https://github.com/satijalab/seurat/issues/1621 https://github.com/satijalab/seurat/issues/2340 https://github.com/satijalab/seurat/issues/1883
knitr::opts_knit$set(
root.dir = ".")
library(dplyr)
library(dittoSeq)
library(ggrepel)
library(ggtree)
library(parallel)
library(plotly) # 3D plot
library(Seurat) # Idents()
library(SeuratDisk) # SaveH5Seurat()
library(tibble) # rownnames_to_column
library(harmony) # RunHarmony()
#options(mc.cores = detectCores() - 1)
pigs.merged <- readRDS("../../rObjects/brain_annotated.rds")
Idents(pigs.merged) <- pigs.merged$merged_clusters
DefaultAssay(pigs.merged) <- "RNA"
# natural-log
pigs.merged <- NormalizeData(pigs.merged, verbose = FALSE)
pigs.merged
## An object of class Seurat
## 42773 features across 8934 samples within 2 assays
## Active assay: RNA (21805 features, 0 variable features)
## 1 other assay present: SCT
## 3 dimensional reductions calculated: pca, harmony, umap
# UMAP
u1 <- DimPlot(object = pigs.merged,
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 4,
repel = TRUE)
u1
# subset
neuron <- subset(pigs.merged, merged_clusters == "Neuron")
# UMAP of neuron only
neuron_colors <- c("gold")
u1 <- DimPlot(object = neuron,
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 4,
repel = TRUE,
cols = neuron_colors)
u1
# show neuron cells by treatment
u2 <- DimPlot(object = neuron,
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 4,
repel = TRUE,
group.by = "treatment",
cols = treatment_colors)
u2
## png
## 2
## null device
## 1
## pdf
## 2
## null device
## 1
# Visualize the number of cell counts per sample
data <- as.data.frame(table(neuron$sample))
colnames(data) <- c("sample","frequency")
ncells <- ggplot(data, aes(x = sample, y = frequency, fill = sample)) +
geom_col() +
theme_classic() +
geom_text(aes(label = frequency),
position=position_dodge(width=0.9),
vjust=-0.25) +
scale_fill_manual(values = sample_colors) +
# scale_y_continuous(breaks = seq(0,30000, by = 5000), limits = c(0,30000)) +
ggtitle("Cells per sample") +
theme(legend.position = "none") +
theme(axis.text.x = element_text(angle = 45, hjust=1))
ncells
## Top transcripts
df <- data.frame(row.names = rownames(neuron))
df$rsum <- rowSums(x = neuron, slot = "counts")
df$gene_name <- rownames(df)
df <- df[order(df$rsum,decreasing = TRUE),]
head(df, 10)
## rsum gene_name
## KK-MALAT1 220728 KK-MALAT1
## NRXN3 151323 NRXN3
## RBFOX1 126301 RBFOX1
## KCNIP4 119233 KCNIP4
## OPCML 112231 OPCML
## DPP10 101984 DPP10
## DLG2 99168 DLG2
## CADM2 98708 CADM2
## PCDH9 91867 PCDH9
## NRG3 90702 NRG3
# Identify the most variable genes
neuron <- FindVariableFeatures(neuron,
selection.method = "vst", # default vst
nfeatures = 2000, # default 2000
verbose = FALSE)
# view top variable genes
top40 <- head(VariableFeatures(neuron), 40)
top40
## [1] "EYA1" "GRIK1" "NXPH1"
## [4] "TTR" "RELN" "RSAD2"
## [7] "ZNF536" "ADARB2" "TMEM132C"
## [10] "SOX6" "SST" "FOXP2"
## [13] "ERBB4" "ENSSSCG00000050139" "IL1RAPL2"
## [16] "ENSSSCG00000033089" "ENSSSCG00000004511" "ANK1"
## [19] "CLIC6" "NELL1" "PRLR"
## [22] "HTR2C" "PDE1C" "PTCHD4"
## [25] "COL8A1" "HS3ST4" "RNF220"
## [28] "CDH13" "SLC35F4" "PTPRM"
## [31] "GRIN3A" "SDK1" "IDO2"
## [34] "CEMIP" "OPALIN" "BTBD11"
## [37] "ZNF385D" "MX2" "SORCS1"
## [40] "LMX1A"
# plot variable features with labels
VarFeatPlot <- VariableFeaturePlot(neuron, cols = c("gray47","red"))
VarFeatPlotLabel <- LabelPoints(plot = VarFeatPlot,
points = top40, repel = TRUE, fontface="italic",
xnudge = 0, ynudge = 0, max.overlaps = 12)
VarFeatPlotLabel
## Median absolute deviation
Remove outliers with log-library size greater than 3 median absolute deviations (MADs) or below the median log-library size.
