Laporan Pemodelan Statistical Machine Learning untuk Prediksi Harga AirBnb Listing

Metodologi Pemodelan

Random Forest merupakan pengembangan dari metode CART dengan menerapkan konsep bootstrap aggregating (bagging) dan random feature selection. Random forest merupakan metode yang dapat meningkatkan akurasi suatu klasfikasi data dari sebuah pemilah tunggal yang tidak stabil melalui kombinasi banyak pemilah dari suatu metode yang sama dengan proses voting untuk memperoleh prediksi klasifikasi akhir (Breiman 2001). Metode ini merupakan metode ensemble merupakan cara untuk meningkatkan akurasi metode klasifikasi dengan cara mengombinasikan metode klasifikasi (Han et al. 2011). Tahapan penyusunan random forest menurut Sartono dan Syafitri (2010) : 1. Pembentukan pohon melalui tahapan: a. Melakukan bootstrap, yakni menarik contoh acak disertai adanya pemulihan berukuran n dari data latih. b. Membuat pohon berdasarkan data yang digunakan pada tahap ini (random subsetting). Pada proses pemisahan harus dilakukan pemilihan secara acak m < d peubah penjelas dan lakukan pemisahan terbaik. c. Lakukan tahap a sampai b sebanyak k kali hingga diperoleh k buah pohon yang acak. 2. Membuat pendugaan gabungan sesuai k buah pohon tersebut. Majority vote untuk kasus klasifikasi, atau rata-rata pada kasus regresi. Tahapan dari pemodelan yang dilakukan adalah sebagai berikut:

Praproses Data

Praproses data bertujuan untuk membuat data menjadi data lengkap dan baik untuk dianalisis. Pada proposes data, sebelumnya akan dilihat terlebih dahulu data yang memiliki missing value lalu mengisi missing value tersebut dengan nilai rata-rata. Setelah itu, akan dilakukan pemilihan peubah bebas yang sekiranya berpengaruh terhadap peubah respon harga AirBnb listing

Load Package yang Dibutuhkan

Pertama, panggil package yang diperlukan dengan sintaks berikut

## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.3     ✓ purrr   0.3.4
## ✓ tibble  3.1.0     ✓ dplyr   1.0.5
## ✓ tidyr   1.1.3     ✓ stringr 1.4.0
## ✓ readr   1.4.0     ✓ forcats 0.5.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
## Loading required package: mlr3
## Loading required package: paradox
## 
## Attaching package: 'mice'
## The following objects are masked from 'package:base':
## 
##     cbind, rbind

Load Dataset

Download data dan kemudian simpan pada direktori. Selanjutnya, panggil data tersebut menggunakan perintah read.csv pada package utils dan simpan pada objek train. Setelah itu lakukan pemilihan peubah yang memiliki hubungan dengan peubah respon harga, berdasarkan pertimbangan. Peubah yang terpilih ada sebanyak 15 yaitu room_type ,accommodates, bathrooms, bed_type ,cancellation_policy ,cleaning_fee ,city, host_has_profile_pic, host_identity_verified, host_response_rate ,instant_bookable ,number_of_reviews, review_scores_rating , bedrooms dan beds.

Periksa Missing Value

Gunakan sintaks berikut untuk melihat missing value.

## Warning in sorted_count(x): Variable contains value(s) of "" that have been
## converted to "empty".

## Warning in sorted_count(x): Variable contains value(s) of "" that have been
## converted to "empty".

## Warning in sorted_count(x): Variable contains value(s) of "" that have been
## converted to "empty".
Data summary
Name pmschallenge
Number of rows 51879
Number of columns 16
_______________________
Column type frequency:
factor 9
numeric 7
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
room_type 0 1 FALSE 3 Ent: 28966, Pri: 21423, Sha: 1490
bed_type 0 1 FALSE 5 Rea: 50391, Fut: 549, Pul: 419, Air: 326
cancellation_policy 0 1 FALSE 5 str: 22720, fle: 15741, mod: 13333, sup: 74
cleaning_fee 0 1 FALSE 2 Tru: 38144, Fal: 13735
city 0 1 FALSE 6 NYC: 22655, LA: 15733, SF: 4539, DC: 3947
host_has_profile_pic 0 1 FALSE 3 t: 51592, f: 159, emp: 128
host_identity_verified 0 1 FALSE 3 t: 34838, f: 16913, emp: 128
host_response_rate 0 1 FALSE 78 100: 30309, emp: 12754, 90%: 1590, 80%: 762
instant_bookable 0 1 FALSE 2 f: 38325, t: 13554

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100
accommodates 0 1.00 3.15 2.16 1 2 2 4 16
bathrooms 144 1.00 1.23 0.58 0 1 1 1 8
number_of_reviews 0 1.00 20.82 37.49 0 1 6 23 605
review_scores_rating 11621 0.78 94.08 7.82 20 92 96 100 100
bedrooms 66 1.00 1.26 0.85 0 1 1 1 10
beds 84 1.00 1.71 1.25 0 1 1 2 18
price 0 1.00 160.37 168.93 1 75 111 185 1999

##       room_type accommodates bed_type cancellation_policy cleaning_fee city
## 40073         1            1        1                   1            1    1
## 11563         1            1        1                   1            1    1
## 102           1            1        1                   1            1    1
## 9             1            1        1                   1            1    1
## 20            1            1        1                   1            1    1
## 17            1            1        1                   1            1    1
## 11            1            1        1                   1            1    1
## 18            1            1        1                   1            1    1
## 45            1            1        1                   1            1    1
## 1             1            1        1                   1            1    1
## 2             1            1        1                   1            1    1
## 4             1            1        1                   1            1    1
## 12            1            1        1                   1            1    1
## 1             1            1        1                   1            1    1
## 1             1            1        1                   1            1    1
##               0            0        0                   0            0    0
##       host_has_profile_pic host_identity_verified host_response_rate
## 40073                    1                      1                  1
## 11563                    1                      1                  1
## 102                      1                      1                  1
## 9                        1                      1                  1
## 20                       1                      1                  1
## 17                       1                      1                  1
## 11                       1                      1                  1
## 18                       1                      1                  1
## 45                       1                      1                  1
## 1                        1                      1                  1
## 2                        1                      1                  1
## 4                        1                      1                  1
## 12                       1                      1                  1
## 1                        1                      1                  1
## 1                        1                      1                  1
##                          0                      0                  0
##       instant_bookable number_of_reviews price bedrooms beds bathrooms
## 40073                1                 1     1        1    1         1
## 11563                1                 1     1        1    1         1
## 102                  1                 1     1        1    1         0
## 9                    1                 1     1        1    1         0
## 20                   1                 1     1        1    0         1
## 17                   1                 1     1        1    0         1
## 11                   1                 1     1        1    0         0
## 18                   1                 1     1        1    0         0
## 45                   1                 1     1        0    1         1
## 1                    1                 1     1        0    1         1
## 2                    1                 1     1        0    1         0
## 4                    1                 1     1        0    0         1
## 12                   1                 1     1        0    0         1
## 1                    1                 1     1        0    0         0
## 1                    1                 1     1        0    0         0
##                      0                 0     0       66   84       144
##       review_scores_rating      
## 40073                    1     0
## 11563                    0     1
## 102                      1     1
## 9                        0     2
## 20                       1     1
## 17                       0     2
## 11                       1     2
## 18                       0     3
## 45                       1     1
## 1                        0     2
## 2                        1     2
## 4                        1     2
## 12                       0     3
## 1                        1     3
## 1                        0     4
##                      11621 11915

Terlihat data memiliki sekitar 11 ribu missing value, yaitu 144 pada peubah bathrooms, 11621 pada peubah review_scores_rating, 66 pada peubah bedrooms, dan 84 pada peubah beds. Hal ini juga terlihat dari kotak merah yang terdapat pada output md.pattern()

Mengisi nilai missing value

karna peubah host_response_rate masih memiliki unsur “%” maaka hapus “%” tersebut menggunakan sintaks berikut karena hanya diperlukan angka numeric nya saja untuk analisis berikutnya. Setelah menghapus unsur “%” periksa kembali tipe data masing-masing peubah.

