
## [220,] 340                4
## [221,] 342                4
## [222,] 344                4
## [223,] 345                4
## [224,] 357                4
## [225,] 358                4
## [226,] 361                4
## [227,] 363                4
## [228,] 364                4
## [229,] 369                4
## [230,] 370                4
## [231,] 372                4
## [232,] 375                4
## [233,] 380                4
## [234,] 383                4
## [235,] 385                4
## [236,] 387                4
## [237,] 389                4
## [238,] 391                4
## [239,] 392                4
## [240,] 400                4
## [241,] 403                4
## [242,] 407                4
## [243,] 408                4
## [244,] 415                4
## [245,] 444                4
## [246,] 445                4
class(node_matrix)
## [1] "matrix" "array"
discussion_edges_list2
## # A tibble: 327 × 3
##      UID Receiver experience_level
##    <dbl>    <dbl>            <dbl>
##  1    14      193                1
##  2    17      444                1
##  3    18      444                1
##  4    27       66                1
##  5    27      356                1
##  6    59      444                1
##  7    62      444                1
##  8    79       88                1
##  9    88      444                1
## 10   110      444                1
## # … with 317 more rows
edges_matrix <- discussion_edges_list2 |>
  select("UID", "Receiver") |>
  as.matrix()
edges_matrix
##        UID Receiver
##   [1,]  14      193
##   [2,]  17      444
##   [3,]  18      444
##   [4,]  27       66
##   [5,]  27      356
##   [6,]  59      444
##   [7,]  62      444
##   [8,]  79       88
##   [9,]  88      444
##  [10,] 110      444
##  [11,] 157      444
##  [12,] 163      444
##  [13,] 196      444
##  [14,] 205      206
##  [15,] 241      444
##  [16,] 242      444
##  [17,] 245      444
##  [18,] 248      444
##  [19,] 288      342
##  [20,] 309       54
##  [21,] 343      444
##  [22,] 360      444
##  [23,] 367      444
##  [24,] 397      444
##  [25,] 405      444
##  [26,]   1      444
##  [27,]   1      144
##  [28,]   1      198
##  [29,]   8      444
##  [30,]  22      444
##  [31,]  63      444
##  [32,]  63      444
##  [33,]  82      444
##  [34,]  94      444
##  [35,] 118      340
##  [36,] 128      444
##  [37,] 132      219
##  [38,] 134      444
##  [39,] 149      150
##  [40,] 150      444
##  [41,] 150      444
##  [42,] 170      444
##  [43,] 181      444
##  [44,] 201      444
##  [45,] 214      444
##  [46,] 218       15
##  [47,] 221      444
##  [48,] 240      444
##  [49,] 243      444
##  [50,] 266      346
##  [51,] 284      444
##  [52,] 295      444
##  [53,] 304      444
##  [54,] 322      444
##  [55,] 333      444
##  [56,] 346      444
##  [57,] 373      444
##  [58,] 378      444
##  [59,] 390      444
##  [60,] 394      444
##  [61,] 398      444
##  [62,] 404      444
##  [63,]   4      444
##  [64,]   7      444
##  [65,]  24      444
##  [66,]  25      