Model untuk Memprediksi Pelanggan yang Berpotensial untuk Menggunakan Channel - Laporan Tugas Praktikum STA581

Package

Pertama panggil package yang dibutuhkan dengan sintaks berikut:

## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.3     ✓ purrr   0.3.4
## ✓ tibble  3.1.0     ✓ dplyr   1.0.5
## ✓ tidyr   1.1.3     ✓ stringr 1.4.0
## ✓ readr   1.4.0     ✓ forcats 0.5.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
## Loading required package: lattice
## 
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
## 
##     lift
## 
## Attaching package: 'mlr3extralearners'
## The following objects are masked from 'package:mlr3verse':
## 
##     lrn, lrns
## Loading required package: rpart

Algoritme Naive Bayes, KNN, Regresi Logistik, Random Forest, Neural Network dan Regression Tree

Menentukan Cara Pembagian Data dan Komparasi Model

## INFO  [00:51:20.312] [mlr3]  Running benchmark with 50 resampling iterations
## 
## Attaching package: 'mlr3'
## The following objects are masked from 'package:mlr3extralearners':
## 
##     lrn, lrns
## INFO  [00:51:20.631] [mlr3]  Applying learner 'classif.log_reg' on task 'telkom' (iter 1/10) 
## INFO  [00:51:21.077] [mlr3]  Applying learner 'classif.ranger' on task 'telkom' (iter 2/10) 
## Growing trees.. Progress: 81%. Estimated remaining time: 7 seconds.
## INFO  [00:52:03.147] [mlr3]  Applying learner 'classif.rpart' on task 'telkom' (iter 5/10) 
## INFO  [00:52:03.525] [mlr3]  Applying learner 'classif.naive_bayes' on task 'telkom' (iter 7/10) 
## INFO  [00:52:05.039] [mlr3]  Applying learner 'classif.ranger' on task 'telkom' (iter 5/10) 
## Growing trees.. Progress: 74%. Estimated remaining time: 10 seconds.
## INFO  [00:52:50.814] [mlr3]  Applying learner 'classif.log_reg' on task 'telkom' (iter 6/10) 
## INFO  [00:52:51.427] [mlr3]  Applying learner 'classif.rpart' on task 'telkom' (iter 2/10) 
## INFO  [00:52:51.778] [mlr3]  Applying learner 'classif.naive_bayes' on task 'telkom' (iter 10/10) 
## INFO  [00:52:53.393] [mlr3]  Applying learner 'classif.rpart' on task 'telkom' (iter 6/10) 
## INFO  [00:52:53.729] [mlr3]  Applying learner 'classif.kknn' on task 'telkom' (iter 9/10) 
## INFO  [00:52:58.921] [mlr3]  Applying learner 'classif.ranger' on task 'telkom' (iter 9/10) 
## Growing trees.. Progress: 78%. Estimated remaining time: 8 seconds.
## INFO  [00:53:41.681] [mlr3]  Applying learner 'classif.naive_bayes' on task 'telkom' (iter 2/10) 
## INFO  [00:53:43.633] [mlr3]  Applying learner 'classif.rpart' on task 'telkom' (iter 3/10) 
## INFO  [00:53:43.963] [mlr3]  Applying learner 'classif.kknn' on task 'telkom' (iter 10/10) 
## INFO  [00:53:48.734] [mlr3]  Applying learner 'classif.ranger' on task 'telkom' (iter 7/10) 
## Growing trees.. Progress: 75%. Estimated remaining time: 10 seconds.
## INFO  [00:54:33.666] [mlr3]  Applying learner 'classif.log_reg' on task 'telkom' (iter 10/10) 
## INFO  [00:54:33.985] [mlr3]  Applying learner 'classif.ranger' on task 'telkom' (iter 8/10) 
## Growing trees.. Progress: 75%. Estimated remaining time: 10 seconds.
## INFO  [00:55:18.723] [mlr3]  Applying learner 'classif.ranger' on task 'telkom' (iter 10/10) 
## Growing trees.. Progress: 69%. Estimated remaining time: 14 seconds.