## 'data.frame':    51879 obs. of  16 variables:
##  $ room_type             : Factor w/ 3 levels "Entire home/apt",..: 1 1 1 1 1 2 1 1 2 2 ...
##  $ accommodates          : int  3 7 5 4 2 2 3 2 2 2 ...
##  $ bathrooms             : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ bed_type              : Factor w/ 5 levels "Airbed","Couch",..: 5 5 5 5 5 5 5 5 5 5 ...
##  $ cancellation_policy   : Factor w/ 5 levels "flexible","moderate",..: 3 3 2 1 2 3 2 2 2 2 ...
##  $ cleaning_fee          : Factor w/ 2 levels "False","True": 2 2 2 2 2 2 2 2 2 2 ...
##  $ city                  : Factor w/ 6 levels "Boston","Chicago",..: 5 5 5 6 3 6 4 4 6 4 ...
##  $ host_has_profile_pic  : Factor w/ 3 levels "","f","t": 3 3 3 3 3 3 3 3 3 3 ...
##  $ host_identity_verified: Factor w/ 3 levels "","f","t": 3 2 3 3 3 3 2 3 2 2 ...
##  $ host_response_rate    : num  NA 100 100 NA 100 100 100 100 100 100 ...
##  $ instant_bookable      : Factor w/ 2 levels "f","t": 1 2 2 1 2 2 2 1 1 2 ...
##  $ number_of_reviews     : int  2 6 10 0 4 3 15 9 159 2 ...
##  $ review_scores_rating  : int  100 93 92 NA 40 100 97 93 99 90 ...
##  $ bedrooms              : int  1 3 1 2 0 1 1 1 1 1 ...
##  $ beds                  : int  1 3 3 2 1 1 1 1 1 1 ...
##  $ price                 : num  150 169 145 750 115 ...

Selanjutnya, periksa nilai unik pada masing-masing peubah untuk mengetahui apakah terdapat nilai seperti “NA” ataupun “99” yang mengindikaskan missing value

## NULL
## [1] Entire home/apt Private room    Shared room    
## Levels: Entire home/apt Private room Shared room
##  [1]  3  7  5  4  2  6  8  1  9 10 16 11 12 14 13 15
## [1] Real Bed      Futon         Couch         Pull-out Sofa Airbed       
## Levels: Airbed Couch Futon Pull-out Sofa Real Bed
## [1] strict          moderate        flexible        super_strict_60
## [5] super_strict_30
## Levels: flexible moderate strict super_strict_30 super_strict_60
## [1] True  False
## Levels: False True
## [1] NYC     SF      DC      LA      Chicago Boston 
## Levels: Boston Chicago DC LA NYC SF
## [1] t   f
## Levels:  f t
## [1] t f  
## Levels:  f t
## [1] f t
## Levels: f t
##   [1]   2   6  10   0   4   3  15   9 159  82  13  12  26   5  57   1  40  46
##  [19]  17 138  11  29  18  31  19  25  22  23  28   7  32 144  16  14 105  59
##  [37]  73  21 120   8  61  87 206  43  44 104  47  63 186  34  36 167  48 102
##  [55]  67  81  58  72  38  68  79  98  30 187 123  70  55  54  27  52  42  60
##  [73] 254  64  99 191  24  66 139  74  33  35  37  85  83  45  41  49 289 190
##  [91]  62  20  78 127 118 216 135  69  51  77 181  53 101 106 114 110  56 192
## [109]  76 113 182 136 119 129  86  50  88  71  91 158 142  90  97 194 173  75
## [127]  39 132 112 161 208 111 116 148  89 156 150 145  84 258 178 155 163 149
## [145] 100  65 242 172 171  80 193 199 103 166 290 137 153  96 425 185 140  93
## [163] 360 143 107 214 141 246 217 195 196 109 273 251 305 133 351 189 269 134
## [181] 221 154 147  92 336 272 121 146 122 175 202 215  94 278 169  95 126 203
## [199] 108 130 256 323 115 128 469 160 124 220 165 131 287 152 492 224 201 170
## [217] 288 157 389 343 222 212 228 236 205 117 179 211 162 270 176 291 164 400
## [235] 125 318 252 183 268 174 298 260 322 207 197 378 279 219 329 349 213 267
## [253] 151 263 542 227 238 168 354 232 177 200 356 204 379 339 241 370 209 532
## [271] 188 231 248 495 311 326 281 240 255 292 257 226 218 180 275 282 304 237
## [289] 262 249 313 306 294 225 277 264 530 332 394 284 391 308 198 250 210 338
## [307] 451 274 605 247 453 385 283 229 302 344 266 295 335 271 244 184 285 239
## [325] 320 259 423 233 230 276 234 474 223 374 505 353 331 334 317 243 280 382
## [343] 380 358 265 253 296 337 341
##  [1]  NA 100  71  68  67  83  50  90  86  92  80  89  93  99   0  96  94  91  25
## [20]  70  95  88  62  29  98  33  81  60  79  75  65  97  40  54  78  53  58  76
## [39]  63  82  87  64  20  77  38  41  59  57  30  85  56  42  44  35  14  27  10
## [58]  84   6  72  36  55  43  73  17  13  74  39  61  46  22  69  66  15  26  11
## [77]  52  21
##   [1]  150  169  145  750  115   85   83  120   36  100   70  200  142   75   99
##  [16]  132   80   40   95  149  180  105   46   89   78  125   50  108  250  148
##  [31]  325   35  116  119  141  350 1000  500  249   45  175  110  190   97  129
##  [46]   48  260   60  220  122  138   65   55  479  700  280  450  379  130  159
##  [61]   62   87  143  270   33  275  139   49 1275  850   77  255  161   90  264
##  [76]  134  240   68   39  140  109  195   98   66  162  400  524  395  103  460
##  [91]  170  385   43  289   59  198   42  359   92  185  208  179   52 1100  135
## [106]  310  155  102   30  375  800  290   58  111  950  160   29   88   38   79
## [121]  300  380  154  600 1938  199  299  259  205   86  399  698  599   81  152
## [136]   69  210  329   32  595  489   28   37  225  215  165   82  227  211  104
## [151]  247  355  495   57  245  492  124  213  279 1250  172  650  900   44  315
## [166]  320   74  204  999  285  295   72   96  219   41   67   25  235   63  201
## [181]  229   84  133   56   54  126  167  345  370  158  390  265 1095   91  118
## [196]  685  164  144  305  230  585  965   94   61  112   93  384   34  424   12
## [211]   47  171  147   21  746  256  127  182  123  261  550   18 1300  128  244
## [226]   24  349   23  239  107  114  232  223   64 1200 1350  189  267  121 1448
## [241]  194  151   71  995  465  184  699  181  525  425  156  361   76  137 1975
## [256] 1750  209  288  398 1400  777  499  136  725  324  216  178   51  258  990
## [271]  480  101  228 1057  214  197  163   20  429 1995   31  153  440  895   22
## [286]  269   53  381  449  438  246  340  174   27  339  177  970 1450  131  168
## [301]  830   15  571  278  513  651   73   19  365  858  207  248 1550  188  319
## [316]  106  242  117  649  470 1285  589  304  236  360  157  412  306  314  825
## [331]  445  330 1349  845  218  435  795  272 1050  222  212  588  348  276  469
## [346]  389  233  191  501 1800  436  341  455  113  580 1500  186  494 1667  785
## [361]  545  296  769  575   10   26  415  183  283  458  998  334  478  333  254
## [376]  419  773  382  516  309  477 1895  473  321  531  146  252  475  457  166
## [391]  224  443  672  192  316  377  974  459  749  238  298 1075  527  294  569
## [406]  715  221 1395  838  391  504  226  268 1499  291  217  193  297 1610  414
## [421]  490  540  799  625  327  357  292  695  815 1150 1295  176    1  403  253
## [436] 1460  405  196  624  432  257  911   17  997  548  366 1299  437 1225  564
## [451]  762  680  420  284  567  559  670  860  374  410  392  312  439  549  271
## [466]  775  173  485  369  536  307  560  555  337 1700   16 1889  344  780  570
## [481]  740  867  448  331  710  630  579  985  975  849  684  393  372  590  203
## [496]  187  783  266  462  872  417  263  277  496  645 1600  535 1950  409  620
## [511]  899  770   14  352  206  662 1195  949 1900  618  820  311  354  675  328
## [526]  529  303  287  234  875 1850  388  318  502 1010 1120  402  596 1731  841
## [541]  376  940  865  282  835  488 1371  510  928  518  237 1002  351  251  903
## [556]  530  591  925  520  301  851 1040  544  335  565 1020  735  474  505  539
## [571]  922  347 1707  358 1099  308  231  743  281  408  980  336 1094 1675 1799
## [586]  690  790 1080 1223  482  368  720  274  728  869   13  689  514  383  286
## [601]  859  346  629 1999  610  818 1498  714 1595  506  679  243  603 1368  293
## [616] 1705  745  597  551  413  356  442  343  993  913  202 1990  241  451  890
## [631]  411  637  935  558 1274 1090 1495  394  430  497  945  273  509  987  976
## [646]  798  371  317 1650 1570  839  844  519  713 1399  363  694 1980  313 1795
## [661]  486  739  433  441  322  640  522  547  362  407 1240  453  332 1749  927
## [676]  989 1168  615  326 1180  467  855  364  338  466 1125  515  824 1599
##  [1]  1  3  2  4  6  5 NA 10 16 13  7  8 12 11 14  9 15  0 18
##  [1]  1  3  2  0  4  5 NA  6  7  8  9 10
##  [1] 100  93  92  NA  40  97  99  90  89  91  88  86  72  98  95  96  84  80  94
## [20]  87  60  75  20  76  85  83  82  78  73  67  71  77  81  70  79  68  66  74
## [39]  63  50  53  65  27  64  69  30  58  62  49  57  54  47  56  55
##  [1] 1.0 1.5 2.0  NA 2.5 3.0 0.5 4.5 5.0 4.0 3.5 0.0 5.5 7.5 6.0 8.0 7.0 6.5