# MAD example
log.lib <- as.numeric(log10(neuron$nCount_RNA))
med <- median(log.lib)
abs.dev <- abs(log.lib - med)
mad <- median(abs.dev)
mad <- mad * 1.4826 # multiply by consistency cutoff
mad
## [1] 0.4667321
# stats function
mad <- mad(log.lib)
mad
## [1] 0.4667321
# remove outliers greater than 3 MADs
remove <- abs(log.lib - median(log.lib)) / mad(log.lib) > 3
table(remove)
## remove
## FALSE
## 4517
# split object by sample
Idents(neuron) <- neuron$sample
neuron.split <- SplitObject(neuron, split.by = "sample")
# SCTransform and regress percent.mt
neuron.split <- lapply(neuron.split, SCTransform, vars.to.regress = "percent.mt")
## Calculating cell attributes from input UMI matrix: log_umi
## Variance stabilizing transformation of count matrix of size 9945 by 129
## Model formula is y ~ log_umi
## Get Negative Binomial regression parameters per gene
## Using 2000 genes, 129 cells
##
|
| | 0%
|
|================== | 25%
|
|=================================== | 50%
|
|==================================================== | 75%
|
|======================================================================| 100%
## Found 37 outliers - those will be ignored in fitting/regularization step
## Second step: Get residuals using fitted parameters for 9945 genes
##
|
| | 0%
|
|==== | 5%
|
|======= | 10%
|
|========== | 15%
|
|============== | 20%
|
|================== | 25%
|
|===================== | 30%
|
|======================== | 35%
|
|============================ | 40%
|
|================================ | 45%
|
|=================================== | 50%
|
|====================================== | 55%
|
|========================================== | 60%
|
|============================================== | 65%
|
|================================================= | 70%
|
|==================================================== | 75%
|
|======================================================== | 80%
|
|============================================================ | 85%
|
|=============================================================== | 90%
|
|================================================================== | 95%
|
|======================================================================| 100%
## Computing corrected count matrix for 9945 genes
##
|
| | 0%
|
|==== | 5%
|
|======= | 10%
|
|========== | 15%
|
|============== | 20%
|
|================== | 25%
|
|===================== | 30%
|
|======================== | 35%
|
|============================ | 40%
|
|================================ | 45%
|
|=================================== | 50%
|
|====================================== | 55%
|
|========================================== | 60%
|
|============================================== | 65%
|
|================================================= | 70%
|
|==================================================== | 75%
|
|======================================================== | 80%
|
|============================================================ | 85%
|
|=============================================================== | 90%
|
|================================================================== | 95%
|
|======================================================================| 100%
## Calculating gene attributes
## Wall clock passed: Time difference of 7.262964 secs
## Determine variable features
## Place corrected count matrix in counts slot
## Regressing out percent.mt
## Centering data matrix
## Set default assay to SCT
## Calculating cell attributes from input UMI matrix: log_umi
## Variance stabilizing transformation of count matrix of size 13900 by 639
## Model formula is y ~ log_umi
## Get Negative Binomial regression parameters per gene
## Using 2000 genes, 639 cells
##
|
| | 0%
|
|================== | 25%
|
|=================================== | 50%
|
|==================================================== | 75%
|
|======================================================================| 100%
## Found 33 outliers - those will be ignored in fitting/regularization step
## Second step: Get residuals using fitted parameters for 13900 genes
##
|
| | 0%
|
|== | 4%
|
|===== | 7%
|
|======== | 11%
|
|========== | 14%
|
|============ | 18%
|
|=============== | 21%
|
|================== | 25%
|
|==================== | 29%
|
|====================== | 32%
|
|========================= | 36%
|
|============================ | 39%
|
|============================== | 43%
|
|================================ | 46%
|
|=================================== | 50%
|
|====================================== | 54%
|
|======================================== | 57%
|
|========================================== | 61%
|
|============================================= | 64%
|
|================================================ | 68%
|
|================================================== | 71%
|
|==================================================== | 75%
|
|======================================================= | 79%
|
|========================================================== | 82%
|
|============================================================ | 86%
|
|============================================================== | 89%
|
|================================================================= | 93%
|
|==================================================================== | 96%
|
|======================================================================| 100%
## Computing corrected count matrix for 13900 genes
##
|
| | 0%
|
|== | 4%
|
|===== | 7%
|
|======== | 11%
|
|========== | 14%
|
|============ | 18%
|
|=============== | 21%
|
|================== | 25%
|
|==================== | 29%
|
|====================== | 32%
|
|========================= | 36%
|
|============================ | 39%
|
|============================== | 43%
|
|================================ | 46%
|
|=================================== | 50%
|
|====================================== | 54%
|
|======================================== | 57%
|
|========================================== | 61%
|
|============================================= | 64%