## INFO  [00:56:07.056] [mlr3]  Applying learner 'classif.rpart' on task 'telkom' (iter 9/10) 
## INFO  [00:56:07.690] [mlr3]  Applying learner 'classif.naive_bayes' on task 'telkom' (iter 4/10) 
## INFO  [00:56:09.701] [mlr3]  Applying learner 'classif.kknn' on task 'telkom' (iter 5/10) 
## INFO  [00:56:15.271] [mlr3]  Applying learner 'classif.kknn' on task 'telkom' (iter 7/10) 
## INFO  [00:56:20.620] [mlr3]  Applying learner 'classif.log_reg' on task 'telkom' (iter 9/10) 
## INFO  [00:56:20.971] [mlr3]  Applying learner 'classif.log_reg' on task 'telkom' (iter 4/10) 
## INFO  [00:56:21.260] [mlr3]  Applying learner 'classif.naive_bayes' on task 'telkom' (iter 8/10) 
## INFO  [00:56:22.721] [mlr3]  Applying learner 'classif.ranger' on task 'telkom' (iter 1/10) 
## Growing trees.. Progress: 74%. Estimated remaining time: 10 seconds.
## INFO  [00:57:09.373] [mlr3]  Applying learner 'classif.ranger' on task 'telkom' (iter 6/10) 
## Growing trees.. Progress: 80%. Estimated remaining time: 7 seconds.
## INFO  [00:57:51.436] [mlr3]  Applying learner 'classif.rpart' on task 'telkom' (iter 8/10) 
## INFO  [00:57:51.761] [mlr3]  Applying learner 'classif.log_reg' on task 'telkom' (iter 2/10) 
## INFO  [00:57:52.070] [mlr3]  Applying learner 'classif.log_reg' on task 'telkom' (iter 5/10) 
## INFO  [00:57:52.411] [mlr3]  Applying learner 'classif.kknn' on task 'telkom' (iter 3/10) 
## INFO  [00:57:57.093] [mlr3]  Applying learner 'classif.kknn' on task 'telkom' (iter 1/10) 
## INFO  [00:58:01.945] [mlr3]  Applying learner 'classif.log_reg' on task 'telkom' (iter 3/10) 
## INFO  [00:58:02.228] [mlr3]  Applying learner 'classif.naive_bayes' on task 'telkom' (iter 5/10) 
## INFO  [00:58:03.425] [mlr3]  Applying learner 'classif.rpart' on task 'telkom' (iter 10/10) 
## INFO  [00:58:03.743] [mlr3]  Applying learner 'classif.kknn' on task 'telkom' (iter 8/10) 
## INFO  [00:58:08.317] [mlr3]  Applying learner 'classif.naive_bayes' on task 'telkom' (iter 1/10) 
## INFO  [00:58:09.505] [mlr3]  Applying learner 'classif.log_reg' on task 'telkom' (iter 7/10) 
## INFO  [00:58:09.786] [mlr3]  Applying learner 'classif.kknn' on task 'telkom' (iter 4/10) 
## INFO  [00:58:14.479] [mlr3]  Applying learner 'classif.kknn' on task 'telkom' (iter 2/10) 
## INFO  [00:58:19.417] [mlr3]  Applying learner 'classif.naive_bayes' on task 'telkom' (iter 9/10) 
## INFO  [00:58:20.735] [mlr3]  Applying learner 'classif.naive_bayes' on task 'telkom' (iter 3/10) 
## INFO  [00:58:22.044] [mlr3]  Applying learner 'classif.rpart' on task 'telkom' (iter 7/10) 
## INFO  [00:58:22.359] [mlr3]  Applying learner 'classif.ranger' on task 'telkom' (iter 4/10) 
## Growing trees.. Progress: 81%. Estimated remaining time: 7 seconds.
## INFO  [00:59:04.470] [mlr3]  Applying learner 'classif.log_reg' on task 'telkom' (iter 8/10) 
## INFO  [00:59:04.826] [mlr3]  Applying learner 'classif.kknn' on task 'telkom' (iter 6/10) 
## INFO  [00:59:10.245] [mlr3]  Applying learner 'classif.rpart' on task 'telkom' (iter 4/10) 
## INFO  [00:59:10.567] [mlr3]  Applying learner 'classif.rpart' on task 'telkom' (iter 1/10) 
## INFO  [00:59:10.908] [mlr3]  Applying learner 'classif.naive_bayes' on task 'telkom' (iter 6/10) 
## INFO  [00:59:12.603] [mlr3]  Applying learner 'classif.ranger' on task 'telkom' (iter 3/10) 
## Growing trees.. Progress: 81%. Estimated remaining time: 7 seconds.
## INFO  [00:59:53.719] [mlr3]  Finished benchmark