Terlihat dari hasil diatas bahwa peubah host_response_rate, bedrooms, beds,bathrooms dan review_scores_rating memiliki missing value. Setelah itu, lakukan pengisian missing value dengan rata-ratanya pada peubah host_response_rate, bedrooms, beds,bathrooms dan review_scores_rating. Untuk melihat rata-rata peubah dapat dilihat dari fungsi summary() atau dari menghitung manual menggunakan mean().

##            room_type      accommodates     bathrooms              bed_type    
##  Entire home/apt:28966   Min.   : 1.00   Min.   :0.000   Airbed       :  326  
##  Private room   :21423   1st Qu.: 2.00   1st Qu.:1.000   Couch        :  194  
##  Shared room    : 1490   Median : 2.00   Median :1.000   Futon        :  549  
##                          Mean   : 3.15   Mean   :1.234   Pull-out Sofa:  419  
##                          3rd Qu.: 4.00   3rd Qu.:1.000   Real Bed     :50391  
##                          Max.   :16.00   Max.   :8.000                        
##                                          NA's   :144                          
##       cancellation_policy cleaning_fee       city       host_has_profile_pic
##  flexible       :15741    False:13735   Boston : 2432    :  128             
##  moderate       :13333    True :38144   Chicago: 2573   f:  159             
##  strict         :22720                  DC     : 3947   t:51592             
##  super_strict_30:   74                  LA     :15733                       
##  super_strict_60:   11                  NYC    :22655                       
##                                         SF     : 4539                       
##                                                                             
##  host_identity_verified host_response_rate instant_bookable number_of_reviews
##   :  128                Min.   :  0.00     f:38325          Min.   :  0.00   
##  f:16913                1st Qu.:100.00     t:13554          1st Qu.:  1.00   
##  t:34838                Median :100.00                      Median :  6.00   
##                         Mean   : 94.32                      Mean   : 20.82   
##                         3rd Qu.:100.00                      3rd Qu.: 23.00   
##                         Max.   :100.00                      Max.   :605.00   
##                         NA's   :12754                                        
##  review_scores_rating    bedrooms           beds            price       
##  Min.   : 20.00       Min.   : 0.000   Min.   : 0.000   Min.   :   1.0  
##  1st Qu.: 92.00       1st Qu.: 1.000   1st Qu.: 1.000   1st Qu.:  75.0  
##  Median : 96.00       Median : 1.000   Median : 1.000   Median : 111.0  
##  Mean   : 94.08       Mean   : 1.261   Mean   : 1.707   Mean   : 160.4  
##  3rd Qu.:100.00       3rd Qu.: 1.000   3rd Qu.: 2.000   3rd Qu.: 185.0  
##  Max.   :100.00       Max.   :10.000   Max.   :18.000   Max.   :1999.0  
##  NA's   :11621        NA's   :66       NA's   :84
## [1] 94.31614
##  /\     /\
## {  `---'  }
## {  O   O  }
## ==>  V <==  No need for mice. This data set is completely observed.
##  \  \|/  /
##   `-----'

##       room_type accommodates bathrooms bed_type cancellation_policy
## 51879         1            1         1        1                   1
##               0            0         0        0                   0
##       cleaning_fee city host_has_profile_pic host_identity_verified
## 51879            1    1                    1                      1
##                  0    0                    0                      0
##       host_response_rate instant_bookable number_of_reviews
## 51879                  1                1                 1
##                        0                0                 0
##       review_scores_rating bedrooms beds price  
## 51879                    1        1    1     1 0
##                          0        0    0     0 0

Setelah data diisi dengan missing value, terlihat pada output md.pattern tidak ada kotak merah yang mengindikasikan data sudah bersih dari missing value

Praproses untuk Dataset Test

Ulangi langkah-langkah sebelumnya, mulai dari load dataset hingga pengisian missing value.