444
##  [67,]  35      444
##  [68,]  36      305
##  [69,]  36      345
##  [70,]  39      444
##  [71,]  44      444
##  [72,]  45      444
##  [73,]  54      444
##  [74,]  54       15
##  [75,]  54      152
##  [76,]  54      138
##  [77,]  54      339
##  [78,]  54      444
##  [79,]  60      358
##  [80,]  64      444
##  [81,]  65      444
##  [82,]  66      356
##  [83,]  66      444
##  [84,]  72      444
##  [85,]  87      444
##  [86,]  87      444
##  [87,]  91      444
##  [88,]  91      219
##  [89,]  96      342
##  [90,]  96      295
##  [91,]  96      444
##  [92,]  98      444
##  [93,] 103      444
##  [94,] 105      444
##  [95,] 107      444
##  [96,] 107      105
##  [97,] 107      193
##  [98,] 115      444
##  [99,] 121      345
## [100,] 123      151
## [101,] 126      444
## [102,] 127      444
## [103,] 129      444
## [104,] 131      444
## [105,] 138      444
## [106,] 138       54
## [107,] 138      300
## [108,] 139      444
## [109,] 139       15
## [110,] 139      138
## [111,] 142      295
## [112,] 143      444
## [113,] 144      444
## [114,] 147      444
## [115,] 151      150
## [116,] 152      444
## [117,] 159      158
## [118,] 159      218
## [119,] 164      103
## [120,] 171      444
## [121,] 172      444
## [122,] 172      444
## [123,] 173      444
## [124,] 173      342
## [125,] 176      444
## [126,] 178      444
## [127,] 178      219
## [128,] 178      254
## [129,] 179      444
## [130,] 183      219
## [131,] 185       54
## [132,] 185      444
## [133,] 193      195
## [134,] 193      444
## [135,] 193      444
## [136,] 198      152
## [137,] 200      444
## [138,] 202      301
## [139,] 202        1
## [140,] 204      444
## [141,] 206      444
## [142,] 206      329
## [143,] 213       60
## [144,] 223      444
## [145,] 235      444
## [146,] 247      444
## [147,] 249      444
## [148,] 249      444
## [149,] 255      444
## [150,] 255      256
## [151,] 261      444
## [152,] 271      444
## [153,] 283      284
## [154,] 300      444
## [155,] 301      444
## [156,] 314      444
## [157,] 318      444
## [158,] 318      444
## [159,] 319      218
## [160,] 329      444
## [161,] 329      444
## [162,] 329      205
## [163,] 331      444
## [164,] 347      444
## [165,] 350      444
## [166,] 354      444
## [167,] 355      444
## [168,] 355      444
## [169,] 356      444
## [170,] 362      444
## [171,] 365      444
## [172,] 366      444
## [173,] 366      444
## [174,] 368      444
## [175,] 371      444
## [176,] 374      444
## [177,] 376      444
## [178,] 376      444
## [179,] 377      444
## [180,] 379      444
## [181,] 381      444
## [182,] 382      444
## [183,] 386      444
## [184,] 388      444
## [185,] 393      444
## [186,] 395      444
## [187,] 396      444
## [188,] 399      444
## [189,] 401      444
## [190,] 402      444
## [191,] 406      444
## [192,] 414      444
## [193,] 416      445
## [194,]   5      444
## [195,]  11      444
## [196,]  11      444
## [197,]  15      444
## [198,]  19      444
## [199,]  