Algoritma Neural Network

Metode ini memproses informasi dari data sebagai input layer, proses tersebut dilanjutkan pada layer berikutnya yaitu hidden layer, dimana setiap hidden layer dapat memuat beberapa nodes.

Neural network dapat dilakukan menggunakan fungsi nnet() yang terdapat pada package nnet, atau dapat pula dipanggil dari package mlr3extralearners.

## Warning in .__LearnerClassifNnet__initialize(self = self, private = private, :
## classif.nnet is now deprecated from mlr3extralearners, for use in the future
## please load mlr3learners >= 0.4.3.
## # weights:  105
## initial  value 24465.972780 
## iter  10 value 23201.609044
## iter  20 value 23118.626467
## iter  30 value 23028.008545
## iter  40 value 22973.340079
## iter  50 value 22954.967535
## iter  60 value 22948.231434
## iter  70 value 22945.481027
## iter  80 value 22944.054527
## iter  90 value 22936.785718
## iter 100 value 22932.353770
## final  value 22932.353770 
## stopped after 100 iterations
## INFO  [01:00:09.485] [mlr3]  Applying learner 'classif.nnet' on task 'telkom' (iter 1/1) 
## # weights:  105
## initial  value 27766.594626 
## iter  10 value 18788.127187
## iter  20 value 18722.119419
## iter  30 value 18637.545617
## iter  40 value 18615.702061
## iter  50 value 18524.450777
## iter  60 value 18515.878138
## iter  70 value 18503.384498
## iter  80 value 18500.491407
## iter  90 value 18438.253895
## iter 100 value 18410.227125
## final  value 18410.227125 
## stopped after 100 iterations
##         truth
## response    1    0
##        1    0    0
##        0 1848 8152
##         classif.acc classif.specificity classif.sensitivity         classif.auc 
##            0.815200            1.000000            0.000000            0.644358

Hasil diatas menunjukan accuracy tertinggi senilai 82% ada pada model random forest, oleh karena itu selanjutnya akan dilakukan hyperparameter tuning pada random forest

Algoritma Random Forest Tuning

Tuning hiperparameter bertujuan untuk meningkatkan performa model dalam hal prediksi dengan menemukan nilai hiperparameter terbaik. Hiperparameter yang dituning yaitu mtry dan maxdepth. Hiperparamter Random Forest yang digunakan adalah mtry yaitu banyaknya variabel yang digunakan untuk splitting pada tiap node dimana pada tahap ini digunakan nilai rentang 1 sampai 9, max.depth yaitu maksimal kedalaman pada tiap node di pohon final dimana pada tahap ini digunakan nilai rentang 3 sampai 15,

Menentukan Metode Resampling dan Mendefinisikan Tuning Hiperparameter

Hiperparameter yang dituning yaitu mtry dan maxdepth. Hiperparamter Random Forest yang digunakan adalah mtry yaitu banyaknya variabel yang digunakan untuk splitting pada tiap node dimana pada tahap ini digunakan nilai rentang 1 sampai 9, max.depth yaitu maksimal kedalaman pada tiap node di pohon final dimana pada tahap ini digunakan nilai rentang 3 sampai 15,