|
|================================================ | 68%
|
|================================================== | 71%
|
|==================================================== | 75%
|
|======================================================= | 79%
|
|========================================================== | 82%
|
|============================================================ | 86%
|
|============================================================== | 89%
|
|================================================================= | 93%
|
|==================================================================== | 96%
|
|======================================================================| 100%
## Calculating gene attributes
## Wall clock passed: Time difference of 20.52171 secs
## Determine variable features
## Place corrected count matrix in counts slot
## Regressing out percent.mt
## Centering data matrix
## Set default assay to SCT
## Calculating cell attributes from input UMI matrix: log_umi
## Variance stabilizing transformation of count matrix of size 8563 by 179
## Model formula is y ~ log_umi
## Get Negative Binomial regression parameters per gene
## Using 2000 genes, 179 cells
##
|
| | 0%
|
|================== | 25%
|
|=================================== | 50%
|
|==================================================== | 75%
|
|======================================================================| 100%
## Found 41 outliers - those will be ignored in fitting/regularization step
## Second step: Get residuals using fitted parameters for 8563 genes
##
|
| | 0%
|
|==== | 6%
|
|======== | 11%
|
|============ | 17%
|
|================ | 22%
|
|=================== | 28%
|
|======================= | 33%
|
|=========================== | 39%
|
|=============================== | 44%
|
|=================================== | 50%
|
|======================================= | 56%
|
|=========================================== | 61%
|
|=============================================== | 67%
|
|=================================================== | 72%
|
|====================================================== | 78%
|
|========================================================== | 83%
|
|============================================================== | 89%
|
|================================================================== | 94%
|
|======================================================================| 100%
## Computing corrected count matrix for 8563 genes
##
|
| | 0%
|
|==== | 6%
|
|======== | 11%
|
|============ | 17%
|
|================ | 22%
|
|=================== | 28%
|
|======================= | 33%
|
|=========================== | 39%
|
|=============================== | 44%
|
|=================================== | 50%
|
|======================================= | 56%
|
|=========================================== | 61%
|
|=============================================== | 67%
|
|=================================================== | 72%
|
|====================================================== | 78%
|
|========================================================== | 83%
|
|============================================================== | 89%
|
|================================================================== | 94%
|
|======================================================================| 100%
## Calculating gene attributes
## Wall clock passed: Time difference of 7.700988 secs
## Determine variable features
## Place corrected count matrix in counts slot
## Regressing out percent.mt
## Centering data matrix
## Set default assay to SCT
## Calculating cell attributes from input UMI matrix: log_umi
## Variance stabilizing transformation of count matrix of size 19567 by 3570
## Model formula is y ~ log_umi
## Get Negative Binomial regression parameters per gene
## Using 2000 genes, 3570 cells
##
|
| | 0%
|
|================== | 25%
|
|=================================== | 50%
|
|==================================================== | 75%
|
|======================================================================| 100%
## Found 101 outliers - those will be ignored in fitting/regularization step
## Second step: Get residuals using fitted parameters for 19567 genes
##
|
| | 0%
|
|== | 2%
|
|==== | 5%
|
|===== | 8%
|
|======= | 10%
|
|========= | 12%
|
|========== | 15%
|
|============ | 18%
|
|============== | 20%
|
|================ | 22%
|
|================== | 25%
|
|=================== | 28%
|
|===================== | 30%
|
|======================= | 32%
|
|======================== | 35%
|
|========================== | 38%
|
|============================ | 40%
|
|============================== | 42%
|
|================================ | 45%
|
|================================= | 48%
|
|=================================== | 50%
|
|===================================== | 52%
|
|====================================== | 55%
|
|======================================== | 58%
|
|========================================== | 60%
|
|============================================ | 62%
|
|============================================== | 65%
|
|=============================================== | 68%
|
|================================================= | 70%
|
|=================================================== | 72%
|
|==================================================== | 75%
|
|====================================================== | 78%
|
|======================================================== | 80%
|
|========================================================== | 82%
|
|============================================================ | 85%
|
|============================================================= | 88%
|
|=============================================================== | 90%
|
|================================================================= | 92%
|
|================================================================== | 95%
|
|==================================================================== | 98%
|
|======================================================================| 100%
