Samoucząca się sieć neuronowa - SOM
Biblioteki
library(kohonen)
library(ggplot2)
library(clusterSim)
library(dplyr)
Zbiór danych
Wczytanie danych
ads <- read.csv("C:/Users/majko/OneDrive/Dokumenty/Zajecia_WZR/Zajecia 2021-2022/Podypolomowe_2021-22/Sztuczne_sieci_neuronowe/KAG_conversion_data.csv") %>%
glimpse()
## Rows: 1,143
## Columns: 11
## $ ad_id <int> 708746, 708749, 708771, 708815, 708818, 708820, 70~
## $ xyz_campaign_id <int> 916, 916, 916, 916, 916, 916, 916, 916, 916, 916, ~
## $ fb_campaign_id <int> 103916, 103917, 103920, 103928, 103928, 103929, 10~
## $ age <chr> "30-34", "30-34", "30-34", "30-34", "30-34", "30-3~
## $ gender <chr> "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", ~
## $ interest <int> 15, 16, 20, 28, 28, 29, 15, 16, 27, 28, 31, 7, 16,~
## $ Impressions <int> 7350, 17861, 693, 4259, 4133, 1915, 15615, 10951, ~
## $ Clicks <int> 1, 2, 0, 1, 1, 0, 3, 1, 1, 3, 0, 0, 0, 0, 7, 0, 1,~
## $ Spent <dbl> 1.43, 1.82, 0.00, 1.25, 1.29, 0.00, 4.77, 1.27, 1.~
## $ Total_Conversion <int> 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ Approved_Conversion <int> 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0,~
Przygotowanie danych
ads <- ads %>%
mutate(ad_id = as.factor(ad_id),
xyz_campaign_id = as.factor(xyz_campaign_id),
fb_campaign_id = as.factor(fb_campaign_id)) %>%
glimpse()
## Rows: 1,143
## Columns: 11
## $ ad_id <fct> 708746, 708749, 708771, 708815, 708818, 708820, 70~
## $ xyz_campaign_id <fct> 916, 916, 916, 916, 916, 916, 916, 916, 916, 916, ~
## $ fb_campaign_id <fct> 103916, 103917, 103920, 103928, 103928, 103929, 10~
## $ age <chr> "30-34", "30-34", "30-34", "30-34", "30-34", "30-3~
## $ gender <chr> "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", ~
## $ interest <int> 15, 16, 20, 28, 28, 29, 15, 16, 27, 28, 31, 7, 16,~
## $ Impressions <int> 7350, 17861, 693, 4259, 4133, 1915, 15615, 10951, ~
## $ Clicks <int> 1, 2, 0, 1, 1, 0, 3, 1, 1, 3, 0, 0, 0, 0, 7, 0, 1,~
## $ Spent <dbl> 1.43, 1.82, 0.00, 1.25, 1.29, 0.00, 4.77, 1.27, 1.~
## $ Total_Conversion <int> 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ Approved_Conversion <int> 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0,~
levels(ads$xyz_campaign_id)
## [1] "916" "936" "1178"
Zmiana zmiennej przedziałowej na zmienne numeryczne
ads.s <- ads %>%
mutate(genderM = ifelse(gender == "M", 1, 0),
age2 = ifelse(age == "35-39", 1, 0),
age3 = ifelse(age == "40-44", 1, 0),
age4 = ifelse(age == "45-49", 1, 0)) %>%
select(-c(1,3:5))
Skalowanie danych i utworzenie macierzy
ads.train <- as.matrix(scale(ads.s[,-1]))
Budowa sieci
Struktura sieci:
Liczba neuronów
Kształt sieci:
-arkusz
-cylinder
-toroid
Topologia sieci:
-prostokątna - “rectangular”
-heksagonalna - “hexagonal”
set.seed(100)
ads.grid <- somgrid(xdim = 5, ydim = 5, topo = "rectangular")
Utworzenie modelu SOM
set.seed(100)
ads.model <- som(ads.train, ads.grid, rlen = 500, radius = 2, keep.data = TRUE,
dist.fcts = "euclidean")
str(ads.model)
## List of 14
## $ data :List of 1
## ..$ : num [1:1143, 1:10] -0.659 -0.622 -0.474 -0.177 -0.177 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : NULL