## Loading required package: paradox
## 
## Attaching package: 'mlr3tuning'
## The following object is masked from 'package:e1071':
## 
##     tune
## 
## ── Column specification ────────────────────────────────────────────────────────
## cols(
##   .default = col_character(),
##   Id = col_double(),
##   MSSubClass = col_double(),
##   LotFrontage = col_double(),
##   LotArea = col_double(),
##   OverallQual = col_double(),
##   OverallCond = col_double(),
##   YearBuilt = col_double(),
##   YearRemodAdd = col_double(),
##   MasVnrArea = col_double(),
##   BsmtFinSF1 = col_double(),
##   BsmtFinSF2 = col_double(),
##   BsmtUnfSF = col_double(),
##   TotalBsmtSF = col_double(),
##   `1stFlrSF` = col_double(),
##   `2ndFlrSF` = col_double(),
##   LowQualFinSF = col_double(),
##   GrLivArea = col_double(),
##   BsmtFullBath = col_double(),
##   BsmtHalfBath = col_double(),
##   FullBath = col_double()
##   # ... with 18 more columns
## )
## ℹ Use `spec()` for the full column specifications.

Menentukan Stopping Criteria dan Menentukan Metode Optimisasi

## INFO  [01:00:16.372] [bbotk] Starting to optimize 2 parameter(s) with '<OptimizerRandomSearch>' and '<TerminatorEvals> [n_evals=2]' 
## INFO  [01:00:16.391] [bbotk] Evaluating 1 configuration(s) 
## INFO  [01:00:16.456] [mlr3]  Running benchmark with 10 resampling iterations 
## INFO  [01:00:16.465] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 7/10) 
## INFO  [01:00:42.635] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 3/10) 
## INFO  [01:01:04.578] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 4/10) 
## INFO  [01:01:27.585] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 8/10) 
## INFO  [01:01:51.221] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 6/10) 
## INFO  [01:02:12.956] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 5/10) 
## INFO  [01:02:35.668] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 9/10) 
## INFO  [01:03:00.014] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 2/10) 
## INFO  [01:03:21.970] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 1/10) 
## INFO  [01:03:45.969] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 10/10) 
## INFO  [01:04:18.120] [mlr3]  Finished benchmark 
## INFO  [01:04:18.322] [bbotk] Result of batch 1: 
## INFO  [01:04:18.328] [bbotk]  classif.ranger.max.depth classif.ranger.mtry classif.acc 
## INFO  [01:04:18.328] [bbotk]                        10                   3     0.70064 
## INFO  [01:04:18.328] [bbotk]                                 uhash 
## INFO  [01:04:18.328] [bbotk]  1fce9655-9236-4d57-9bdd-caedf906c7ae 
## INFO  [01:04:18.334] [bbotk] Evaluating 1 configuration(s) 
## INFO  [01:04:18.387] [mlr3]  Running benchmark with 10 resampling iterations 
## INFO  [01:04:18.396] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 4/10) 
## INFO  [01:04:46.240] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 10/10) 
## INFO  [01:05:06.864] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 6/10) 
## INFO  [01:05:28.182] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 5/10) 
## INFO  [01:05:50.031] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 2/10) 
## INFO  [01:06:11.046] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 3/10) 
## INFO  [01:06:32.877] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 1/10) 
## INFO  [01:06:53.530] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 8/10) 
## INFO  [01:07:13.704] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 7/10) 
## INFO  [01:07:34.875] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 9/10) 
## INFO  [01:07:55.727] [mlr3]  Finished benchmark 
## INFO  [01:07:55.855] [bbotk] Result of batch 2: 
## INFO  [01:07:55.857] [bbotk]  classif.ranger.max.depth classif.ranger.mtry classif.acc 
## INFO  [01:07:55.857] [bbotk]                         8                   4     0.68168 
## INFO  [01:07:55.857] [bbotk]                                 uhash 
## INFO  [01:07:55.857] [bbotk]  8a644668-5d2b-4b15-a865-c2f65f0a76c0 
## INFO  [01:07:55.876] [bbotk] Finished optimizing after 2 evaluation(s) 
## INFO  [01:07:55.877] [bbotk] Result: 
## INFO  [01:07:55.879] [bbotk]  classif.ranger.max.depth classif.ranger.mtry learner_param_vals  x_domain 
## INFO  [01:07:55.879] [bbotk]                        10                   3          <list[4]> <list[2]> 
## INFO  [01:07:55.879] [bbotk]  classif.acc 
## INFO  [01:07:55.879] [bbotk]      0.70064