## Warning in sorted_count(x): Variable contains value(s) of "" that have been
## converted to "empty".

## Warning in sorted_count(x): Variable contains value(s) of "" that have been
## converted to "empty".

## Warning in sorted_count(x): Variable contains value(s) of "" that have been
## converted to "empty".
Data summary
Name test
Number of rows 22232
Number of columns 15
_______________________
Column type frequency:
factor 9
numeric 6
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
room_type 0 1 FALSE 3 Ent: 12344, Pri: 9215, Sha: 673
bed_type 0 1 FALSE 5 Rea: 21637, Fut: 204, Pul: 166, Air: 151
cancellation_policy 0 1 FALSE 5 str: 9654, fle: 6804, mod: 5730, sup: 38
cleaning_fee 0 1 FALSE 2 Tru: 16259, Fal: 5973
city 0 1 FALSE 6 NYC: 9694, LA: 6720, SF: 1895, DC: 1741
host_has_profile_pic 0 1 FALSE 3 t: 22105, f: 67, emp: 60
host_identity_verified 0 1 FALSE 3 t: 14910, f: 7262, emp: 60
host_response_rate 0 1 FALSE 72 100: 12945, emp: 5545, 90%: 687, 80%: 351
instant_bookable 0 1 FALSE 2 f: 16335, t: 5897

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100
accommodates 0 1.00 3.17 2.15 1 2 2 4.00 16
bathrooms 56 1.00 1.24 0.58 0 1 1 1.00 8
number_of_reviews 0 1.00 21.09 38.61 0 1 5 23.25 525
review_scores_rating 5101 0.77 94.04 7.88 20 92 96 100.00 100
bedrooms 25 1.00 1.28 0.86 0 1 1 1.00 10
beds 47 1.00 1.72 1.26 0 1 1 2.00 16

##       room_type accommodates bed_type cancellation_policy cleaning_fee city
## 17056         1            1        1                   1            1    1
## 5074          1            1        1                   1            1    1
## 36            1            1        1                   1            1    1
## 5             1            1        1                   1            1    1
## 14            1            1        1                   1            1    1
## 8             1            1        1                   1            1    1
## 7             1            1        1                   1            1    1
## 7             1            1        1                   1            1    1
## 13            1            1        1                   1            1    1
## 1             1            1        1                   1            1    1
## 5             1            1        1                   1            1    1
## 5             1            1        1                   1            1    1
## 1             1            1        1                   1            1    1
##               0            0        0                   0            0    0
##       host_has_profile_pic host_identity_verified host_response_rate
## 17056                    1                      1                  1
## 5074                     1                      1                  1
## 36                       1                      1                  1
## 5                        1                      1                  1
## 14                       1                      1                  1
## 8                        1                      1                  1
## 7                        1                      1                  1
## 7                        1                      1                  1
## 13                       1                      1                  1
## 1                        1                      1                  1
## 5                        1                      1                  1
## 5                        1                      1                  1
## 1                        1                      1                  1
##                          0                      0                  0
##       instant_bookable number_of_reviews bedrooms beds bathrooms
## 17056                1                 1        1    1         1
## 5074                 1                 1        1    1         1
## 36                   1                 1        1    1         0
## 5                    1                 1        1    1         0
## 14                   1                 1        1    0         1
## 8                    1                 1        1    0         1
## 7                    1                 1        1    0         0
## 7                    1                 1        1    0         0
## 13                   1                 1        0    1         1
## 1                    1                 1        0    1         1
## 5                    1                 1        0    0         1
## 5                    1                 1        0    0         1
## 1                    1                 1        0    0         0
##                      0                 0       25   47        56
##       review_scores_rating     
## 17056                    1    0
## 5074                     0    1
## 36                       1    1
## 5                        0    2
## 14                       1    1
## 8                        0    2
## 7                        1    2
## 7                        0    3
## 13                       1    1
## 1                        0    2
## 5                        1    2
## 5                        0    3
## 1                        0    4
##                       5101 5229
## 'data.frame':    22232 obs. of  15 variables:
##  $ room_type             : Factor w/ 3 levels "Entire home/apt",..: 1 2 1 2 1 1 1 2 1 2 ...
##  $ accommodates          : int  4 2 4 2 4 6 4 8 2 1 ...
##  $ bathrooms             : num  1.5 1.5 1 1 1 1 1 1 1 1 ...
##  $ bed_type              : Factor w/ 5 levels "Airbed","Couch",..: 5 5 5 5 5 5 5 5 5 5 ...
##  $ cancellation_policy   : Factor w/ 5 levels "flexible","moderate",..: 3 2 2 2 2 3 3 2 1 1 ...
##  $ cleaning_fee          : Factor w/ 2 levels "False","True": 2 2 2 2 2 2 2 2 1 1 ...
##  $ city                  : Factor w/ 6 levels "Boston","Chicago",..: 4 2 4 4 3 5 4 4 5 5 ...
##  $ host_has_profile_pic  : Factor w/ 3 levels "","f","t": 3 3 3 3 3 3 3 3 3 3 ...
##  $ host_identity_verified: Factor w/ 3 levels "","f","t": 3 3 3 3 2 3 3 3 2 2 ...
##  $ host_response_rate    : num  100 100 100 NA NA 100 100 100 100 NA ...
##  $ instant_bookable      : Factor w/ 2 levels "f","t": 1 1 2 1 1 1 1 2 1 1 ...
##  $ number_of_reviews     : int  29 0 73 2 0 14 248 44 0 0 ...
##  $ review_scores_rating  : int  97 NA 99 100 NA 100 96 92 NA NA ...
##  $ bedrooms              : int  2 1 1 1 1 3 2 1 1 1 ...
##  $ beds                  : int  2 1 1 1 2 3 3 7 1 1 ...
## NULL
## [1] Entire home/apt Private room    Shared room    
## Levels: Entire home/apt Private room Shared room
##  [1]  4  2  6  8  1  5  3  7  9 10 16 12 11 13 15 14
## [1] Real Bed      Pull-out Sofa Futon         Airbed        Couch        
## Levels: Airbed Couch Futon Pull-out Sofa Real Bed
## [1] strict          moderate        flexible        super_strict_30
## [5] super_strict_60
## Levels: flexible moderate strict super_strict_30 super_strict_60
## [1] True  False
## Levels: False True
## [1] LA      Chicago DC      NYC     Boston  SF     
## Levels: Boston Chicago DC LA NYC SF
## [1] t   f
## Levels:  f t
## [1] t f  
## Levels:  f t
## [1] f t
## Levels: f t
##   [1]  29   0  73   2  14 248  44  34  85   1   5  30   4   3   6  10   7  38
##  [19]  67   9  27  12  51  22  13  28 126  21 107  25  15   8  58  39  63  17
##  [37]  78  31  75 128  90 135  11  55  18  43  19 125 129  24 318  33  23  26
##  [55]  20 191  46  93  52  61  35  16  88  37 154  32 136  69  64  40  41 314
##  [73] 112  56 117 255  66  91  62 114  84 146  74  54  47  57  87  53  42  45
##  [91] 157  95  94 122  49 171  79 111 123 102 101 131 384 133  48  68 134 179
## [109]  71 147  59 202 148 120  98 156 200  60  89 159 113 267 144 207  36  82
## [127] 121 208 180 104 119  92 263  77 251 181 237  50  80 168 100 289 162  81
## [145]  76 118 139  65  86 103  83  72 152 105 317 218 145 140 158 143 188 383
## [163] 160 165 115  70 172 163 198 150 465 178 302 166 323 153 106 204 110 167
## [181] 170 480  97 142 225 108 220 138  99 192 109 193 306 303 215 127 281 327
## [199] 149 196 174 209 227 201 337  96 116 280 305 335 137 195 252 173 242 287
## [217] 214 366 304 226 194 203 249 234 155 212 262 151 311 253 367 184 449 124
## [235] 141 130 217 161 275 169 269 391 213 211 264 219 356 273 132 164 241 177
## [253] 298 229 232 185 296 260 309 182 210 328 206 176 230 197 286 297 189 347
## [271] 238 175 272 199 247 243 223 266 525 278 307 321 379 320 239 274 388 236
## [289] 235 224 308 378 216 246 256 222 354 376 339 294 231 315
##  [1] 100  NA  82  50  88  70  96  83  90  98  80  93  63  81  38   0  79  60  29
## [20]  89  78  75  86  94  97  87  92  95  67  99  30  40  17  33  68  20  54  73
## [39]  91  64  56  74  25  62  71  85  84  76  77  43  44  57  46  58  55  26  10
## [58]  52  23  72  65  69  22  59  36  41  53  35  42  31  14  47
##  [1]  2  1  3  7  4  5  6  8  9 12 NA 15 10 11 13  0 16 14
##  [1]  2  1  3  0 NA  4  5  6  7  9 10  8
##  [1]  97  NA  99 100  96  92  88  89  80  84  85  94  70  98  87  90  91  93  95
## [20]  20  82  75  55  73  81  83  86  60  79  47  74  78  68  40  77  76  50  67
## [39]  65  64  71  72  69  63  27  35  30  62
##  [1] 1.5 1.0 2.0 2.5 3.0 0.0 3.5  NA 4.5 0.5 4.0 5.0 6.5 8.0 5.5 6.0 7.0 7.5

