Explain the differences among these figures. Do they all indicate that the data are white noise? All three plots indicate that the data is white noise. This is because none of the spikes are larger than the critical value range for any of the plots. For data with smaller number of samples, the ACF bars are taller than the data with larger number of samples. Because the data is randomly generated, they are independently and identically distributed, and that is why they should have autocorrelation of zero for all of its lags.
Why are the critical values at different distances from the mean of zero? Why are the autocorrelations different in each figure when they each refer to white noise?
The formula for the critical values is +/- 1.96/(sqrt(T - d)) where T is the sample size and d is the amount of difference used. As the sample size increases the critical values get smaller. This explains why the critical value region gets smaller (from left to right in the plot) as the sample size increases.
gafa_stock %>%
filter(Symbol == 'AMZN') %>%
autoplot(Close) +
labs(title='Amazon Closing Stock Prices')
gafa_stock %>%
filter(Symbol == 'AMZN') %>%
gg_tsdisplay(Close, plot_type = 'partial')
## Warning: Provided data has an irregular interval, results should be treated with
## caution. Computing ACF by observation.
## Warning: Provided data has an irregular interval, results should be treated with
## caution. Computing ACF by observation.
For a stationary data, the ACF usually drops very quickly to zero. For non-stationary data, the ACF decrease slowly and smoothly. In the ACF plot above, it is apparent that the ACF drop offs very slowly. In the price plot above, there are apparent trends throughout the time. Therefore it is not stationary.
gdp <- global_economy %>%
filter(Country == 'Turkey') %>%
select(Country, GDP)
lgdp <- gdp %>%
features(GDP, features = guerrero) %>%
pull(lambda_guerrero)
gdp %>%
mutate(GDP = box_cox(GDP, lgdp)) %>%
features(GDP, unitroot_ndiffs)
## # A tibble: 1 x 2
## Country ndiffs
## <fct> <int>
## 1 Turkey 1
takings <- aus_accommodation %>%
filter(State == 'Tasmania') %>%
select(State, Takings)
ltakings <- takings %>%
features(Takings, features = guerrero) %>%
pull(lambda_guerrero)
takings %>%
mutate(Takings = box_cox(Takings, ltakings)) %>%
features(Takings, unitroot_ndiffs)
## # A tibble: 1 x 2
## State ndiffs
## <chr> <int>
## 1 Tasmania 1
lsales <- souvenirs %>%
features(Sales, features = guerrero) %>%
pull(lambda_guerrero)
souvenirs %>%
mutate(Sales = box_cox(Sales, lsales)) %>%
features(Sales, unitroot_ndiffs)
## # A tibble: 1 x 1
## ndiffs
## <int>
## 1 1
set.seed(666)
myseries <- aus_retail %>%
filter(`Series ID` == sample(aus_retail$`Series ID`,1))
lturnover <- myseries %>%
features(Turnover, features = guerrero) %>%
pull(lambda_guerrero)
myseries %>%
mutate(Turnover = box_cox(Turnover, lturnover)) %>%
features(Turnover, unitroot_ndiffs)
## # A tibble: 1 x 3
## State Industry ndiffs
## <chr> <chr> <int>
## 1 New South Wales Hardware, building and garden supplies retailing 1
6.Simulate and plot some data from simple ARIMA models.
y <- numeric(100)
e <- rnorm(100)
for(i in 2:100)
y[i] <- 0.6*y[i-1] + e[i]
sim <- tsibble(idx = seq_len(100), y = y, index = idx)
sim %>%
autoplot()
## Plot variable not specified, automatically selected `.vars = y`
for(i in 2:100)
y[i] <- 0.9*y[i-1] + e[i]
sim <- tsibble(x = seq_len(100), y = y, index = x)
sim %>% autoplot()
## Plot variable not specified, automatically selected `.vars = y`
for(i in 2:100)
y[i] <- 1.5*y[i-1] + e[i]
sim <- tsibble(x = seq_len(100), y = y, index = x)
sim %>% autoplot()
## Plot variable not specified, automatically selected `.vars = y`
Increasing the ϕ1 reduces the randomness and forms a trend.