19      219
## [200,]  30      444
## [201,]  30      444
## [202,]  30      444
## [203,]  30      444
## [204,]  49      318
## [205,]  49      156
## [206,]  49      444
## [207,]  50      301
## [208,]  61      444
## [209,]  69      444
## [210,]  71      444
## [211,]  71      445
## [212,]  71       72
## [213,]  75      444
## [214,]  78      444
## [215,]  81       71
## [216,]  81      444
## [217,]  83      444
## [218,]  89       88
## [219,]  90      444
## [220,] 102      444
## [221,] 104      256
## [222,] 109      444
## [223,] 120      444
## [224,] 133      444
## [225,] 136      444
## [226,] 137      444
## [227,] 141      444
## [228,] 154      301
## [229,] 154      444
## [230,] 156      219
## [231,] 158      444
## [232,] 158      152
## [233,] 158      444
## [234,] 160      444
## [235,] 165      444
## [236,] 167      444
## [237,] 169      444
## [238,] 188      444
## [239,] 192      444
## [240,] 194      444
## [241,] 195      444
## [242,] 203      444
## [243,] 217      444
## [244,] 219      444
## [245,] 219       19
## [246,] 219      253
## [247,] 219      444
## [248,] 219      281
## [249,] 219      338
## [250,] 219      178
## [251,] 219      329
## [252,] 226      444
## [253,] 230      344
## [254,] 232      444
## [255,] 246      444
## [256,] 253      444
## [257,] 254      249
## [258,] 256      219
## [259,] 256      281
## [260,] 258      444
## [261,] 258      444
## [262,] 260      261
## [263,] 265      444
## [264,] 276      444
## [265,] 279      444
## [266,] 280      219
## [267,] 280      444
## [268,] 280      444
## [269,] 281      219
## [270,] 296      295
## [271,] 297      444
## [272,] 298      444
## [273,] 299      444
## [274,] 302      444
## [275,] 302      444
## [276,] 303      444
## [277,] 305      444
## [278,] 317      444
## [279,] 320      176
## [280,] 320      444
## [281,] 330      444
## [282,] 335      444
## [283,] 337      444
## [284,] 338      444
## [285,] 338      444
## [286,] 338      444
## [287,] 339      444
## [288,] 340      343
## [289,] 340      444
## [290,] 342      444
## [291,] 344      444
## [292,] 345      444
## [293,] 357      444
## [294,] 358      444
## [295,] 361      193
## [296,] 361      105
## [297,] 363      444
## [298,] 364      444
## [299,] 369      444
## [300,] 370       69
## [301,] 372      444
## [302,] 375      444
## [303,] 380      444
## [304,] 383      444
## [305,] 385      444
## [306,] 387      444
## [307,] 389      444
## [308,] 391      444
## [309,] 392      444
## [310,] 400      444
## [311,] 403      444
## [312,] 407      444
## [313,] 408      444
## [314,] 415      444
## [315,] 444      256
## [316,] 444      253
## [317,] 444      444
## [318,] 444      141
## [319,] 444      444
## [320,] 445      318
## [321,] 445      301
## [322,] 445      444
## [323,] 445      444
## [324,] 445      444
## [325,] 445      444
## [326,] 445      444
## [327,] 445      136
class(edges_matrix)
## [1] "matrix" "array"
Convert to graph object
library(tidygraph)