Run model dengan Hiperparameter Terbaik

## INFO  [01:07:56.201] [mlr3]  Running benchmark with 10 resampling iterations 
## INFO  [01:07:56.210] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 6/10) 
## INFO  [01:08:17.728] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 2/10) 
## INFO  [01:08:40.077] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 4/10) 
## INFO  [01:09:04.047] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 5/10) 
## INFO  [01:09:26.643] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 3/10) 
## INFO  [01:09:49.116] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 10/10) 
## INFO  [01:10:15.335] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 1/10) 
## INFO  [01:10:39.585] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 8/10) 
## INFO  [01:11:09.835] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 7/10) 
## INFO  [01:11:32.556] [mlr3]  Applying learner 'classweights.classif.ranger' on task 'telkom' (iter 9/10) 
## INFO  [01:11:54.819] [mlr3]  Finished benchmark

Hasil diatas menunjukan accuracy menjadi menurun menjadi 67% sehingga model yang lebih baik adalah random forest sebelum dituning

Algoritma Bagging dan Adaboost

Model yang selanjutnya dicobakan adalah model dengan algoritma Bagging dan Adaboost

Komparasi Model

## INFO  [01:11:58.464] [mlr3]  Running benchmark with 20 resampling iterations 
## INFO  [01:11:58.479] [mlr3]  Applying learner 'classif.AdaBoostM1' on task 'telkom' (iter 1/10) 
## INFO  [01:12:01.665] [mlr3]  Applying learner 'classif.AdaBoostM1' on task 'telkom' (iter 10/10) 
## INFO  [01:12:04.002] [mlr3]  Applying learner 'classif.AdaBoostM1' on task 'telkom' (iter 5/10) 
## INFO  [01:12:06.309] [mlr3]  Applying learner 'bagging clf' on task 'telkom' (iter 3/10) 
## INFO  [01:12:39.036] [mlr3]  Applying learner 'bagging clf' on task 'telkom' (iter 7/10) 
## INFO  [01:13:09.952] [mlr3]  Applying learner 'classif.AdaBoostM1' on task 'telkom' (iter 6/10) 
## INFO  [01:13:12.320] [mlr3]  Applying learner 'bagging clf' on task 'telkom' (iter 5/10) 
## INFO  [01:13:46.957] [mlr3]  Applying learner 'classif.AdaBoostM1' on task 'telkom' (iter 8/10) 
## INFO  [01:13:49.609] [mlr3]  Applying learner 'bagging clf' on task 'telkom' (iter 9/10) 
## INFO  [01:14:20.418] [mlr3]  Applying learner 'classif.AdaBoostM1' on task 'telkom' (iter 3/10) 
## INFO  [01:14:22.809] [mlr3]  Applying learner 'bagging clf' on task 'telkom' (iter 2/10) 
## INFO  [01:14:58.464] [mlr3]  Applying learner 'bagging clf' on task 'telkom' (iter 6/10) 
## Growing trees.. Progress: 97%. Estimated remaining time: 1 seconds.
## INFO  [01:15:38.653] [mlr3]  Applying learner 'classif.AdaBoostM1' on task 'telkom' (iter 9/10) 
## INFO  [01:15:42.110] [mlr3]  Applying learner 'classif.AdaBoostM1' on task 'telkom' (iter 7/10) 
## INFO  [01:15:45.286] [mlr3]  Applying learner 'bagging clf' on task 'telkom' (iter 10/10) 
## Growing trees.. Progress: 97%. Estimated remaining time: 0 seconds.
## INFO  [01:16:23.200] [mlr3]  Applying learner 'classif.AdaBoostM1' on task 'telkom' (iter 4/10) 
## INFO  [01:16:25.338] [mlr3]  Applying learner 'bagging clf' on task 'telkom' (iter 8/10) 
## INFO  [01:17:01.637] [mlr3]  Applying learner 'classif.AdaBoostM1' on task 'telkom' (iter 2/10) 
## INFO  [01:17:03.973] [mlr3]  Applying learner 'bagging clf' on task 'telkom' (iter 1/10) 
## INFO  [01:17:39.160] [mlr3]  Applying learner 'bagging clf' on task 'telkom' (iter 4/10) 
## INFO  [01:18:13.084] [mlr3]  Finished benchmark