y <- numeric(100)
e <- rnorm(100)
for(i in 2:100)
y[i] <- 0.6*e[i-1] + e[i]
d.Produce a time plot for the series. How does the plot change as you change θ1?
sim <- tsibble(x = seq_len(100), y = y, index = x)
sim %>%
autoplot()
## Plot variable not specified, automatically selected `.vars = y`
for(i in 2:100)
y[i] <- 0.15*e[i-1] + e[i]
sim <- tsibble(x = seq_len(100), y = y, index = x)
sim %>%
autoplot()
## Plot variable not specified, automatically selected `.vars = y`
e. Generate data from an ARMA(1,1) model with ϕ1=0.6, θ1=0.6 and σ2=1.
p =0.6
t =0.6
s = 1
y1 <- ts(numeric(100))
e <- rnorm(1000, s)
for(i in 2:100)
y1[i] <- p*y1[i-1] + t *e[i-1] + e[i]
f.Generate data from an AR(2) model with ϕ1=−0.8, ϕ2=0.3 and σ2=1. (Note that these parameters will give a non-stationary series.)
p1 =0.6
p2 = 0.3
s <- 1
y2 <- ts(numeric(100))
e <- rnorm(100, s)
for(i in 3:100)
y2[i] <- p1*y2[i-1] + p2*y2[i-2] + e[i]
sim1 <- tsibble(x = seq_len(100), y = y1, index = x)
sim1 %>% autoplot()
## Plot variable not specified, automatically selected `.vars = y`
sim2 <- tsibble(x = seq_len(100), y = y2, index = x)
sim2 %>% autoplot()
## Plot variable not specified, automatically selected `.vars = y`
From above graphs it is visible that the AR(2) model produces a time series with a developing trend line.
7.Consider aus_airpassengers, the total number of passengers (in millions) from Australian air carriers for the period 1970-2011.
fit <- aus_airpassengers %>%
model(search = ARIMA(Passengers, stepwise = FALSE))
report(fit)
## Series: Passengers
## Model: ARIMA(0,2,1)
##
## Coefficients:
## ma1
## -0.8963
## s.e. 0.0594
##
## sigma^2 estimated as 4.308: log likelihood=-97.02
## AIC=198.04 AICc=198.32 BIC=201.65
fit %>%
gg_tsresiduals()
augment(fit) %>%
features(.innov, ljung_box, lag = 12, dof = 3)
## # A tibble: 1 x 3
## .model lb_stat lb_pvalue
## <chr> <dbl> <dbl>
## 1 search 7.79 0.555
fit %>%
forecast(h=12) %>%
autoplot(aus_airpassengers)
Write the model in terms of the backshift operator. \[(1-B)^2y_t=c -(1+\theta_1B)e_t\]
Plot forecasts from an ARIMA(0,1,0) model with drift and compare these to part a.
fit2 <- aus_airpassengers %>%
model(arima1 = ARIMA(Passengers ~ pdq(0,1,0)))
report(fit2)
## Series: Passengers
## Model: ARIMA(0,1,0) w/ drift
##
## Coefficients:
## constant
## 1.4191
## s.e. 0.3014
##
## sigma^2 estimated as 4.271: log likelihood=-98.16
## AIC=200.31 AICc=200.59 BIC=203.97
fit2 %>%
gg_tsresiduals()
augment(fit2) %>%
features(.innov, ljung_box, lag = 12, dof = 3)
## # A tibble: 1 x 3
## .model lb_stat lb_pvalue
## <chr> <dbl> <dbl>
## 1 arima1 7.75 0.560
fit2 %>%
forecast(h=12) %>%
autoplot(aus_airpassengers)
The above auto generated ARIMA model outperforms this newer model.