transform(discussion_edges_list2, experience_level = as.numeric(experience_level))
##     UID Receiver experience_level
## 1    14      193                1
## 2    17      444                1
## 3    18      444                1
## 4    27       66                1
## 5    27      356                1
## 6    59      444                1
## 7    62      444                1
## 8    79       88                1
## 9    88      444                1
## 10  110      444                1
## 11  157      444                1
## 12  163      444                1
## 13  196      444                1
## 14  205      206                1
## 15  241      444                1
## 16  242      444                1
## 17  245      444                1
## 18  248      444                1
## 19  288      342                1
## 20  309       54                1
## 21  343      444                1
## 22  360      444                1
## 23  367      444                1
## 24  397      444                1
## 25  405      444                1
## 26    1      444                2
## 27    1      144                2
## 28    1      198                2
## 29    8      444                2
## 30   22      444                2
## 31   63      444                2
## 32   63      444                2
## 33   82      444                2
## 34   94      444                2
## 35  118      340                2
## 36  128      444                2
## 37  132      219                2
## 38  134      444                2
## 39  149      150                2
## 40  150      444                2
## 41  150      444                2
## 42  170      444                2
## 43  181      444                2
## 44  201      444                2
## 45  214      444                2
## 46  218       15                2
## 47  221      444                2
## 48  240      444                2
## 49  243      444                2
## 50  266      346                2
## 51  284      444                2
## 52  295      444                2
## 53  304      444                2
## 54  322      444                2
## 55  333      444                2
## 56  346      444                2
## 57  373      444                2
## 58  378      444                2
## 59  390      444                2
## 60  394      444                2
## 61  398      444                2
## 62  404      444                2
## 63    4      444                3
## 64    7      444                3
## 65   24      444                3
## 66   25      444                3
## 67   35      444                3
## 68   36      305                3
## 69   36      345                3
## 70   39      444                3
## 71   44      444                3
## 72   45      444                3
## 73   54      444                3
## 74   54       15                3
## 75   54      152                3
## 76   54      138                3
## 77   54      339                3
## 78   54      444                3
## 79   60      358                3
## 80   64      444                3
## 81   65      444                3
## 82   66      356                3
## 83   66      444                3
## 84   72      444                3
## 85   87      444                3
## 86   87      444                3
## 87   91      444                3
## 88   91      219                3
## 89   96      342                3
## 90   96      295                3
## 91   96      444                3
## 92   98      444                3
## 93  103      444                3
## 94  105      444                3
## 95  107      444                3
## 96  107      105                3
## 97  107      193                3
## 98  115      444                3
## 99  121      345                3
## 100 123      151                3
## 101 126      444                3
## 102 127      444                3
## 103 129      444                3
## 104 131      444                3
## 105 138      444                3
## 106 138       54                3
## 107 138      300                3
## 108 139      444                3
## 109 139       15                3
## 110 139      138                3
## 111 142      295                3
## 112 143      444                3
## 113 144      444                3
## 114 147      444                3
## 115 151      150                3
## 116 152      444                3
## 117 159      158                3
## 118 159      218                3
## 119 164      103                3
## 120 171      444                3
## 121 172      444                3
## 122 172      444                3
## 123 173      444                3
## 124 173      342                3
## 125 176      444                3
## 126 178      444                3
## 127 178      219                3
## 128 178      254                3
## 129 179      444                3
## 130 183      219                3
## 131 185       54                3
## 132 185      444                3
## 133 193      195                3
## 134 193      444                3
## 135 193      444                3
## 136 198      152                3
## 137 200      444                3
## 138 202      301                3
## 139 202        1                3
## 140 204      444                3
## 141 206      444                3
## 142 206      329                3
## 143 213       60                3
## 144 223      444                3
## 145 235      444                3
## 146 247      444                3
## 147 249      444                3
## 148 249      444                3
## 149 255      444                3
## 150 255      256                3
## 151 261      444                3
## 152 271      444                3
## 153 283      284                3
## 154 300      444                3
## 155 301      444                3
## 156 314      444                3
## 157 318      444                3
## 158 318      444                3
## 159 319      218                3
## 160 329      444                3
## 161 329      444                3
## 162 329      205                3
## 163 331      444                3
## 164 347      444                3
## 165 350      444                3
## 166 354      444                3
## 167 355      444                3
## 168 355      444                3
## 169 356      444                3
## 170 362      444                3
## 171 365      444                