| title: “Analisis Uang Kuartal Provinsi Bali” |
| author: ‘SOFYAN H. RAHMAWAN UIN MALIKI MALANG’ |
| date: 3/3/2022 |
| output: |
| html_document: |
Dosen Pengampu : Prof. Dr. Suhartono, Mkom
library(readxl)
datainflowbali <- read_excel(path = "bali.xlsx")
## New names:
## * `` -> ...2
datainflowbali
## # A tibble: 11 x 3
## Tahun ...2 Bali
## <dbl> <lgl> <dbl>
## 1 2011 NA 6394.
## 2 2012 NA 8202.
## 3 2013 NA 5066.
## 4 2014 NA 11590.
## 5 2015 NA 13072.
## 6 2016 NA 17914.
## 7 2017 NA 16962.
## 8 2018 NA 18610.
## 9 2019 NA 21422.
## 10 2020 NA 14735.
## 11 2021 NA 7505.
summary(datainflowbali)
## Tahun ...2 Bali
## Min. :2011 Mode:logical Min. : 5066
## 1st Qu.:2014 NA's:11 1st Qu.: 7854
## Median :2016 Median :13072
## Mean :2016 Mean :12861
## 3rd Qu.:2018 3rd Qu.:17438
## Max. :2021 Max. :21422
plot(datainflowbali$Bali ~ datainflowbali$Tahun, data = datainflowbali)
cor(datainflowbali$Bali, datainflowbali$Tahun)
## [1] 0.5371528
model <- lm(datainflowbali$Bali ~ datainflowbali$Tahun)
summary(model)
anova(model)
plot(datainflowbali$Bali ~ datainflowbali$Tahun, data = datainflowbali, col = "red", pch = 20, cex = 1.8, main = "Data Inflow Bali")
abline(model)
plot(cooks.distance(model), pch = 16, col = "blue")
plot(model)
AIC(model)
## [1] 222.0543
BIC(model)
## [1] 223.248
head(predict(model), n = 11)
## 1 2 3 4 5 6 7 8
## 8375.650 9272.745 10169.839 11066.934 11964.028 12861.122 13758.217 14655.311
## 9 10 11
## 15552.405 16449.500 17346.594
plot(head(predict(model), n = 10))
head(resid(model), n = 11)
## 1 2 3 4 5 6 7
## -1981.3013 -1070.2783 -5103.3834 523.0313 1107.6271 5052.5809 3203.8893
## 8 9 10 11
## 3954.2965 5869.2993 -1714.3461 -9841.4152
coef(model)
## (Intercept) datainflowbali$Tahun
## -1795681.0701 897.0943
datainflowbali$residuals <- model$residuals
datainflowbali$predicted <- model$fitted.values
datainflowbali
## # A tibble: 11 x 5
## Tahun ...2 Bali residuals predicted
## <dbl> <lgl> <dbl> <dbl> <dbl>
## 1 2011 NA 6394. -1981. 8376.
## 2 2012 NA 8202. -1070. 9273.
## 3 2013 NA 5066. -5103. 10170.
## 4 2014 NA 11590. 523. 11067.
## 5 2015 NA 13072. 1108. 11964.
## 6 2016 NA 17914. 5053. 12861.
## 7 2017 NA 16962. 3204. 13758.
## 8 2018 NA 18610. 3954. 14655.
## 9 2019 NA 21422. 5869. 15552.
## 10 2020 NA 14735. -1714. 16449.
## 11 2021 NA 7505. -9841. 17347.
scatter.smooth(x=datainflowbali$Tahun, y=datainflowbali$Bali, main="Tahun ~ Bali")
boxplot(datainflowbali$Bali, main="Bali", boxplot.stats(datainflowbali$Bali)$out)
plot(density(datainflowbali$Bali), main="Bali Plot: Inflow", ylab="Frequency")
coefs <- coef(model)
plot(Bali ~ Tahun, data = datainflowbali)
abline(coefs)
text(x = 12, y = 10, paste('expression = ', round(coefs[1], 2), '+', round(coefs[2], 2), '*Bali'))
cor.test(datainflowbali$Tahun, datainflowbali$Bali)
##
## Pearson's product-moment correlation
##
## data: datainflowbali$Tahun and datainflowbali$Bali
## t = 1.9105, df = 9, p-value = 0.08839
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.09254129 0.85993549
## sample estimates:
## cor
## 0.5371528