fit3 <- aus_airpassengers %>%
model(arima2 = ARIMA(Passengers ~ 0 + pdq(2,1,2)))
## Warning: 1 error encountered for arima2
## [1] non-stationary AR part from CSS
report(fit3)
## Series: Passengers
## Model: NULL model
## NULL model
glance(fit3)
## # A tibble: 0 x 1
## # ... with 1 variable: .model <chr>
Since it is a null model it does not produce any forecasts.
fit4 <- aus_airpassengers %>%
model(arima3 = ARIMA(Passengers ~ pdq(0,2,1)))
report(fit4)
## Series: Passengers
## Model: ARIMA(0,2,1)
##
## Coefficients:
## ma1
## -0.8963
## s.e. 0.0594
##
## sigma^2 estimated as 4.308: log likelihood=-97.02
## AIC=198.04 AICc=198.32 BIC=201.65
fit4 %>%
gg_tsresiduals()
augment(fit4) %>%
features(.innov, ljung_box, lag = 12, dof = 3)
## # A tibble: 1 x 3
## .model lb_stat lb_pvalue
## <chr> <dbl> <dbl>
## 1 arima3 7.79 0.555
fit4 %>%
forecast(h=12) %>%
autoplot(aus_airpassengers)
The above model is very similar to the auto generated ARIMA model.
8.For the United States GDP series (from global_economy):
gdp <- global_economy %>%
filter(Code == 'USA') %>%
select(Country, GDP)
lam <- gdp %>%
features(GDP, features = guerrero) %>%
pull(lambda_guerrero)
gdp <- gdp %>%
mutate(GDP = box_cox(GDP, lam))
fit <- gdp %>%
model(
arima = ARIMA(GDP, stepwise = FALSE, approx = FALSE))
report(fit)
## Series: GDP
## Model: ARIMA(1,1,0) w/ drift
##
## Coefficients:
## ar1 constant
## 0.4586 118.1822
## s.e. 0.1198 9.5047
##
## sigma^2 estimated as 5479: log likelihood=-325.32
## AIC=656.65 AICc=657.1 BIC=662.78
gdp %>%
features(GDP, unitroot_ndiffs)
## # A tibble: 1 x 2
## Country ndiffs
## <fct> <int>
## 1 United States 1
gdp %>%
gg_tsdisplay(GDP, plot_type = 'partial')
fit2 <- gdp %>%
model(arima2 = ARIMA(GDP ~ pdq(2,2,1)))
report(fit2)
## Series: GDP
## Model: ARIMA(2,2,1)
##
## Coefficients:
## ar1 ar2 ma1
## 0.3079 -0.0953 -0.7979
## s.e. 0.1850 0.1568 0.1437
##
## sigma^2 estimated as 5834: log likelihood=-321.06
## AIC=650.12 AICc=650.91 BIC=658.23
The above models show where the d = 2 and q = 1 as a ARIMA model - a similar model that the auto generated by the ARIMA model. I tested the other examples as well.
augment(fit) %>%
features(.innov, ljung_box, lag = 12, dof = 3)
## # A tibble: 1 x 4
## Country .model lb_stat lb_pvalue
## <fct> <chr> <dbl> <dbl>
## 1 United States arima 4.46 0.879
fit %>%
gg_tsresiduals()
The auto generated model has the lower AIC and BIC. The above test shows a high p - value indicating that the data is white noise. Furthermore, the ACF graph show that the spikes remain within boundaries.
fit %>%
forecast(h = 12) %>%
autoplot(gdp)
The above graph shows the forecast on the US GDP time series. The forecast looks reasonable because it is within reason on the time series.
global_economy %>%
filter(Code == 'USA') %>%
select(Country, GDP) %>%
model(
ETS(GDP)
) %>%
forecast(h = 12) %>%
autoplot(global_economy)
We can see from the above graph that with no transformations, the forecast using ETS() creates a forecast with a much wider confidence level.