3
## 172 366      444                3
## 173 366      444                3
## 174 368      444                3
## 175 371      444                3
## 176 374      444                3
## 177 376      444                3
## 178 376      444                3
## 179 377      444                3
## 180 379      444                3
## 181 381      444                3
## 182 382      444                3
## 183 386      444                3
## 184 388      444                3
## 185 393      444                3
## 186 395      444                3
## 187 396      444                3
## 188 399      444                3
## 189 401      444                3
## 190 402      444                3
## 191 406      444                3
## 192 414      444                3
## 193 416      445                3
## 194   5      444                4
## 195  11      444                4
## 196  11      444                4
## 197  15      444                4
## 198  19      444                4
## 199  19      219                4
## 200  30      444                4
## 201  30      444                4
## 202  30      444                4
## 203  30      444                4
## 204  49      318                4
## 205  49      156                4
## 206  49      444                4
## 207  50      301                4
## 208  61      444                4
## 209  69      444                4
## 210  71      444                4
## 211  71      445                4
## 212  71       72                4
## 213  75      444                4
## 214  78      444                4
## 215  81       71                4
## 216  81      444                4
## 217  83      444                4
## 218  89       88                4
## 219  90      444                4
## 220 102      444                4
## 221 104      256                4
## 222 109      444                4
## 223 120      444                4
## 224 133      444                4
## 225 136      444                4
## 226 137      444                4
## 227 141      444                4
## 228 154      301                4
## 229 154      444                4
## 230 156      219                4
## 231 158      444                4
## 232 158      152                4
## 233 158      444                4
## 234 160      444                4
## 235 165      444                4
## 236 167      444                4
## 237 169      444                4
## 238 188      444                4
## 239 192      444                4
## 240 194      444                4
## 241 195      444                4
## 242 203      444                4
## 243 217      444                4
## 244 219      444                4
## 245 219       19                4
## 246 219      253                4
## 247 219      444                4
## 248 219      281                4
## 249 219      338                4
## 250 219      178                4
## 251 219      329                4
## 252 226      444                4
## 253 230      344                4
## 254 232      444                4
## 255 246      444                4
## 256 253      444                4
## 257 254      249                4
## 258 256      219                4
## 259 256      281                4
## 260 258      444                4
## 261 258      444                4
## 262 260      261                4
## 263 265      444                4
## 264 276      444                4
## 265 279      444                4
## 266 280      219                4
## 267 280      444                4
## 268 280      444                4
## 269 281      219                4
## 270 296      295                4
## 271 297      444                4
## 272 298      444                4
## 273 299      444                4
## 274 302      444                4
## 275 302      444                4
## 276 303      444                4
## 277 305      444                4
## 278 317      444                4
## 279 320      176                4
## 280 320      444                4
## 281 330      444                4
## 282 335      444                4
## 283 337      444                4
## 284 338      444                4
## 285 338      444                4
## 286 338      444                4
## 287 339      444                4
## 288 340      343                4
## 289 340      444                4
## 290 342      444                4
## 291 344      444                4
## 292 345      444                4
## 293 357      444                4
## 294 358      444                4
## 295 361      193                4
## 296 361      105                4
## 297 363      444                4
## 298 364      444                4
## 299 369      444                4
## 300 370       69                4
## 301 372      444                4
## 302 375      444                4
## 303 380      444                4
## 304 383      444                4
## 305 385      444                4
## 306 387      444                4
## 307 389      444                4
## 308 391      444                4
## 309 392      444                4
## 310 400      444                4
## 311 403      444                4
## 312 407      444                4
## 313 408      444                4
## 314 415      444                4
## 315 444      256                4
## 316 444      253                4
## 317 444      444                4
## 318 444      141                4
## 319 444      444                4
## 320 445      318                4
## 321 445      301                4
## 322 445      444                4
## 323 445      444                4
## 324 445      444                4
## 325 445      444                4
## 326 445      444                4
## 327 445      136                4
transform(discussion_node_list, experience_level = as.numeric(experience_level))
