Suatu manipulasi data diartikan sebagai suatu proses perubahan data sesuai dengan aturan yang diterapkan. Adapun manipulasi data digunakan untuk melakukan prediksi data sehingga seseorang dapat membuat rencana untuk mencegah hal-hal yang tidak diinginkan.
library(readxl)
inflowbali <- read_excel(path = "InflowBali.xlsx")
## New names:
## * `` -> ...1
inflowbali
## # A tibble: 4 x 13
## ...1 Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019`
## <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 Bali Nus~ 10322. 14613. 17512. 20807. 23008. 30965. 30797. 33866. 38116.
## 2 2 Bali 6394. 8202. 5066. 11590. 13072. 17914. 16962. 18610. 21422.
## 3 3 Nusa Ten~ 1803. 3676. 7024. 5704. 6285. 8842. 8383. 9140. 9614.
## 4 4 Nusa Ten~ 2125. 2735. 5422. 3512. 3651. 4210. 5452. 6116. 7080.
## # ... with 2 more variables: `2020` <dbl>, `2021` <dbl>
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.6 v dplyr 1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
inflowbali2015 <- select(inflowbali, '2015')
inflowbali2015
## # A tibble: 4 x 1
## `2015`
## <dbl>
## 1 23008.
## 2 13072.
## 3 6285.
## 4 3651.
library(tidyverse)
balinon2015 <- select(inflowbali, -'2015')
balinon2015
## # A tibble: 4 x 12
## ...1 Provinsi `2011` `2012` `2013` `2014` `2016` `2017` `2018` `2019` `2020`
## <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 Bali Nus~ 10322. 14613. 17512. 20807. 30965. 30797. 33866. 38116. 29400.
## 2 2 Bali 6394. 8202. 5066. 11590. 17914. 16962. 18610. 21422. 14735.
## 3 3 Nusa Ten~ 1803. 3676. 7024. 5704. 8842. 8383. 9140. 9614. 8007.
## 4 4 Nusa Ten~ 2125. 2735. 5422. 3512. 4210. 5452. 6116. 7080. 6657.
## # ... with 1 more variable: `2021` <dbl>
library(dplyr)
rename2011 <- inflowbali %>% rename('Tahun 2011' = '2011')
head(rename2011)
## # A tibble: 4 x 13
## ...1 Provinsi `Tahun 2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018`
## <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 Bali Nusra 10322. 14613. 17512. 20807. 23008. 30965. 30797. 33866.
## 2 2 Bali 6394. 8202. 5066. 11590. 13072. 17914. 16962. 18610.
## 3 3 Nusa Teng~ 1803. 3676. 7024. 5704. 6285. 8842. 8383. 9140.
## 4 4 Nusa Teng~ 2125. 2735. 5422. 3512. 3651. 4210. 5452. 6116.
## # ... with 3 more variables: `2019` <dbl>, `2020` <dbl>, `2021` <dbl>
library(dplyr)
nusrabali <- inflowbali %>%
filter(Provinsi == 'Bali') %>%
select('2011','2012','2013','2014','2015')
nusrabali
## # A tibble: 1 x 5
## `2011` `2012` `2013` `2014` `2015`
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 6394. 8202. 5066. 11590. 13072.
library(dplyr)
nusrantb <- inflowbali %>%
filter(Provinsi == 'Nusa Tenggara Barat') %>%
select('2012','2014','2016','2018')
nusrantb
## # A tibble: 1 x 4
## `2012` `2014` `2016` `2018`
## <dbl> <dbl> <dbl> <dbl>
## 1 3676. 5704. 8842. 9140.
str(inflowbali)
## tibble [4 x 13] (S3: tbl_df/tbl/data.frame)
## $ ...1 : num [1:4] 1 2 3 4
## $ Provinsi: chr [1:4] "Bali Nusra" "Bali" "Nusa Tenggara Barat" "Nusa Tenggara Timur"
## $ 2011 : num [1:4] 10322 6394 1803 2125
## $ 2012 : num [1:4] 14613 8202 3676 2735
## $ 2013 : num [1:4] 17512 5066 7024 5422
## $ 2014 : num [1:4] 20807 11590 5704 3512
## $ 2015 : num [1:4] 23008 13072 6285 3651
## $ 2016 : num [1:4] 30965 17914 8842 4210
## $ 2017 : num [1:4] 30797 16962 8383 5452
## $ 2018 : num [1:4] 33866 18610 9140 6116
## $ 2019 : num [1:4] 38116 21422 9614 7080
## $ 2020 : num [1:4] 29400 14735 8007 6657
## $ 2021 : num [1:4] 18892 7505 5888 5498
str(inflowbali %>% group_by(Provinsi))
## grouped_df [4 x 13] (S3: grouped_df/tbl_df/tbl/data.frame)
## $ ...1 : num [1:4] 1 2 3 4
## $ Provinsi: chr [1:4] "Bali Nusra" "Bali" "Nusa Tenggara Barat" "Nusa Tenggara Timur"
## $ 2011 : num [1:4] 10322 6394 1803 2125
## $ 2012 : num [1:4] 14613 8202 3676 2735
## $ 2013 : num [1:4] 17512 5066 7024 5422
## $ 2014 : num [1:4] 20807 11590 5704 3512
## $ 2015 : num [1:4] 23008 13072 6285 3651
## $ 2016 : num [1:4] 30965 17914 8842 4210
## $ 2017 : num [1:4] 30797 16962 8383 5452
## $ 2018 : num [1:4] 33866 18610 9140 6116
## $ 2019 : num [1:4] 38116 21422 9614 7080
## $ 2020 : num [1:4] 29400 14735 8007 6657
## $ 2021 : num [1:4] 18892 7505 5888 5498
## - attr(*, "groups")= tibble [4 x 2] (S3: tbl_df/tbl/data.frame)
## ..$ Provinsi: chr [1:4] "Bali" "Bali Nusra" "Nusa Tenggara Barat" "Nusa Tenggara Timur"
## ..$ .rows : list<int> [1:4]
## .. ..$ : int 2
## .. ..$ : int 1
## .. ..$ : int 3
## .. ..$ : int 4
## .. ..@ ptype: int(0)
## ..- attr(*, ".drop")= logi TRUE
ggplot(data = inflowbali, mapping = aes(x = Provinsi, y = `2015`)) +
geom_point()