Eksplorasi Data

Pada eksplorasi data dilakukan pengamatan secara objektif untuk melihat karakteristik dan tipe data yang digunakan. Eksplorasi data ini bertujuan untuk mempelajari pola data agar nantinya menjadi informasi yang dapat menunjang analisis data. Dengan adanya eksplorasi data akan lebih mudah menentukan informasi yang akan disampaikan. Untuk melihat histogram dari peubah, gunakan sintaks berikut:

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Berdasarkan histogram tersebut, terlihat untuk peubah host_response_rate memiliki sebaran yang menjulur ke kiri, dimana modus pada peubah tersebut adalah sekitar 100% yang berarti tuan rumah pada situs Airbnb kebanyakan memiliki tingkat respon sekitar 100%. Begitu juga untuk peubah review_scores_rating yang memiliki sebaran menjulur ke kiri. Sementara itu, untuk peubah price yang memiliki sebaran menjulur ke kanan, dapat dilihat bahwa harga rumah pada situs Airbnb kebanyakan dibawah 250. Begitu juga untuk peubah number_of_reviews yang memiliki sebaran menjulur ke kanan juga.

Import data ke ekosistem mlr3

Gunakan sintaks berikut dimana id adalah ‘challenge’, backend adalah data yang ingin dimodelkan dengan catatan peubah respon-nya harus berupa peubah numerik yaitu “pmschallenge”, dan targetnya yaitu “price”.

Mendefinisikan Tuning Hiperparameter

Hiperparamter Random Forest yang digunakan adalah mtry yaitu banyaknya variabel yang digunakan untuk splitting pada tiap node dimana pada tahap ini digunakan nilai rentang 2 sampai 7, max.depth yaitu maksimal kedalaman pada tiap node di pohon final dimana pada tahap ini digunakan nilai renatng 1 sampai 30, num.trees yaitu banyaknya pohon, dimana pada tahap ini digunakan nilai rentang 1 sampai 30, min.node.size yaitu ukuran node paling minimum pada setiap terminal node dimana pada tahap ini digunakan 1 sampai 300, dan num.threads yaitu adalah jumlah utas cpu yang harus digunakan oleh ranger dimana pada tahap ini digunakan nilai rentang 1 sampai 200.

hiperparameter yang digunakan memiliki tipe data bilangan bulat sehingga hiperparameternya adalah fungsi ParamInt$new. Kemudian lower dan upper menunjukan batas bawah dan atas nilai hiperparamter yang akan ditelusuri. Dengan kata lain, penelusuran nilai akan dilakukan direntang tersebut.

Menentukan Stopping Criteria

Penentuan stopping criteria dapat dilakukan dengan menggunakan fungsi trm dimana digunakan metode stopping criteria “evals” yang berarti stopping criteria yang dipilih adalah banyaknya iterasi yang mana tuning hiperparameter akan berhenti saat mencapai iterasi tertentu

Menentukan Metode Optimisasi

Fungsi tnr memiliki satu argumen utama yaitu nama algoritma tuningnya, pada tahap ini digunakan metode optimasi “random_search” yang akan memilih nilai hiperparameter secara acak dari selang yang sudah kita tentukan. Pemilihan random_search ini dikarenakan algoritma ini memilih secara acak nilai-nilai hiperparameter yang ingin dituning sehingga semua nilai hiperparameter memiliki peluang yang sama untuk terpilih.

Menentukan Metode Resampling (inner resampling)

Metode resampling yang biasanya digunakan adalah nested resampling atau nested-CV. Berikut adalah sintaksnya untuk penentuan inner resampling

Menggabungkan Informasi kedalam Fungsi Autotuner

Fungsi ini dibutuhkan untuk tahap pemodelan selanjutnya

Measure yang dipilih adalah regr.maee hal ini berarti tuning hiperparameter dilakukan berdasarkan nilai MAE.

Menentukan Metode Resampling (outer resampling)

outer resampling juga digunakan untuk membandingkan model yang sudah dituning dengan model sebelum di tuning maupun model lainnya. Berikut sintaks yang digunakan:

Komparasi Model

Pada tahap ini akan membandingkan performa model hasil tuning dengan sebelum tuning.