##     UID experience_level
## 1    14                1
## 2    17                1
## 3    18                1
## 4    27                1
## 5    59                1
## 6    62                1
## 7    79                1
## 8    88                1
## 9   110                1
## 10  157                1
## 11  163                1
## 12  196                1
## 13  205                1
## 14  241                1
## 15  242                1
## 16  245                1
## 17  248                1
## 18  288                1
## 19  309                1
## 20  343                1
## 21  360                1
## 22  367                1
## 23  397                1
## 24  405                1
## 25    1                2
## 26    8                2
## 27   22                2
## 28   63                2
## 29   82                2
## 30   94                2
## 31  118                2
## 32  128                2
## 33  132                2
## 34  134                2
## 35  149                2
## 36  150                2
## 37  170                2
## 38  181                2
## 39  201                2
## 40  214                2
## 41  218                2
## 42  221                2
## 43  240                2
## 44  243                2
## 45  266                2
## 46  284                2
## 47  295                2
## 48  304                2
## 49  322                2
## 50  333                2
## 51  346                2
## 52  373                2
## 53  378                2
## 54  390                2
## 55  394                2
## 56  398                2
## 57  404                2
## 58    4                3
## 59    7                3
## 60   24                3
## 61   25                3
## 62   35                3
## 63   36                3
## 64   39                3
## 65   44                3
## 66   45                3
## 67   54                3
## 68   60                3
## 69   64                3
## 70   65                3
## 71   66                3
## 72   72                3
## 73   87                3
## 74   91                3
## 75   96                3
## 76   98                3
## 77  103                3
## 78  105                3
## 79  107                3
## 80  115                3
## 81  121                3
## 82  123                3
## 83  126                3
## 84  127                3
## 85  129                3
## 86  131                3
## 87  138                3
## 88  139                3
## 89  142                3
## 90  143                3
## 91  144                3
## 92  147                3
## 93  151                3
## 94  152                3
## 95  159                3
## 96  164                3
## 97  171                3
## 98  172                3
## 99  173                3
## 100 176                3
## 101 178                3
## 102 179                3
## 103 183                3
## 104 185                3
## 105 193                3
## 106 198                3
## 107 200                3
## 108 202                3
## 109 204                3
## 110 206                3
## 111 213                3
## 112 223                3
## 113 235                3
## 114 247                3
## 115 249                3
## 116 255                3
## 117 261                3
## 118 271                3
## 119 283                3
## 120 300                3
## 121 301                3
## 122 314                3
## 123 318                3
## 124 319                3
## 125 329                3
## 126 331                3
## 127 347                3
## 128 350                3
## 129 354                3
## 130 355                3
## 131 356                3
## 132 362                3
## 133 365                3
## 134 366                3
## 135 368                3
## 136 371                3
## 137 374                3
## 138 376                3
## 139 377                3
## 140 379                3
## 141 381                3
## 142 382                3
## 143 386                3
## 144 388                3
## 145 393                3
## 146 395                3
## 147 396                3
## 148 399                3
## 149 401                3
## 150 402                3
## 151 406                3
## 152 414                3
## 153 416                3
## 154   5                4
## 155  11                4
## 156  15                4
## 157  19                4
## 158  30                4
## 159  49                4
## 160  50                4
## 161  61                4
## 162  69                4
## 163  71                4
## 164  75                4
## 165  78                4
## 166  81                4
## 167  83                4
## 168  89                4
## 169  90                4
## 170 102                4
## 171 104                4
## 172 109                4
## 173 120                4
## 174 133                4
## 175 136                4
## 176 137                4
## 177 141                4
## 178 154                4
## 179 156                4
## 180 158                4
## 181 160                4
## 182 165                4
## 183 167                4
## 184 169                4
## 185 188                4
## 186 192                4
## 187 194                4
## 188 195                4
## 189 203                4
## 190 217                4
## 191 219                4
## 192 226                4
## 193 230                4
## 194 232                4
## 195 246                4
## 196 253                4
## 197 254                4
## 198 256                4
## 199 258                4
## 200 260                4
## 201 265                4
## 202 276                4
## 203 279                4
## 204 280                4
## 205 281                4
## 206 296                4
## 207 297                4
## 208 298                4
## 209 299                4
## 210 302                4
## 211 303                4
## 212 305                4
## 213 317                4
## 214 320                4
## 215 330                4
## 216 335                4
## 217 337                4
## 218 338                4
## 219 339                4
## 220 340                4
## 221 342                4
## 222 344                4
## 223 345                4
## 224 357                4
## 225 358                4
## 226 361                4
## 227 363                4
## 228 364                4
## 229 369                4
## 230 370                4
## 231 372                4
## 232 375                4
## 233 380                4
## 234 383                4
## 235 385                4
## 236 387                4
## 237 389                4
## 238 391                4
## 239 392                4
## 240 400                4
## 241 403                4
## 242 407                4
## 243 408                4
## 244 415                4
## 245 444                4
## 246 445                4
discussion_graph <- graph_from_data_frame(discussion_edges_list2, vertices = discussion_node_list) |> as_tbl_graph()