## Computing corrected count matrix for 19567 genes
##
|
| | 0%
|
|== | 2%
|
|==== | 5%
|
|===== | 8%
|
|======= | 10%
|
|========= | 12%
|
|========== | 15%
|
|============ | 18%
|
|============== | 20%
|
|================ | 22%
|
|================== | 25%
|
|=================== | 28%
|
|===================== | 30%
|
|======================= | 32%
|
|======================== | 35%
|
|========================== | 38%
|
|============================ | 40%
|
|============================== | 42%
|
|================================ | 45%
|
|================================= | 48%
|
|=================================== | 50%
|
|===================================== | 52%
|
|====================================== | 55%
|
|======================================== | 58%
|
|========================================== | 60%
|
|============================================ | 62%
|
|============================================== | 65%
|
|=============================================== | 68%
|
|================================================= | 70%
|
|=================================================== | 72%
|
|==================================================== | 75%
|
|====================================================== | 78%
|
|======================================================== | 80%
|
|========================================================== | 82%
|
|============================================================ | 85%
|
|============================================================= | 88%
|
|=============================================================== | 90%
|
|================================================================= | 92%
|
|================================================================== | 95%
|
|==================================================================== | 98%
|
|======================================================================| 100%
## Calculating gene attributes
## Wall clock passed: Time difference of 1.638789 mins
## Determine variable features
## Place corrected count matrix in counts slot
## Regressing out percent.mt
## Centering data matrix
## Set default assay to SCT
# Choose the features to use when integrating multiple datasets.
# will use nfeatures as 3000 as defined by running SCTransform above
var.features <- SelectIntegrationFeatures(object.list = neuron.split,
nfeatures = 3000)
# Merge the split object
neuron.sct.merged <- merge(x = neuron.split[[1]],
y = c(neuron.split[[2]], neuron.split[[3]], neuron.split[[4]]),
project = "LPS Pigs Neurons")
# Define the variable features
VariableFeatures(neuron.sct.merged) <- var.features
# Run PCA on the merged object
neuron.sct.merged <- RunPCA(object = neuron.sct.merged, assay = "SCT")
## PC_ 1
## Positive: KCNIP4, TAFA1, ARPP21, NRG1, LDB2, PDE1A, ST6GALNAC5, SLIT3, PTPRK, ENSSSCG00000011729
## GRM7, PCSK2, CUX2, DSCAM, SV2B, GPC6, ENSSSCG00000049709, RYR2, PHACTR1, HS3ST4
## RALYL, ENSSSCG00000014097, ENSSSCG00000042224, DLG1, KCNB2, KCNQ5, GALNT17, HS6ST3, ENSSSCG00000035525, NELL2
## Negative: ERBB4, NXPH1, PTPRM, SOX6, ZNF536, KIAA1217, GALNTL6, KCNC2, ZNF385D, PTCHD4
## TMEM132C, INPP4B, BTBD11, ZNF804A, GAD2, SLC6A1, ENSSSCG00000044043, ZNF804B, SDK1, GRIP1
## NHS, ANK1, UBASH3B, DNER, NRXN3, GAD1, ENSSSCG00000008533, KCNIP1, ENSSSCG00000004511, LSAMP
## PC_ 2
## Positive: NRXN3, NXPH1, HS3ST4, DPP10, RBFOX1, SGCZ, GRIK3, KIAA1217, GALNTL6, KCNC2
## LRP1B, GABRG3, GRIP1, OPCML, ROBO1, SOX6, KCNMA1, KCNQ3, ASTN2, PTCHD4
## TRHDE, ENSSSCG00000011489, IL1RAPL1, ENSSSCG00000050971, SLC24A2, DLGAP1, ENSSSCG00000051274, SPOCK3, FGF12, TENM2
## Negative: ZBTB20, ENSSSCG00000017146, STAT1, SLC1A2, ENSSSCG00000044913, LRMDA, TCF7L2, NOL11, CGNL1, GLIS3
## SLC1A3, PARP14, MX2, NHSL1, MAML2, EPSTI1, FBXL7, PLEKHA7, ARHGAP42, FGFR2
## EGFR, ACSS3, CDC14A, STK3, SAT1, RBM47, EYA2, CLIC4, ETV6, ENSSSCG00000024973
## PC_ 3
## Positive: HS3ST4, ZFPM2, DPP10, GRIK3, IL1RAPL2, SEMA3E, KIAA1217, LRP1B, CLSTN2, SORCS1
## SLC35F4, SGCZ, GRM3, GALNT9, MCTP1, TSPAN18, RASGRP1, LSAMP, FMNL2, RORA
## KHDRBS3, PRKCB, XYLT1, TLE4, BCAR3, DCC, SLIT1, SULF1, CCSER1, SOX5
## Negative: CA10, RFX3, NPAS3, TAFA1, GRIA4, RASGRF2, SLIT2, ENC1, HS6ST3, KCND2
## ENSSSCG00000014097, CUX2, EPHA6, UNC5D, CACNB2, KCTD16, CNTN3, CSMD3, FSTL5, CCK
## ERBB4, GALNT13, GABRA2, SLIT3, STPG4, ENSSSCG00000040650, CDH13, STXBP6, NXPH1, PRKG1
## PC_ 4
## Positive: ERBB4, ZNF536, ZNF385D, ZNF804A, SDK1, BTBD11, ZMAT4, SGCZ, IL1RAPL1, ENSSSCG00000004511
## ADARB2, CNTN5, KAZN, PTCHD4, ASIC2, VAV3, GABRG3, CNTNAP5, ENSSSCG00000009543, HMCN1
## KLHL13, ENSSSCG00000050221, SLC6A1, PTPRO, GRIA4, KIT, SORCS3, PTPRM, IQGAP2, GPR158
## Negative: PDE1C, GRIK1, CACNA2D3, TRHDE, GRIN3A, THSD7B, RELN, UTRN, ROBO2, TMCC3
## CDH13, NELL1, EYA1, BRINP3, PARD3, GRIK3, SYNPR, SOX6, NXPH1, PLCB4
## GRIK2, SYTL5, SATB1, CDH9, ENSSSCG00000048562, NRXN3, GRID2, ENSSSCG00000044043, RBMS1, NPAS3
## PC_ 5
## Positive: GALNTL6, ADARB2, RSPO2, ENSSSCG00000050221, SORCS1, SORCS3, ERBB4, PTPRT, ENSSSCG00000051441, KIT
## CCDC85A, SGCZ, GPR158, SLC35F4, CDH20, ZNF536, MACROD2, LUZP2, AMOTL1, SLC24A3
## KLHL13, THSD7B, ENSSSCG00000023627, NWD2, GRIK1, ZNF804B, DOCK10, RELN, RIN2, FSTL5
## Negative: KIAA1217, NXPH1, SOX6, TMEM132C, ENSSSCG00000004511, KCNC2, VAV3, IQGAP2, PTCHD4, ANK1
## IL1RAPL1, ZNF385D, PTPRM, ROBO1, DOCK4, ENSSSCG00000043464, SLIT2, GRIK3, SPOCK3, ZNF804A
## GRIA4, ETV6, PCDH7, SEMA3E, SULF1, RBFOX1, KCNMA1, ENSSSCG00000051588, SLIT1, PLCXD3
# get significant PCs
stdv <- neuron.sct.merged[["pca"]]@stdev
sum.stdv <- sum(neuron.sct.merged[["pca"]]@stdev)
percent.stdv <- (stdv / sum.stdv) * 100
cumulative <- cumsum(percent.stdv)
co1 <- which(cumulative > 90 & percent.stdv < 5)[1]
co2 <- sort(which((percent.stdv[1:length(percent.stdv) - 1] -
percent.stdv[2:length(percent.stdv)]) > 0.1),
decreasing = T)[1] + 1
min.pc <- min(co1, co2)
min.pc
## [1] 17
# run umap
neuron.nointergration <- RunUMAP(neuron.sct.merged, dims = 1:min.pc, reduction = "pca")
## Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
