Expected value:
Random variable: \(X(p,n)\)
Moment generating function: \(M_{x}(t) = E[e^{tx}]\)
\(\sum_{i=0}^{n} e^{tx} p(x)\)
Where \(p(x)\) is probability mass function: \(p(x) = {n \choose x} p^x (1-p)^{n-x}\)
Which we can rewrite as: \(\sum_{i=0}^{n} e^{tx} {n \choose x} p^x (1-p)^{n-x}\)
\(\sum_{i=0}^{n} {n \choose x} (e^tp)^x (1-p)^{n-x}\)
\(M_{x}(t) = (e^tp+1-p)^n\)
Take first derivative to obtain expected value:
\(M'(t) = n(e^tp+1-p)^{n-1}pe^t\)
Evaluate at zero:
\(M'(t) = n(e^0p+1-p)^{n-1}pe^0\)
Expected value: \(np\)
Variance:
Take second derivative:
\(M''(t) = n(n-1) (e^tp+1-p)^{n-2}pe^t + n(e^tp+1-p)^{n-1}pe^t\)
\(M''(0) = n(n-1)p^2 + np\)
Since variance is \(E[X^2] - E[X]^2\):
\(n(n-1)p^2+np-n^2p^2\)
Simplifies to:
Variance: \(np(1-p)\)
Exponential distribution:
\(f_{x}=\lambda e^{-\lambda x}, x>=0, \lambda > 0\)
\(M_{t} = E(e^{tx})\)
\(\int_{0}^\infty e^{tx} \lambda e^{-\lambda x} dx\)
\(\int_{0}^\infty e^{t-\lambda} x dx\)
\(\lambda [\frac{\lambda}{t-\lambda} e^{t-\lambda} x]_0^\infty\)
\(\lambda [0 - \frac{1}{t-\lambda}]\)
\(M_{x}(t) = \frac{\lambda}{\lambda-t}\)
Expected value:
Rewrite MGF as:
\(M_{x}(t) = \lambda(\lambda-t)^{-1}\)
Take first derivative:
\(M_{x}'(t) = -1 \lambda(\lambda-t)^{-2}(-1)\)
Evaluate at zero:
\(-1 \lambda(\lambda-0)^{-2}(-1)\)
Expected value: \(\frac{1}{\lambda}\)
Variance:
\(M_{x}''(t) = \frac{2\lambda}{(\lambda - t)^3}\)
Evaluate at zero:
\(M_{x}''(0) = \frac{2\lambda}{(\lambda - 0)^3}\)
\(M_{x}''(0) = \frac{2}{\lambda^2}\)
Since variance is \(E[X^2] - E[X]^2\):
\(\frac{2}{\lambda^2} - \frac{1}{\lambda^2}\)
Variance: \(\frac{1}{\lambda^2}\)