discussion_graph
## # A tbl_graph: 246 nodes and 327 edges
## #
## # A directed multigraph with 1 component
## #
## # Node Data: 246 × 2 (active)
##   name  experience_level
##   <chr>            <dbl>
## 1 14                   1
## 2 17                   1
## 3 18                   1
## 4 27                   1
## 5 59                   1
## 6 62                   1
## # … with 240 more rows
## #
## # Edge Data: 327 × 3
##    from    to experience_level
##   <int> <int>            <dbl>
## 1     1   105                1
## 2     2   245                1
## 3     3   245                1
## # … with 324 more rows

Explore

Create a Sociogram

discussion_graph |>
  ggraph(layout = "star") + 
  geom_node_point(aes(color = "Sender")) +
  geom_edge_link() + 
  theme_dark() +
  labs(title = "Most Important Change Network")

As the sociogram above demonstrates, nearly all of the ties in the “Most important change” discussion were sent to UID 444, who was a facilitator. This created the dark cloud on the right side of the sociogram. Few exchanges occurred between students in the class.

Model

Run ERGM Correlation

In order to complete the ERGM analysis, I have to convert my data matrices to dichotomized matricies since ERGM does not accept valued data. Therefore, I will use the matrices that I created in the “Wrangle” section and dichotomize them.

discussion_network <- as.network(discussion_edges_list2,
                             vertices = discussion_node_list, directed=TRUE, loops=TRUE, multiple=TRUE)

discussion_network
##  Network attributes:
##   vertices = 246 
##   directed = TRUE 
##   hyper = FALSE 
##   loops = TRUE 
##   multiple = TRUE 
##   bipartite = FALSE 
##   total edges= 327 
##     missing edges= 0 
##     non-missing edges= 327 
## 
##  Vertex attribute names: 
##     experience_level vertex.names 
## 
##  Edge attribute names: 
##     experience_level
ergm_1 <- ergm(discussion_network ~ edges +
                 nodefactor('experience_level'))
## [1] "Warning:  This network contains loops"
## Starting maximum pseudolikelihood estimation (MPLE):
## Evaluating the predictor and response matrix.
## Maximizing the pseudolikelihood.
## Finished MPLE.
## Stopping at the initial estimate.
## Evaluating log-likelihood at the estimate.
summary(ergm_1)
## Call:
## ergm(formula = discussion_network ~ edges + nodefactor("experience_level"))
## 
## Maximum Likelihood Results:
## 
##                               Estimate Std. Error MCMC % z value Pr(>|z|)    
## edges                          -6.7098     0.3675      0 -18.260   <1e-04 ***
## nodefactor.experience_level.2   0.1213     0.2385      0   0.509    0.611    
## nodefactor.experience_level.3   0.3037     0.2024      0   1.500    0.134    
## nodefactor.experience_level.4   1.1905     0.1933      0   6.159   <1e-04 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##      Null Deviance: 83893  on 60516  degrees of freedom
##  Residual Deviance:  3633  on 60512  degrees of freedom
##  
## AIC: 3641  BIC: 3677  (Smaller is better. MC Std. Err. = 0)

Narrative:

After running my analysis, the ERGM indicates that experience level does serve as a significant predictor of participation in the “Most important change” discussion thread. However, contrary to my prediction, it was actually experience level 4 that had the most significant predictive power (1.1905).

My key takeaways from completing this analysis were that there was little exchange in between students within this discussion thread. As the sociogram demonstrates, the overwhelming percentage of exchanges are sent to the facilitator. There are a few ties sent to other students, but the network as a whole is very directed towards one user—444.

If I were to continue this analysis, I would be interested to see if the same themes emerged with the data in the other discussion threads. Additionally, since there are timestamps associated with the ties, it would be interesting to see if students began to interact with one another more as the semester progressed. Finally, I would like to see if the predictive power of experience level proved true for either discussion thread and for the network as a whole.

References:

Carolan, B. V. (2014). Network data and statistical models. In Social network analysis and education: Theory, methods & applications (pp. 185-212). SAGE Publications, Inc., https://dx.doi.org/10.4135/9781452270104