## To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
## This message will be shown once per session
## 20:34:34 UMAP embedding parameters a = 0.9922 b = 1.112
## 20:34:34 Read 4517 rows and found 17 numeric columns
## 20:34:34 Using Annoy for neighbor search, n_neighbors = 30
## 20:34:34 Building Annoy index with metric = cosine, n_trees = 50
## 0% 10 20 30 40 50 60 70 80 90 100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 20:34:34 Writing NN index file to temp file /tmp/RtmpII5OCO/file13ad539a9ead6
## 20:34:34 Searching Annoy index using 1 thread, search_k = 3000
## 20:34:36 Annoy recall = 100%
## 20:34:37 Commencing smooth kNN distance calibration using 1 thread
## 20:34:39 Initializing from normalized Laplacian + noise
## 20:34:40 Commencing optimization for 500 epochs, with 194374 positive edges
## 20:34:54 Optimization finished
# cluster
neuron.nointergration <- FindNeighbors(object = neuron.nointergration, dims = 1:min.pc)
## Computing nearest neighbor graph
## Computing SNN
# Determine the clusters for various resolutions
neuron.nointergration <- FindClusters(object = neuron.nointergration,resolution = seq(0.1,0.8,by=0.1))
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 4517
## Number of edges: 152001
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9493
## Number of communities: 10
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 4517
## Number of edges: 152001
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9280
## Number of communities: 12
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 4517
## Number of edges: 152001
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9162
## Number of communities: 15
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 4517
## Number of edges: 152001
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9041
## Number of communities: 15
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 4517
## Number of edges: 152001
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8936
## Number of communities: 17
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 4517
## Number of edges: 152001
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8839
## Number of communities: 17
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 4517
## Number of edges: 152001
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8744
## Number of communities: 17
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 4517
## Number of edges: 152001
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8649
## Number of communities: 17
## Elapsed time: 0 seconds
Idents(neuron.nointergration) <- "SCT_snn_res.0.1"
neuron.nointergration$seurat_clusters <- neuron.nointergration$SCT_snn_res.0.1
u1 <- dittoDimPlot(object = neuron.nointergration,
var = "seurat_clusters",
reduction.use = "umap",
do.label = TRUE,
labels.highlight = FALSE)
u1
u2 <- dittoDimPlot(object = neuron.nointergration,
var = "seurat_clusters",
reduction.use = "umap",
do.label = TRUE,
split.by = "treatment",
labels.highlight = FALSE)
u2
# show neuron cells by treatment
u3 <- DimPlot(object = neuron.nointergration,
reduction = "umap",
label = FALSE,
repel = TRUE,
group.by = "treatment",
cols = treatment_colors)
u3
# show neuron cells by treatment
remove(u1,u2,u3)
# Cells per treatment per cluster
treatment_ncells <- FetchData(neuron.nointergration,
vars = c("ident", "treatment")) %>%
dplyr::count(ident,treatment) %>%
tidyr::spread(ident, n)
treatment_ncells
## treatment 0 1 2 3 4 5 6 7 8 9
## 1 LPS 1873 794 246 200 150 178 161 74 47 26
## 2 Saline 567 46 10 22 56 11 3 30 23 NA
# Cells per sample per cluster
sample_ncells <- FetchData(neuron.nointergration,
vars = c("ident", "sample")) %>%
dplyr::count(ident,sample) %>%
tidyr::spread(ident, n)
sample_ncells
## sample 0 1 2 3 4 5 6 7 8 9
## 1 10.Saline 497 33 4 21 56 6 1 10 11 NA
## 2 12.LPS 1735 793 245 200 150 178 141 68 34 26
## 3 4.R.Saline 70 13 6 1 NA 5 2 20 12 NA
## 4 8.R.LPS 138 1 1 NA NA NA 20 6 13 NA
# treatment
b1 <- neuron.nointergration@meta.data %>%
group_by(seurat_clusters, treatment) %>%
dplyr::count() %>%
group_by(seurat_clusters) %>%
dplyr::mutate(percent = 100*n/sum(n)) %>%
ungroup() %>%
ggplot(aes(x=seurat_clusters,y=percent, fill=treatment)) +
geom_col() +
scale_fill_manual(values = treatment_colors) +
ggtitle("Percentage of treatment per cluster")
b1
# sample
b2 <- neuron.nointergration@meta.data %>%
group_by(seurat_clusters, sample) %>%
dplyr::count() %>%
group_by(seurat_clusters) %>%
dplyr::mutate(percent = 100*n/sum(n)) %>%
ungroup() %>%
ggplot(aes(x=seurat_clusters,y=percent, fill=sample)) +
geom_col() +
#scale_fill_manual(values = sample_colors) +
ggtitle("Percentage of sample per cluster")
b2
remove(b1, b2)
# Run harmony to harmonize over samples
neuron.integrated <- RunHarmony(object = neuron.sct.merged,
group.by.vars = "sample",
assay.use = "SCT",
reduction = "pca",
plot_convergence = TRUE)
## Harmony 1/10
## Harmony 2/10
## Harmony converged after 2 iterations
## Warning: Invalid name supplied, making object name syntactically valid. New
## object name is Seurat..ProjectDim.SCT.harmony; see ?make.names for more details
## on syntax validity
First metric
# Determine percent of variation associated with each PC
stdv <- neuron.integrated[["pca"]]@stdev
sum.stdv <- sum(neuron.integrated[["pca"]]@stdev)
percent.stdv <- (stdv / sum.stdv) * 100
# Calculate cumulative percents for each PC
cumulative <- cumsum(percent.stdv)
# Determine which PC exhibits cumulative percent greater than 90% and
# and % variation associated with the PC as less than 5
co1 <- which(cumulative > 90 & percent.stdv < 5)[1]
co1
## [1] 42
Second metric
# Determine the difference between variation of PC and subsequent PC
co2 <- sort(which(
(percent.stdv[1:length(percent.stdv) - 1] -
percent.stdv[2:length(percent.stdv)]) > 0.1),
decreasing = T)[1] + 1
# last point where change of % of variation is more than 0.1%.
co2
## [1] 17
Usually, we would choose the minimum of these two metrics as the PCs covering the majority of the variation in the data.