## INFO  [16:27:36.220] [mlr3]  Running benchmark with 10 resampling iterations 
## INFO  [16:27:36.555] [mlr3]  Applying learner 'regr.ranger.tuned' on task 'challenge' (iter 4/5) 
## INFO  [16:27:36.967] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:27:36.975] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:27:37.433] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:27:37.885] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:27:38.409] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:27:38.865] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:27:39.316] [mlr3]  Finished benchmark 
## INFO  [16:27:39.537] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:27:39.546] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:27:40.715] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:27:41.715] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:27:42.696] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:27:43.733] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:27:44.849] [mlr3]  Finished benchmark 
## INFO  [16:27:44.997] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:27:45.006] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:27:45.208] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:27:45.415] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:27:45.633] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:27:45.829] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:27:46.186] [mlr3]  Finished benchmark 
## INFO  [16:27:46.322] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:27:46.332] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:27:46.661] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:27:46.993] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:27:47.330] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:27:47.651] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:27:47.977] [mlr3]  Finished benchmark 
## INFO  [16:27:48.105] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:27:48.113] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:27:48.309] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:27:48.505] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:27:48.698] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:27:48.891] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:27:49.080] [mlr3]  Finished benchmark 
## INFO  [16:27:49.271] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:27:49.279] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:27:50.009] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:27:50.725] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:27:51.412] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:27:52.129] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:27:52.805] [mlr3]  Finished benchmark 
## INFO  [16:27:52.931] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:27:52.943] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:27:53.127] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:27:53.317] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:27:53.508] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:27:53.703] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:27:53.894] [mlr3]  Finished benchmark 
## INFO  [16:27:54.018] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:27:54.026] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:27:55.074] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:27:56.169] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:27:57.118] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:27:58.086] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:27:59.055] [mlr3]  Finished benchmark 
## INFO  [16:27:59.184] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:27:59.193] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:27:59.359] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:27:59.526] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:27:59.709] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:27:59.892] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:28:00.085] [mlr3]  Finished benchmark 
## INFO  [16:28:00.205] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:28:00.213] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:28:00.678] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:28:01.084] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:28:01.486] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:28:01.909] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:28:02.656] [mlr3]  Finished benchmark 
## INFO  [16:28:02.795] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:28:02.806] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:28:03.333] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:28:03.837] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:28:04.301] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:28:04.775] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:28:05.359] [mlr3]  Finished benchmark 
## INFO  [16:28:05.565] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:28:05.576] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:28:05.964] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:28:06.381] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:28:06.805] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:28:07.231] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:28:07.640] [mlr3]  Finished benchmark 
## INFO  [16:28:07.785] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:28:07.794] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:28:07.997] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:28:08.197] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:28:08.449] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:28:08.651] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:28:08.866] [mlr3]  Finished benchmark 
## INFO  [16:28:08.983] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:28:08.992] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:28:09.471] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:28:10.016] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:28:10.547] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:28:11.086] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:28:11.689] [mlr3]  Finished benchmark 
## INFO  [16:28:12.091] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:28:12.107] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:28:12.367] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:28:12.588] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:28:12.789] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:28:12.992] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:28:13.193] [mlr3]  Finished benchmark 
## INFO  [16:28:13.308] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:28:13.316] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:28:13.492] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:28:13.710] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:28:13.907] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:28:14.089] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:28:14.268] [mlr3]  Finished benchmark 
## INFO  [16:28:14.383] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:28:14.392] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:28:14.610] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:28:14.819] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:28:15.052] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:28:15.321] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:28:15.568] [mlr3]  Finished benchmark 
## INFO  [16:28:15.686] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:28:15.695] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:28:16.545] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:28:17.353] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:28:18.128] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:28:18.914] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:28:19.725] [mlr3]  Finished benchmark 
## INFO  [16:28:19.849] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:28:19.858] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:28:21.254] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:28:22.549] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:28:23.659] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:28:24.769] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:28:26.402] [mlr3]  Finished benchmark 
## INFO  [16:28:26.565] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:28:26.574] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:28:27.397] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:28:28.521] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:28:29.591] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:28:30.556] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:28:31.450] [mlr3]  Finished benchmark 
## INFO  [16:28:32.832] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:28:55.203] [mlr3]  Applying learner 'regr.ranger.tuned' on task 'challenge' (iter 2/5) 
## INFO  [16:28:55.327] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:28:55.338] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:28:55.817] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:28:56.320] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:28:56.917] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:28:57.470] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:28:57.939] [mlr3]  Finished benchmark 
## INFO  [16:28:58.072] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:28:58.080] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:28:58.461] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:28:58.877] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:28:59.265] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:28:59.626] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:28:59.980] [mlr3]  Finished benchmark 
## INFO  [16:29:00.106] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:00.114] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:29:01.108] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:01.798] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:02.384] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:29:02.941] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:03.464] [mlr3]  Finished benchmark 
## INFO  [16:29:03.592] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:03.601] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:03.812] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:29:04.031] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:29:04.260] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:04.493] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:04.755] [mlr3]  Finished benchmark 
## INFO  [16:29:04.882] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:04.890] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:29:05.517] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:29:06.264] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:06.969] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:07.661] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:08.350] [mlr3]  Finished benchmark 
## INFO  [16:29:08.482] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:08.491] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:08.677] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:08.913] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:29:09.097] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:29:09.279] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:09.472] [mlr3]  Finished benchmark 
## INFO  [16:29:09.614] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:09.623] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:09.842] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:29:10.078] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:10.305] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:29:10.507] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:10.770] [mlr3]  Finished benchmark 
## INFO  [16:29:10.904] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:10.915] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:11.233] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:29:11.533] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:29:11.829] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:12.107] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:12.376] [mlr3]  Finished benchmark 
## INFO  [16:29:12.501] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:12.510] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:13.236] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:14.115] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:29:14.944] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:15.633] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:29:16.402] [mlr3]  Finished benchmark 
## INFO  [16:29:16.598] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:16.616] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:29:17.220] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:18.122] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:29:18.629] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:19.146] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:19.653] [mlr3]  Finished benchmark 
## INFO  [16:29:19.778] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:19.788] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:29:20.624] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:21.630] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:22.590] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:29:23.443] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:24.262] [mlr3]  Finished benchmark 
## INFO  [16:29:24.390] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:24.398] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:29:25.036] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:29:25.681] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:26.321] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:26.977] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:27.969] [mlr3]  Finished benchmark 
## INFO  [16:29:28.363] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:28.382] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:29:29.050] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:29:29.632] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:30.135] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:30.631] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:31.102] [mlr3]  Finished benchmark 
## INFO  [16:29:31.280] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:31.298] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:31.693] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:29:32.087] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:29:32.470] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:32.861] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:33.303] [mlr3]  Finished benchmark 
## INFO  [16:29:33.514] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:33.528] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:33.790] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:34.068] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:29:34.330] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:34.611] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:29:34.887] [mlr3]  Finished benchmark 
## INFO  [16:29:35.033] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:35.043] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:35.311] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:35.587] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:29:35.857] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:36.130] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:29:36.410] [mlr3]  Finished benchmark 
## INFO  [16:29:36.569] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:36.579] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:37.225] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:29:37.879] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:29:38.438] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:39.121] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:39.700] [mlr3]  Finished benchmark 
## INFO  [16:29:39.827] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:39.836] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:40.529] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:29:41.208] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:29:42.028] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:42.770] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:43.554] [mlr3]  Finished benchmark 
## INFO  [16:29:43.683] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:43.692] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:29:44.154] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:29:44.621] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:45.154] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:45.615] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:46.082] [mlr3]  Finished benchmark 
## INFO  [16:29:46.218] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:46.227] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:46.710] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:29:47.208] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:47.703] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:48.192] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:29:48.647] [mlr3]  Finished benchmark 
## INFO  [16:29:49.879] [mlr3]  Applying learner 'regr.ranger.tuned' on task 'challenge' (iter 1/5) 
## INFO  [16:29:50.052] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:50.062] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:50.651] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:29:51.233] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:29:51.850] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:52.509] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:53.180] [mlr3]  Finished benchmark 
## INFO  [16:29:53.340] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:53.349] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:53.570] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:53.794] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:29:54.009] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:54.235] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:29:54.470] [mlr3]  Finished benchmark 
## INFO  [16:29:54.602] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:54.610] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:29:55.021] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:55.450] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:55.816] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:56.189] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:29:56.572] [mlr3]  Finished benchmark 
## INFO  [16:29:56.715] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:56.726] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:29:56.941] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:57.170] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:29:57.374] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:57.597] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:57.823] [mlr3]  Finished benchmark 
## INFO  [16:29:57.960] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:57.972] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:58.138] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:58.346] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:58.508] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:29:58.673] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:29:58.835] [mlr3]  Finished benchmark 
## INFO  [16:29:58.960] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:29:58.968] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:29:59.236] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:29:59.514] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:29:59.788] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:30:00.074] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:30:00.351] [mlr3]  Finished benchmark 
## INFO  [16:30:00.482] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:30:00.491] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:30:00.874] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:30:01.303] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:30:01.685] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:30:02.127] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:30:02.568] [mlr3]  Finished benchmark 
## INFO  [16:30:02.706] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:30:02.714] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:30:03.305] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:30:03.807] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:30:04.329] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:30:04.843] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:30:05.364] [mlr3]  Finished benchmark 
## INFO  [16:30:05.532] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:30:05.544] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:30:06.089] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:30:06.643] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:30:07.229] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:30:07.811] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:30:08.364] [mlr3]  Finished benchmark 
## INFO  [16:30:08.497] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:30:08.505] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:30:09.029] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:30:09.558] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:30:10.093] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:30:10.660] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:30:11.198] [mlr3]  Finished benchmark 
## INFO  [16:30:11.323] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:30:11.332] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:30:11.708] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:30:12.148] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:30:12.569] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:30:13.008] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:30:13.396] [mlr3]  