Hasil diatas menunjukan bahwa model bagging lebih baik dengan accuracy sebesar 82%, akurasi ini lebih tinggi daripada random forest, sehingga selanjutnya akan dicobakan feature engineering berupa diskretisasi pada peubah frekuensi yaitu X3 dan X10 menggunakan model bagging untuk melihat apakah accuracy akan meningkat

Algoritma bagging dengan diskretisasi

Setelah diperoleh model terbaik adalah bagging classifier, selanjutnya akan dicoba jika diterapkan feature engineering berupa diskretisasi pada data untuk melihat apakah performa model meningkat.

Feature engineering yang dilakukan adalah diskretisasi. Diskretisasi dilakukan dengan metode equal frequency menggunakan quantile. Diskretisasi dilakukan pada peubah yang menyatakan frekuensi yaitu peubah x3 dan x10. Peubah tsb akan dipecah menjadi 4 kategori yaitu sangat jarang, jarang, sering, sangat sering.

Untuk Peubah X3 dipisah sebagai berikut: 0-10, 10-24, 24-50, dan 50-1007 begitu juga untuk peubah X10

Susun Model

## INFO  [01:19:01.340] [mlr3]  Running benchmark with 10 resampling iterations 
## INFO  [01:19:01.386] [mlr3]  Applying learner 'bagging clf' on task 'telkom' (iter 1/10) 
## INFO  [01:19:37.274] [mlr3]  Applying learner 'bagging clf' on task 'telkom' (iter 9/10) 
## INFO  [01:21:03.754] [mlr3]  Applying learner 'bagging clf' on task 'telkom' (iter 5/10) 
## Growing trees.. Progress: 84%. Estimated remaining time: 5 seconds.
## INFO  [01:21:47.486] [mlr3]  Applying learner 'bagging clf' on task 'telkom' (iter 8/10) 
## INFO  [01:22:21.797] [mlr3]  Applying learner 'bagging clf' on task 'telkom' (iter 7/10) 
## INFO  [01:22:55.328] [mlr3]  Applying learner 'bagging clf' on task 'telkom' (iter 2/10) 
## INFO  [01:23:28.779] [mlr3]  Applying learner 'bagging clf' on task 'telkom' (iter 3/10) 
## INFO  [01:24:01.156] [mlr3]  Applying learner 'bagging clf' on task 'telkom' (iter 6/10) 
## INFO  [01:24:37.381] [mlr3]  Applying learner 'bagging clf' on task 'telkom' (iter 4/10) 
## INFO  [01:25:09.337] [mlr3]  Applying learner 'bagging clf' on task 'telkom' (iter 10/10) 
## INFO  [01:25:49.218] [mlr3]  Finished benchmark

Visualisasi Kepentingan Peubah untuk Model Bagging dengan Diskretisasi

## Growing trees.. Progress: 54%. Estimated remaining time: 25 seconds.
## NULL

Visualisasi Kepentingan Peubah untuk Model Bagging tanpa Diskretisasi

Dipilih model terbaik adalah Model Bagging tanpa Diskretisasi karena hasil akurasi yang diperoleh tertinggi

## Growing trees.. Progress: 81%. Estimated remaining time: 7 seconds.
## NULL