## .. .. ..$ : chr [1:10] "interest" "Impressions" "Clicks" "Spent" ...
## .. ..- attr(*, "scaled:center")= Named num [1:10] 3.28e+01 1.87e+05 3.34e+01 5.14e+01 2.86 ...
## .. .. ..- attr(*, "names")= chr [1:10] "interest" "Impressions" "Clicks" "Spent" ...
## .. ..- attr(*, "scaled:scale")= Named num [1:10] 2.70e+01 3.13e+05 5.69e+01 8.69e+01 4.48 ...
## .. .. ..- attr(*, "names")= chr [1:10] "interest" "Impressions" "Clicks" "Spent" ...
## $ unit.classif : num [1:1143] 21 21 21 21 21 21 21 21 21 21 ...
## $ distances : num [1:1143] 0.418 0.42 0.42 0.472 0.439 ...
## $ grid :List of 6
## ..$ pts : int [1:25, 1:2] 1 2 3 4 5 1 2 3 4 5 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : NULL
## .. .. ..$ : chr [1:2] "x" "y"
## ..$ xdim : num 5
## ..$ ydim : num 5
## ..$ topo : chr "rectangular"
## ..$ neighbourhood.fct: Factor w/ 2 levels "bubble","gaussian": 1
## ..$ toroidal : logi FALSE
## ..- attr(*, "class")= chr "somgrid"
## $ codes :List of 1
## ..$ : num [1:25, 1:10] -0.0684 0.1402 -0.4992 -0.3235 -0.1598 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:25] "V1" "V2" "V3" "V4" ...
## .. .. ..$ : chr [1:10] "interest" "Impressions" "Clicks" "Spent" ...
## $ changes : num [1:500, 1] 0.0197 0.0173 0.0164 0.0167 0.0177 ...
## $ alpha : num [1:2] 0.05 0.01
## $ radius : num [1:2] 2 0
## $ na.rows : int(0)
## $ user.weights : num 1
## $ distance.weights: num 1
## $ whatmap : int 1
## $ maxNA.fraction : int 0
## $ dist.fcts : chr "euclidean"
## - attr(*, "class")= chr "kohonen"
head(ads.model$unit.classif, 10 )
## [1] 21 21 21 21 21 21 21 21 21 21
table(ads.model$unit.classif)
##
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 20 21 23
## 28 18 3 19 156 87 21 21 23 35 72 27 16 18 79 39 24 81 168 19
## 24 25
## 108 81
ads.model$grid
## $pts
## x y
## [1,] 1 1
## [2,] 2 1
## [3,] 3 1
## [4,] 4 1
## [5,] 5 1
## [6,] 1 2
## [7,] 2 2
## [8,] 3 2
## [9,] 4 2
## [10,] 5 2
## [11,] 1 3
## [12,] 2 3
## [13,] 3 3
## [14,] 4 3
## [15,] 5 3
## [16,] 1 4
## [17,] 2 4
## [18,] 3 4
## [19,] 4 4
## [20,] 5 4
## [21,] 1 5
## [22,] 2 5
## [23,] 3 5
## [24,] 4 5
## [25,] 5 5
##
## $xdim
## [1] 5
##
## $ydim
## [1] 5
##
## $topo
## [1] "rectangular"
##
## $neighbourhood.fct
## [1] bubble
## Levels: bubble gaussian
##
## $toroidal
## [1] FALSE
##
## attr(,"class")
## [1] "somgrid"
plot(ads.model, type = "mapping", pchs = 19, shape = "round")
plot(ads.model, type = "codes", main = "Codes Plot", palette.name = rainbow)
plot(ads.model, type = "changes")
plot(ads.model, type = "counts")
plot(ads.model, type = "dist.neighbours")
Wkład poszczególnych zmiennych
heatmap.som <- function(model){
for (i in 1:10) {
plot(model, type = "property", property = getCodes(model)[,i],
main = colnames(getCodes(model))[i])
}
}
par(mfrow=c(5,2))
heatmap.som(ads.model)
Zadanie 1
Porsze podzielić zbiór na uczący i testowy.
Zadanie 2
Proszę zmieniając liczbę neuronów na 7x7, 10x10 sprawdzić co się zmieni.
