knitr::opts_chunk$set(echo = TRUE)
I will recover the dataset that I created with people working for Sciences… from a couple of weeks ago.
setwd("~/Dropbox/UDLAP/Cursos/2022 Primavera/Pensiones y SS/Presentaciones")
sdem<-read.csv("ENOEN_SDEMT121.csv")
sdem<-sdem[which(sdem$eda>=15 & sdem$eda<=97),]
sdem<-sdem[which(sdem$c_res!=2),]
table(sdem$clase1,sdem$sex)
##
## 1 2
## 0 173 172
## 1 92483 62143
## 2 32493 77143
sdem<-sdem[which(sdem$clase1>0),]
peao<-sdem[which(sdem$clase2==1),]
coe1<-read.csv("ENOEN_COE1T121.csv")
peao<-merge(peao,coe1,by=c("cd_a","ent","con","v_sel","tipo","mes_cal",
"n_hog","h_mud","n_ren"))
remove(sdem,coe1)
peao$p3<-as.numeric(as.character(peao$p3))
peao$ciencias<-ifelse(peao$p3>=2200 & peao$p3<2300,1,0)
ciencias<-peao[which(peao$ciencias==1),]
remove(peao)
table(ciencias$sex)
##
## 1 2
## 2089 562
names(ciencias)
## [1] "cd_a" "ent" "con" "v_sel" "tipo"
## [6] "mes_cal" "n_hog" "h_mud" "n_ren" "r_def.x"
## [11] "loc" "mun" "est" "est_d_tri" "est_d_men"
## [16] "ageb" "t_loc_tri" "t_loc_men" "upm.x" "d_sem.x"
## [21] "n_pro_viv.x" "n_ent.x" "per.x" "c_res" "par_c"
## [26] "sex" "eda.x" "nac_dia" "nac_mes" "nac_anio"
## [31] "l_nac_c" "cs_p12" "cs_p13_1" "cs_p13_2" "cs_p14_c"
## [36] "cs_p15" "cs_p16" "cs_p17" "n_hij" "e_con"
## [41] "cs_ad_mot" "cs_p20_des" "cs_ad_des" "cs_nr_mot" "cs_p22_des"
## [46] "cs_nr_ori" "ur.x" "zona" "salario" "fac_tri.x"
## [51] "fac_men.x" "clase1" "clase2" "clase3" "pos_ocu"
## [56] "seg_soc" "rama" "c_ocu11c" "ing7c" "dur9c"
## [61] "emple7c" "medica5c" "buscar5c" "rama_est1" "rama_est2"
## [66] "dur_est" "ambito1" "ambito2" "tue1" "tue2"
## [71] "tue3" "busqueda" "d_ant_lab" "d_cexp_est" "dur_des"
## [76] "sub_o" "s_clasifi" "remune2c" "pre_asa" "tip_con"
## [81] "dispo" "nodispo" "c_inac5c" "pnea_est" "niv_ins"
## [86] "eda5c" "eda7c" "eda12c" "eda19c" "hij5c"
## [91] "domestico" "anios_esc" "hrsocup" "ingocup" "ing_x_hrs"
## [96] "tpg_p8a" "tcco" "cp_anoc" "imssissste" "ma48me1sm"
## [101] "p14apoyos" "scian" "t_tra" "emp_ppal" "tue_ppal"
## [106] "trans_ppal" "mh_fil2" "mh_col" "sec_ins" "ca.x"
## [111] "r_def.y" "upm.y" "d_sem.y" "n_pro_viv.y" "n_ent.y"
## [116] "per.y" "eda.y" "n_inf" "p1" "p1a1"
## [121] "p1a2" "p1a3" "p1b" "p1c" "p1d"
## [126] "p1e" "p2_1" "p2_2" "p2_3" "p2_4"
## [131] "p2_9" "p2a_dia" "p2a_sem" "p2a_mes" "p2a_anio"
## [136] "p2b_dia" "p2b_sem" "p2b_mes" "p2b_anio" "p2b"
## [141] "p2c" "p2d1" "p2d2" "p2d3" "p2d4"
## [146] "p2d5" "p2d6" "p2d7" "p2d8" "p2d9"
## [151] "p2d10" "p2d11" "p2d99" "p2e" "p2f"
## [156] "p2g1" "p2g2" "p2h1" "p2h2" "p2h3"
## [161] "p2h4" "p2h9" "p3" "p3a" "p3b"
## [166] "p3c1" "p3c2" "p3c3" "p3c4" "p3c9"
## [171] "p3d" "p3e" "p3f1" "p3f2" "p3g1_1"
## [176] "p3g1_2" "p3g2_1" "p3g2_2" "p3g3_1" "p3g3_2"
## [181] "p3g4_1" "p3g4_2" "p3g9" "p3g_tot" "p3h"
## [186] "p3i" "p3j" "p3k1" "p3k2" "p3l1"
## [191] "p3l2" "p3l3" "p3l4" "p3l5" "p3l9"
## [196] "p3m1" "p3m2" "p3m3" "p3m4" "p3m5"
## [201] "p3m6" "p3m7" "p3m8" "p3m9" "p3n"
## [206] "p3o" "p3p1" "p3p2" "p3q" "p3r_anio"
## [211] "p3r_mes" "p3r" "p3s" "p3t_anio" "p3t_mes"
## [216] "p4" "p4_1" "p4_2" "p4_3" "p4a"
## [221] "p4a_1" "p4b" "p4c" "p4d1" "p4d2"
## [226] "p4d3" "p4e" "p4f" "p4g" "p4h"
## [231] "p4i" "p4i_1" "p5" "p5a" "p5b"
## [236] "p5c_hlu" "p5c_mlu" "p5c_hma" "p5c_mma" "p5c_hmi"
## [241] "p5c_mmi" "p5c_hju" "p5c_mju" "p5c_hvi" "p5c_mvi"
## [246] "p5c_hsa" "p5c_msa" "p5c_hdo" "p5c_mdo" "p5c_thrs"
## [251] "p5c_tdia" "p5d" "p5e1" "p5e_hlu" "p5e_mlu"
## [256] "p5e_hma" "p5e_mma" "p5e_hmi" "p5e_mmi" "p5e_hju"
## [261] "p5e_mju" "p5e_hvi" "p5e_mvi" "p5e_hsa" "p5e_msa"
## [266] "p5e_hdo" "p5e_mdo" "p5e_thrs" "p5e_tdia" "p5f"
## [271] "p5g1" "p5g2" "p5g3" "p5g4" "p5g5"
## [276] "p5g6" "p5g7" "p5g8" "p5g9" "p5g10"
## [281] "p5g11" "p5g12" "p5g13" "p5g14" "p5g15"
## [286] "p5g99" "p5h" "ur.y" "ca.y" "fac_tri.y"
## [291] "fac_men.y" "ciencias"
# keep paid employees
ciencias<-ciencias[which(ciencias$p3h==1),]
v<-c("sex","eda.x","e_con","pos_ocu","seg_soc","ing7c","ingocup","ing_x_hrs",
"hrsocup","p3r_anio","p3r_mes","p3r","p3i")
ciencias<-ciencias[v]
ciencias<-ciencias[which(ciencias$Salary>0),]
I am also selecting just few variables for my analysis. I will rename some:
colnames(ciencias)<-c("Gender","Age","MaritalSt","Position","SS","IngG","Salary",
"HrSalary","TimeOcc","StartYr","StartMo","Current","Union")
write.csv(ciencias,"ciencias.csv")
remove(ciencias)