# Minimum of the two calculation
min.pc <- min(co1, co2)
min.pc
## [1] 17
Use min.pc we just calculated to generate the clusters. We can plot the elbow plot again and overlay the information determined using our metrics:
# Create a dataframe with values
plot_df <- data.frame(pct = percent.stdv,
cumu = cumulative,
rank = 1:length(percent.stdv))
# Elbow plot to visualize
ggplot(plot_df, aes(cumulative, percent.stdv, label = rank, color = rank > min.pc)) +
geom_text() +
geom_vline(xintercept = 90, color = "grey") +
geom_hline(yintercept = min(percent.stdv[percent.stdv > 5]), color = "grey") +
theme_bw()
# Run UMAP
neuron.integrated <- RunUMAP(neuron.integrated,
dims = 1:min.pc,
reduction = "pca",
n.components = 3) # set to 3 to use with VR
## 20:35:10 UMAP embedding parameters a = 0.9922 b = 1.112
## 20:35:10 Read 4517 rows and found 17 numeric columns
## 20:35:10 Using Annoy for neighbor search, n_neighbors = 30
## 20:35:10 Building Annoy index with metric = cosine, n_trees = 50
## 0% 10 20 30 40 50 60 70 80 90 100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 20:35:11 Writing NN index file to temp file /tmp/RtmpII5OCO/file13ad558400030
## 20:35:11 Searching Annoy index using 1 thread, search_k = 3000
## 20:35:12 Annoy recall = 100%
## 20:35:14 Commencing smooth kNN distance calibration using 1 thread
## 20:35:16 Initializing from normalized Laplacian + noise
## 20:35:16 Commencing optimization for 500 epochs, with 194374 positive edges
## 20:35:31 Optimization finished
# Determine the K-nearest neighbor graph
neuron.integrated <- FindNeighbors(object = neuron.integrated,dims = 1:min.pc)
## Computing nearest neighbor graph
## Computing SNN
# Determine the clusters for various resolutions
neuron.unannotated <- FindClusters(object = neuron.integrated,resolution = seq(0.1,0.8,by=0.1))
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 4517
## Number of edges: 152001
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9493
## Number of communities: 10
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 4517
## Number of edges: 152001
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9280
## Number of communities: 12
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 4517
## Number of edges: 152001
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9162
## Number of communities: 15
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 4517
## Number of edges: 152001
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9041
## Number of communities: 15
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 4517
## Number of edges: 152001
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8936
## Number of communities: 17
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 4517
## Number of edges: 152001
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8839
## Number of communities: 17
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 4517
## Number of edges: 152001
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8744
## Number of communities: 17
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 4517
## Number of edges: 152001
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8649
## Number of communities: 17
## Elapsed time: 0 seconds
Idents(neuron.unannotated) <- "SCT_snn_res.0.1"
# save
saveRDS(neuron.unannotated,"../../rObjects/neuron_unannotated.rds")
DefaultAssay(neuron.unannotated) <- "RNA"
#neuron.unannotated <- NormalizeData(neuron.unannotated, verbose = FALSE)
neuron.unannotated$seurat_clusters <- neuron.unannotated$SCT_snn_res.0.1
u1 <- dittoDimPlot(object = neuron.unannotated,
var = "seurat_clusters",
reduction.use = "umap",
do.label = TRUE,
labels.highlight = FALSE)
u1
u2 <- dittoDimPlot(object = neuron.unannotated,
var = "seurat_clusters",
reduction.use = "umap",
do.label = TRUE,
split.by = "treatment",
labels.highlight = FALSE)
u2
# show neuron cells by treatment
u3 <- DimPlot(object = neuron.unannotated,
reduction = "umap",
label = FALSE,
repel = TRUE,
group.by = "treatment",
cols = treatment_colors)
u3
remove(u1,u2,u3)
cluster_colors <- c("gold","firebrick1","dodgerblue","green",
"cyan","chocolate4","gray40","purple", "blue")
neuron.unannotated <- BuildClusterTree(object = neuron.unannotated,
dims = 1:min.pc,
reorder = FALSE,
reorder.numeric = FALSE)
tree <- neuron.unannotated@tools$BuildClusterTree
tree$tip.label <- paste0("Cluster ", tree$tip.label)
p <- ggtree::ggtree(tree, aes(x, y)) +
scale_y_reverse() +
ggtree::geom_tree() +
ggtree::theme_tree() +
ggtree::geom_tiplab(offset = 1) +
ggtree::geom_tippoint(color = cluster_colors[1:length(tree$tip.label)], shape = 16, size = 5) +
coord_cartesian(clip = 'off') +
theme(plot.margin = unit(c(0,2.5,0,0), 'cm'))
## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.