KLASYFIKACJA
set.seed(100)
ads.grid <- somgrid(xdim = 10, ydim = 10, topo = "hexagonal")
set.seed(100)
ads.model <- som(ads.train, ads.grid, rlen = 500, radius = 2, keep.data = TRUE,
dist.fcts = "euclidean")
str(ads.model)
## List of 14
## $ data :List of 1
## ..$ : num [1:1143, 1:10] -0.659 -0.622 -0.474 -0.177 -0.177 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : NULL
## .. .. ..$ : chr [1:10] "interest" "Impressions" "Clicks" "Spent" ...
## .. ..- attr(*, "scaled:center")= Named num [1:10] 3.28e+01 1.87e+05 3.34e+01 5.14e+01 2.86 ...
## .. .. ..- attr(*, "names")= chr [1:10] "interest" "Impressions" "Clicks" "Spent" ...
## .. ..- attr(*, "scaled:scale")= Named num [1:10] 2.70e+01 3.13e+05 5.69e+01 8.69e+01 4.48 ...
## .. .. ..- attr(*, "names")= chr [1:10] "interest" "Impressions" "Clicks" "Spent" ...
## $ unit.classif : num [1:1143] 78 70 70 80 79 79 70 78 80 80 ...
## $ distances : num [1:1143] 0.1651 0.2175 0.1915 0.0484 0.1467 ...
## $ grid :List of 6
## ..$ pts : num [1:100, 1:2] 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : NULL
## .. .. ..$ : chr [1:2] "x" "y"
## ..$ xdim : num 10
## ..$ ydim : num 10
## ..$ topo : chr "hexagonal"
## ..$ neighbourhood.fct: Factor w/ 2 levels "bubble","gaussian": 1
## ..$ toroidal : logi FALSE
## ..- attr(*, "class")= chr "somgrid"
## $ codes :List of 1
## ..$ : num [1:100, 1:10] -0.4458 -0.0535 -0.4109 -0.4974 -0.4126 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:100] "V1" "V2" "V3" "V4" ...
## .. .. ..$ : chr [1:10] "interest" "Impressions" "Clicks" "Spent" ...
## $ changes : num [1:500, 1] 0.0148 0.0125 0.013 0.0139 0.014 ...
## $ alpha : num [1:2] 0.05 0.01
## $ radius : num [1:2] 2 0
## $ na.rows : int(0)
## $ user.weights : num 1
## $ distance.weights: num 1
## $ whatmap : int 1
## $ maxNA.fraction : int 0
## $ dist.fcts : chr "euclidean"
## - attr(*, "class")= chr "kohonen"
plot(ads.model, type = "mapping", pchs = 19, shape = "round")
neurony<-as.data.frame( ads.model$codes)
dd = (dist(neurony, method = "euclidean"))
fitc <- hclust(dd, method="ward.D")
plot(fitc, hang=-1)
source("http://addictedtor.free.fr/packages/A2R/lastVersion/R/code.R")
op = par(bg = "#EFEFEF")
par(mfrow=c(1,1))
wys<-c(0,fitc$height)
Mojena1<-mean(wys)+1.25* sd(wys)
Mojena1
## [1] 17.37922
A2Rplot(fitc, k = 6, boxes = TRUE, col.up = "gray50",
col.down = c("#FF6B6B","#8470FF","green4","#66CDAA","#8B7E66","grey"), main="Klasyfikacja" )
groupes <- cutree(fitc,k=6)
table(groupes)
## groupes
## 1 2 3 4 5 6
## 21 23 1 23 17 15
plot(ads.model,type="mapping",bgcol=c("steelblue1","sienna1","yellowgreen","grey","pink")[groupes])
add.cluster.boundaries(ads.model,clustering=groupes)
wnk.korelacje.kofenetyczne <- c()
met.dist <- c( "euclidean")
met.hcl <- c("single", "complete", "average","ward.D","centroid")
for(i in 1:1){ for(j in 1:5){ dds = dist(neurony, method = met.dist[i])
hcdds = hclust((dds), method = met.hcl[j])
hcdds.c = cophenetic(hcdds)
korelacja.kofenetyczna = cor(hcdds.c, dds)
wnk.korelacje.kofenetyczne = c(wnk.korelacje.kofenetyczne, korelacja.kofenetyczna)}}
wnk.korelacje.kofenetyczne = matrix(round( wnk.korelacje.kofenetyczne, 5), ncol = 1)
colnames(wnk.korelacje.kofenetyczne)<-"euclidean"
met.hcl1 <- c("single", "complete", "average","ward.D", "centroid")
rownames(wnk.korelacje.kofenetyczne)<-met.hcl1
wnk.korelacje.kofenetyczne
## euclidean
## single 0.89785
## complete 0.87158
## average 0.90906
## ward.D 0.63975
## centroid 0.86199