Finished benchmark 
## INFO  [16:30:13.553] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:30:13.565] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:30:13.980] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:30:14.343] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:30:14.709] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:30:15.082] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:30:15.431] [mlr3]  Finished benchmark 
## INFO  [16:30:15.557] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:30:15.565] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:30:15.795] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:30:16.031] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:30:16.294] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:30:16.543] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:30:16.779] [mlr3]  Finished benchmark 
## INFO  [16:30:16.905] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:30:16.914] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:30:17.899] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:30:18.744] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:30:19.555] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:30:20.653] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:30:21.490] [mlr3]  Finished benchmark 
## INFO  [16:30:21.623] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:30:21.632] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:30:23.138] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:30:24.312] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:30:25.495] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:30:26.715] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:30:28.386] [mlr3]  Finished benchmark 
## INFO  [16:30:28.685] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:30:28.699] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:30:29.158] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:30:29.561] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:30:29.948] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:30:30.256] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:30:30.522] [mlr3]  Finished benchmark 
## INFO  [16:30:30.707] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:30:30.719] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:30:31.515] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:30:32.290] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:30:33.051] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:30:33.869] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:30:34.566] [mlr3]  Finished benchmark 
## INFO  [16:30:34.752] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:30:34.760] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:30:35.481] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:30:36.162] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:30:36.849] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:30:37.617] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:30:38.373] [mlr3]  Finished benchmark 
## INFO  [16:30:38.503] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:30:38.512] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:30:38.787] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:30:39.061] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:30:39.415] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:30:39.674] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:30:39.931] [mlr3]  Finished benchmark 
## INFO  [16:30:40.061] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:30:40.069] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:30:41.041] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:30:42.013] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:30:43.167] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:30:44.236] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:30:45.226] [mlr3]  Finished benchmark 
## INFO  [16:30:46.950] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:31:09.750] [mlr3]  Applying learner 'regr.ranger.tuned' on task 'challenge' (iter 5/5) 
## INFO  [16:31:09.880] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:31:09.890] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:31:10.257] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:31:10.658] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:31:11.008] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:31:11.367] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:31:11.743] [mlr3]  Finished benchmark 
## INFO  [16:31:11.901] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:31:11.911] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:31:12.380] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:31:12.875] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:31:13.380] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:31:14.259] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:31:14.744] [mlr3]  Finished benchmark 
## INFO  [16:31:14.871] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:31:14.879] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:31:15.321] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:31:15.786] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:31:16.229] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:31:16.675] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:31:17.128] [mlr3]  Finished benchmark 
## INFO  [16:31:17.254] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:31:17.263] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:31:17.491] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:31:17.731] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:31:18.007] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:31:18.268] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:31:18.502] [mlr3]  Finished benchmark 
## INFO  [16:31:18.690] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:31:18.698] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:31:19.328] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:31:19.919] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:31:20.495] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:31:21.086] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:31:21.686] [mlr3]  Finished benchmark 
## INFO  [16:31:21.807] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:31:21.817] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:31:22.390] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:31:23.034] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:31:23.660] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:31:24.310] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:31:24.904] [mlr3]  Finished benchmark 
## INFO  [16:31:25.026] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:31:25.035] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:31:25.470] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:31:25.898] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:31:26.331] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:31:26.733] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:31:27.101] [mlr3]  Finished benchmark 
## INFO  [16:31:27.231] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:31:27.240] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:31:27.710] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:31:28.228] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:31:28.844] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:31:29.341] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:31:29.777] [mlr3]  Finished benchmark 
## INFO  [16:31:29.900] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:31:29.909] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:31:31.395] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:31:32.437] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:31:33.740] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:31:35.118] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:31:36.287] [mlr3]  Finished benchmark 
## INFO  [16:31:36.419] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:31:36.427] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:31:37.369] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:31:38.635] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:31:40.227] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:31:41.713] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:31:42.805] [mlr3]  Finished benchmark 
## INFO  [16:31:42.940] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:31:42.948] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:31:43.990] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:31:44.904] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:31:45.737] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:31:46.609] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:31:47.433] [mlr3]  Finished benchmark 
## INFO  [16:31:47.623] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:31:47.631] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:31:47.872] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:31:48.109] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:31:48.378] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:31:48.652] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:31:48.950] [mlr3]  Finished benchmark 
## INFO  [16:31:49.082] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:31:49.092] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:31:49.402] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:31:49.687] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:31:49.966] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:31:50.251] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:31:50.501] [mlr3]  Finished benchmark 
## INFO  [16:31:50.630] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:31:50.638] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:31:50.964] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:31:51.243] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:31:51.507] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:31:51.792] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:31:52.066] [mlr3]  Finished benchmark 
## INFO  [16:31:52.187] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:31:52.197] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:31:52.450] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:31:52.699] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:31:52.950] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:31:53.213] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:31:53.505] [mlr3]  Finished benchmark 
## INFO  [16:31:53.662] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:31:53.671] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:31:54.228] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:31:54.787] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:31:55.290] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:31:55.821] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:31:56.301] [mlr3]  Finished benchmark 
## INFO  [16:31:56.494] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:31:56.502] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:31:57.314] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:31:58.150] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:31:59.169] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:32:00.049] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:32:00.903] [mlr3]  Finished benchmark 
## INFO  [16:32:01.026] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:32:01.035] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:32:01.366] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:32:01.699] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:32:02.039] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:32:02.380] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:32:02.720] [mlr3]  Finished benchmark 
## INFO  [16:32:02.849] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:32:02.904] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:32:03.121] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:32:03.336] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:32:03.569] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:32:03.805] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:32:04.050] [mlr3]  Finished benchmark 
## INFO  [16:32:04.190] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:32:04.202] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:32:05.184] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:32:06.058] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:32:07.052] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:32:07.959] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:32:09.192] [mlr3]  Finished benchmark 
## INFO  [16:32:10.687] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:32:32.641] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:32:56.682] [mlr3]  Applying learner 'regr.ranger.tuned' on task 'challenge' (iter 3/5) 
## INFO  [16:32:56.815] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:32:56.824] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:32:57.759] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:32:58.251] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:32:58.744] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:32:59.332] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:32:59.830] [mlr3]  Finished benchmark 
## INFO  [16:32:59.958] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:32:59.967] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:33:00.228] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:33:00.440] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:33:00.655] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:33:00.875] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:33:01.092] [mlr3]  Finished benchmark 
## INFO  [16:33:01.220] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:33:01.229] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:33:01.727] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:33:02.231] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:33:02.743] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:33:03.259] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:33:03.789] [mlr3]  Finished benchmark 
## INFO  [16:33:03.977] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:33:03.987] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:33:04.174] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:33:04.381] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:33:04.603] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:33:04.782] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:33:04.979] [mlr3]  Finished benchmark 
## INFO  [16:33:05.130] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:33:05.138] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:33:05.765] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:33:06.351] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:33:06.928] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:33:07.524] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:33:08.118] [mlr3]  Finished benchmark 
## INFO  [16:33:08.298] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:33:08.305] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:33:08.644] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:33:09.002] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:33:09.419] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:33:09.845] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:33:10.207] [mlr3]  Finished benchmark 
## INFO  [16:33:10.332] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:33:10.341] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:33:10.583] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:33:10.808] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:33:11.034] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:33:11.261] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:33:11.497] [mlr3]  Finished benchmark 
## INFO  [16:33:11.628] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:33:11.638] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:33:11.833] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:33:12.029] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:33:12.227] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:33:12.857] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:33:13.059] [mlr3]  Finished benchmark 
## INFO  [16:33:13.179] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:33:13.190] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:33:13.870] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:33:14.616] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:33:15.349] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:33:16.105] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:33:16.767] [mlr3]  Finished benchmark 
## INFO  [16:33:16.895] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:33:16.904] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:33:17.119] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:33:17.333] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:33:17.544] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:33:17.770] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:33:17.983] [mlr3]  Finished benchmark 
## INFO  [16:33:18.168] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:33:18.176] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:33:18.570] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:33:18.947] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:33:19.334] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:33:19.792] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:33:20.264] [mlr3]  Finished benchmark 
## INFO  [16:33:20.390] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:33:20.401] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:33:20.703] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:33:20.994] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:33:21.308] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:33:21.577] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:33:21.887] [mlr3]  Finished benchmark 
## INFO  [16:33:22.034] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:33:22.043] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:33:22.824] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:33:23.581] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:33:24.357] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:33:25.267] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:33:26.075] [mlr3]  Finished benchmark 
## INFO  [16:33:26.204] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:33:26.213] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:33:26.860] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:33:27.452] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:33:28.088] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:33:28.701] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:33:29.327] [mlr3]  Finished benchmark 
## INFO  [16:33:29.476] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:33:29.486] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:33:29.961] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:33:30.343] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:33:30.769] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:33:31.157] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:33:31.549] [mlr3]  Finished benchmark 
## INFO  [16:33:31.737] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:33:31.746] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:33:32.411] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:33:33.144] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:33:33.802] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:33:34.463] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:33:35.223] [mlr3]  Finished benchmark 
## INFO  [16:33:35.373] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:33:35.381] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:33:35.606] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:33:35.856] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:33:36.075] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:33:36.284] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:33:36.510] [mlr3]  Finished benchmark 
## INFO  [16:33:36.642] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:33:36.650] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:33:37.094] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:33:37.590] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:33:38.019] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:33:38.460] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:33:38.904] [mlr3]  Finished benchmark 
## INFO  [16:33:39.031] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:33:39.039] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:33:39.347] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:33:39.700] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:33:40.094] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:33:40.486] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:33:40.831] [mlr3]  Finished benchmark 
## INFO  [16:33:40.959] [mlr3]  Running benchmark with 5 resampling iterations 
## INFO  [16:33:40.969] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:33:41.527] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 2/5) 
## INFO  [16:33:42.036] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 1/5) 
## INFO  [16:33:42.529] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 5/5) 
## INFO  [16:33:43.041] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 3/5) 
## INFO  [16:33:43.551] [mlr3]  Finished benchmark 
## INFO  [16:33:44.676] [mlr3]  Applying learner 'regr.ranger' on task 'challenge' (iter 4/5) 
## INFO  [16:34:14.051] [mlr3]  Finished benchmark