p
## Warning: Removed 1 rows containing missing values (geom_point_g_gtree).
# Cells per treatment per cluster
treatment_ncells <- FetchData(neuron.unannotated,
vars = c("ident", "treatment")) %>%
dplyr::count(ident,treatment) %>%
tidyr::spread(ident, n)
treatment_ncells
## treatment 0 1 2 3 4 5 6 7 8 9
## 1 LPS 1873 794 246 200 150 178 161 74 47 26
## 2 Saline 567 46 10 22 56 11 3 30 23 NA
# Cells per sample per cluster
sample_ncells <- FetchData(neuron.unannotated,
vars = c("ident", "sample")) %>%
dplyr::count(ident,sample) %>%
tidyr::spread(ident, n)
sample_ncells
## sample 0 1 2 3 4 5 6 7 8 9
## 1 10.Saline 497 33 4 21 56 6 1 10 11 NA
## 2 12.LPS 1735 793 245 200 150 178 141 68 34 26
## 3 4.R.Saline 70 13 6 1 NA 5 2 20 12 NA
## 4 8.R.LPS 138 1 1 NA NA NA 20 6 13 NA
# treatment
b1 <- neuron.unannotated@meta.data %>%
group_by(seurat_clusters, treatment) %>%
dplyr::count() %>%
group_by(seurat_clusters) %>%
dplyr::mutate(percent = 100*n/sum(n)) %>%
ungroup() %>%
ggplot(aes(x=seurat_clusters,y=percent, fill=treatment)) +
geom_col() +
scale_fill_manual(values = treatment_colors) +
ggtitle("Percentage of treatment per cluster")
b1
# sample
b2 <- neuron.unannotated@meta.data %>%
group_by(seurat_clusters, sample) %>%
dplyr::count() %>%
group_by(seurat_clusters) %>%
dplyr::mutate(percent = 100*n/sum(n)) %>%
ungroup() %>%
ggplot(aes(x=seurat_clusters,y=percent, fill=sample)) +
geom_col() +
#scale_fill_manual(values = sample_colors) +
ggtitle("Percentage of sample per cluster")
b2
remove(b1, b2)
# set levels
neuron.unannotated$treatment <- factor(neuron.unannotated$treatment,
levels = c("LPS","Saline"))
neuron.unannotated$SCT_snn_res.0.1 <- factor(neuron.unannotated$SCT_snn_res.0.1)
# initialize df
conserved.markers <- data.frame()
all.clusters <- unique(neuron.unannotated$SCT_snn_res.0.1)
# loop through each cluster
for (i in all.clusters) {
# print the cluster you're on
print(i)
# find conserved marker in cluster vs all other clusters
markers <- FindConservedMarkers(neuron.unannotated,
ident.1 = i, # subset to single cluster
grouping.var = "treatment", # compare by treatment
only.pos = TRUE, # only positive markers
min.pct = 0.1, # default
logfc.threshold = 0.25, # default
test.use = "MAST"
)
# skip if none
if(nrow(markers) == 0) {
next
}
# make rownames a column
markers <- rownames_to_column(markers, var = "gene")
# make cluster number a column
markers$cluster <- i
# add to final table
conserved.markers <- rbind(conserved.markers, markers)
}
# create delta_pct
conserved.markers$Saline_delta_pct <- abs(conserved.markers$Saline_pct.1 -
conserved.markers$Saline_pct.2)
conserved.markers$LPS_delta_pct <- abs(conserved.markers$LPS_pct.1 -
conserved.markers$LPS_pct.2)
# more stringent filtering
markers.strict <- conserved.markers[
conserved.markers$Saline_delta_pct > summary(conserved.markers$Saline_delta_pct)[5],]
markers.strict <- conserved.markers[
conserved.markers$LPS_delta_pct > summary(conserved.markers$LPS_delta_pct)[5],]
markers.strict$gene_name <- markers.strict$gene
markers.strict$row.num <- 1:nrow(markers.strict)
# compare
table(conserved.markers$cluster)
table(markers.strict$cluster)
saveRDS(conserved.markers, paste0("../../rObjects/brain_conserved_markers_", cell, ".rds"))
conserved.markers <- readRDS(paste0("../../rObjects/brain_conserved_markers_", cell, ".rds"))
# create delta_pct
conserved.markers$Saline_delta_pct <- abs(conserved.markers$Saline_pct.1 -
conserved.markers$Saline_pct.2)
conserved.markers$LPS_delta_pct <- abs(conserved.markers$LPS_pct.1 -
conserved.markers$LPS_pct.2)
# more stringent filtering
markers.strict <- conserved.markers[
conserved.markers$Saline_delta_pct > summary(conserved.markers$Saline_delta_pct)[5],]
markers.strict <- conserved.markers[
conserved.markers$LPS_delta_pct > summary(conserved.markers$LPS_delta_pct)[5],]
markers.strict$gene_name <- markers.strict$gene
markers.strict$row.num <- 1:nrow(markers.strict)
# subset
cluster0 <- markers.strict[markers.strict$cluster == 0,]
cluster1 <- markers.strict[markers.strict$cluster == 1,]
cluster2 <- markers.strict[markers.strict$cluster == 2,]
cluster3 <- markers.strict[markers.strict$cluster == 3,]
cluster4 <- markers.strict[markers.strict$cluster == 4,]
cluster5 <- markers.strict[markers.strict$cluster == 5,]
cluster6 <- markers.strict[markers.strict$cluster == 6,]
cluster7 <- markers.strict[markers.strict$cluster == 7,]
cluster8 <- markers.strict[markers.strict$cluster == 8,]
cluster9 <- markers.strict[markers.strict$cluster == 9,]
VlnPlot(neuron.unannotated,
features = cluster0$gene[1:2],
split.by = "seurat_clusters",
cols = cluster_colors,
flip = TRUE,
stack = TRUE)
## The default behaviour of split.by has changed.
## Separate violin plots are now plotted side-by-side.
## To restore the old behaviour of a single split violin,
## set split.plot = TRUE.
##
## This message will be shown once per session.
### Cluster 1
VlnPlot(neuron.unannotated,
features = cluster1$gene[1:20],
split.by = "seurat_clusters",
cols = cluster_colors,
flip = TRUE,
stack = TRUE)
VlnPlot(neuron.unannotated,
features = cluster1$gene[21:40],
split.by = "seurat_clusters",
cols = cluster_colors,
flip = TRUE,
stack = TRUE)
### Cluster 2
VlnPlot(neuron.unannotated,
features = cluster2$gene[1:20],
split.by = "seurat_clusters",
cols = cluster_colors,
flip = TRUE,
stack = TRUE)
VlnPlot(neuron.unannotated,
features = cluster2$gene[21:41],
split.by = "seurat_clusters",
cols = cluster_colors,
flip = TRUE,
stack = TRUE)
VlnPlot(neuron.unannotated,
features = cluster3$gene[1:21],
split.by = "seurat_clusters",
cols = cluster_colors,
flip = TRUE,
stack = TRUE)
VlnPlot(neuron.unannotated,
features = cluster3$gene[21:40],
split.by = "seurat_clusters",
cols = cluster_colors,
flip = TRUE,
stack = TRUE)
### Cluster 4
VlnPlot(neuron.unannotated,
features = cluster4$gene[1:20],
split.by = "seurat_clusters",
cols = cluster_colors,
flip = TRUE,
stack = TRUE)
VlnPlot(neuron.unannotated,
features = cluster4$gene[21:40],
split.by = "seurat_clusters",
cols = cluster_colors,
flip = TRUE,
stack = TRUE)
### Cluster 5
VlnPlot(neuron.unannotated,
features = cluster5$gene[1:20],
split.by = "seurat_clusters",
cols = cluster_colors,
flip = TRUE,
stack = TRUE)
VlnPlot(neuron.unannotated,
features = cluster5$gene[21:40],
split.by = "seurat_clusters",
cols = cluster_colors,
flip = TRUE,
stack = TRUE)
VlnPlot(neuron.unannotated,
features = cluster6$gene[1:20],
split.by = "seurat_clusters",
cols = cluster_colors,
flip = TRUE,
stack = TRUE)
VlnPlot(neuron.unannotated,
features = cluster6$gene[21:40],
split.by = "seurat_clusters",
cols = cluster_colors,
flip = TRUE,
stack = TRUE)
VlnPlot(neuron.unannotated,
features = cluster7$gene[1:20],
split.by = "seurat_clusters",
cols = cluster_colors,
flip = TRUE,
stack = TRUE)
VlnPlot(neuron.unannotated,
features = cluster7$gene[21:29],
split.by = "seurat_clusters",
cols = cluster_colors,
flip = TRUE,
stack = TRUE)
### Cluster 8
VlnPlot(neuron.unannotated,
features = cluster8$gene[1:20],
split.by = "seurat_clusters",
cols = cluster_colors,
flip = TRUE,
stack = TRUE)
VlnPlot(neuron.unannotated,
features = cluster8$gene[21:40],
split.by = "seurat_clusters",
cols = cluster_colors,
flip = TRUE,
stack = TRUE)
# Neuron markers
# Interneuron
# umap with annotations
cell_types <- unique(neuron.unannotated$SCT_snn_res.0.1)
neuron.unannotated$cell_type <- neuron.unannotated$SCT_snn_res.0.1
DE.df <- data.frame()
for (i in cell_types) {
print(i)
cluster <- subset(neuron.unannotated, cell_type == i)
Idents(cluster) <- cluster$treatment
markers <- FindMarkers(object = cluster,
ident.1 = "LPS",
ident.2 = "Saline",
only.pos = FALSE, # default
min.pct = 0.10, # default
test.use = "MAST",
verbose = TRUE,
assay = "RNA")
if(nrow(markers) == 0) {
next
}
markers$cluster <- i
DE.df <- rbind(DE.df, markers)
}
# change column names
colnames(DE.df)[c(3,4)] <- c("percent_LPS","percent_Saline")
# add gene name column
DE.df$gene <- rownames(DE.df)
# change row names
rownames(DE.df) <- 1:nrow(DE.df)
# calculate percent difference
DE.df$percent_difference <- abs(DE.df$percent_LPS - DE.df$percent_Saline)
# reorder columns
DE.df <- DE.df[,c(6,7,1,5,2,3,4,8)]
# write table
write.table(DE.df, "../../results/recluster/neuron/LPS_vs_Saline_DEGs.tsv", sep = "\t",
quote = FALSE, row.names = FALSE)
metadata <- neuron.unannotated@meta.data
neuron.unannotated@meta.data <- metadata
neuron.unannotated@assays$SCT@meta.features <- metadata
neuron.unannotated@assays$RNA@meta.features <- metadata
# load libraries
library(ShinyCell)
# make shiny folder
DefaultAssay(neuron.unannotated) <- "RNA"
Idents(neuron.unannotated) <- "merged_clusters"
sc.config <- createConfig(neuron.unannotated)
makeShinyApp(neuron.unannotated, sc.config, gene.mapping = TRUE,
shiny.title = "recluster neuron")