Terlihat model hasil tuning dengan sebelum tuning memiliki MAE yang tidak berbeda jauh

Hiperparameter Terbaik

Terlihat diatas adalah masing-masing nilai hiperparameter yang dinyatakan terbaik untuk pemodelan

Memilih Model

Karena model hasil tuning dengan sebelum tuning memiliki MAE yang tidak berbeda jauh, maka kedua model ini akan digunakan untuk memprediksi yang kemudian akan dilihat performanya berdasarkan MAD pada kaggle.

Memprediksi Respon pada Data Baru

Gunakan sintaks berikut untuk memprediksi respon pada data baru

##          [,1]      [,2]
## [1,] 17423675 225.15420
## [2,]  6226658  81.12843
## [3,]  3563677 130.41325
## [4,] 17615783  82.88992
## [5,]  2479317 332.57886
## [6,] 14122244 241.42357
##          [,1]     [,2]
## [1,] 17423675 235.4837
## [2,]  6226658  81.3324
## [3,]  3563677 130.2355
## [4,] 17615783  78.1177
## [5,]  2479317 313.3038
## [6,] 14122244 247.3532

Terlihat untuk kolom pertama menyatakan ID dari rumah sedangkan kolom kedua menyatakan prediksi harganya

Pembahasan Hasil Pemodelan

Setelah hasil kedua prediksi tersebut disubmit ke kaggle ternyata model setelah tuning menghasilkan MAE 63.80105 sedangkan model tanpa tuning MAE nya 61.33195. Hal tersebut menandakan model sebelum di tuning lebih baik untuk memprediksi harga dibandingkan model setelah tuning. Selanjutnya, model yang akan digunakan adalah model random forest sebelum dituning. Random forest dapat menghasilkan nilai variable importance atau nilai kepentingan peubah dimana nilai ini menunjukan seberapa penting suatu peubah. Peubah yang memiliki nilai impurity lebih kecil menandakan bahwa peubah tersebut lebih penting. Begitu juga sebaliknya.

##           accommodates              bathrooms               bed_type 
##              170883148              192221773                3544779 
##               bedrooms                   beds    cancellation_policy 
##              177042607               87382232               30111966 
##                   city           cleaning_fee   host_has_profile_pic 
##               79262142               21403234                2552582 
## host_identity_verified     host_response_rate       instant_bookable 
##               17138754               47138477               15769432 
##      number_of_reviews   review_scores_rating              room_type 
##               77603362               41639188              106677230

Hasil diatas menunjukan peubah dengan nilai impurity yang besar seperti bathrooms, accommodates, room_type dan bedrooms cenderung dianggap penting sementara untuk peubah dengan nilai impurity yang kecil adalah host_has_profile_pic dan bed_type. Peubah host_has_profile_pic dan bed_type dianggap sebagai peubah yang tidak penting.

Kesimpulan

Model yang digunakan untuk prediksi harga adalah model random forest sebelum di tuning. Model ini memberikan hasil MAE sebesar 61.33195 pada kaggle untuk prediksi data baru. Model ini menghasilkan tingkat kepentingan suatu peubah. Berdasarkan variable importance, Peubah host_has_profile_pic dan bed_type dianggap sebagai peubah yang tidak penting, sementara untuk peubah seperti bathrooms, accommodates, room_type dan bedrooms cenderung dianggap penting.