library(readr)
final <- read_delim("final.csv", ";", escape_double = FALSE, 
    trim_ws = TRUE)
## Parsed with column specification:
## cols(
##   ind = col_double(),
##   Date = col_date(format = ""),
##   PMIcomp = col_double(),
##   PMItot = col_double(),
##   SP = col_double(),
##   GDP = col_double(),
##   Gold = col_double(),
##   Brent = col_double(),
##   Unemployment = col_character(),
##   `USD-EUR` = col_double(),
##   Vol = col_double(),
##   US_ind = col_double()
## )
head(final)
## # A tibble: 6 × 12
##     ind Date       PMIcomp PMItot    SP   GDP  Gold Brent Unemployment `USD-EUR`
##   <dbl> <date>       <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl> <chr>            <dbl>
## 1   206 2005-01-01    49.8   50   4168. 0.03  1886   70.6 5.4%             0.824
## 2   205 2005-02-01    49.6   51.3 4202. 0.021 1894   69.5 5.3%             0.823
## 3   204 2005-03-01    51.5   53.2 4233. 0.021 1908.  69.0 5.4%             0.818
## 4   203 2005-04-01    51.7   53.7 4188. 0.021 1911.  68.2 5.2%             0.821
## 5   202 2005-05-01    49.5   54.9 4152. 0.021 1907.  66.4 5.2%             0.818
## 6   201 2005-06-01    50.7   55.4 4063. 0.021 1913.  65.2 5.1%             0.821
## # … with 2 more variables: Vol <dbl>, US_ind <dbl>
final$Date <-as.Date(final$Date)
library("urca")
library("tseries")
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library("forecast")
library("TSA")
## Registered S3 methods overwritten by 'TSA':
##   method       from    
##   fitted.Arima forecast
##   plot.Arima   forecast
## 
## Attaching package: 'TSA'
## The following object is masked from 'package:readr':
## 
##     spec
## The following objects are masked from 'package:stats':
## 
##     acf, arima
## The following object is masked from 'package:utils':
## 
##     tar

ARCH GRCH effectts

library("rugarch")
## Loading required package: parallel
## 
## Attaching package: 'rugarch'
## The following object is masked from 'package:stats':
## 
##     sigma
diff1<-final$PMIcomp
plot(diff1)

acf.plot <- acf(as.ts(diff1), lag.max = 300)

Pacf(diff1)

Pacf(diff1^2, 100)

spec = ugarchspec(variance.model = list(model = 'gjrGARCH',garchOrder = c(1, 1)), mean.model = list(armaOrder = c(1, 4), include.mean = TRUE, archm = TRUE), distribution.model = "std")
garch.fit = ugarchfit(spec, diff1)
## Warning in arima0(data, order = c(modelinc[2], 0, modelinc[3]), include.mean =
## modelinc[1], : possible convergence problem: optim gave code = 1
garch.fit 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : gjrGARCH(1,1)
## Mean Model   : ARFIMA(1,0,4)
## Distribution : std 
## 
## Optimal Parameters
## ------------------------------------
##          Estimate  Std. Error   t value Pr(>|t|)
## mu      90.513892    0.426939   212.006        0
## ar1      0.992428    0.000122  8149.089        0
## ma1      0.398065    0.002007   198.305        0
## ma2     -0.021573    0.000026  -820.971        0
## ma3      0.004944    0.000167    29.575        0
## ma4     -0.026937    0.000672   -40.109        0
## archm  -10.000000    0.158021   -63.283        0
## omega    0.054931    0.000166   329.972        0
## alpha1   0.064815    0.000035  1869.447        0
## beta1    0.996858    0.000020 49727.578        0
## gamma1  -0.170463    0.000085 -2012.839        0
## shape    2.237671    0.043273    51.710        0
## 
## Robust Standard Errors:
##          Estimate  Std. Error   t value Pr(>|t|)
## mu      90.513892    0.225111   402.086        0
## ar1      0.992428    0.000069 14317.245        0
## ma1      0.398065    0.001161   342.844        0
## ma2     -0.021573    0.000620   -34.782        0
## ma3      0.004944    0.000087    56.821        0
## ma4     -0.026937    0.000347   -77.725        0
## archm  -10.000000    0.068271  -146.476        0
## omega    0.054931    0.000087   633.942        0
## alpha1   0.064815    0.000031  2120.051        0
## beta1    0.996858    0.000012 86467.243        0
## gamma1  -0.170463    0.000048 -3530.746        0
## shape    2.237671    0.053710    41.662        0
## 
## LogLikelihood : -399.4281 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       3.9944
## Bayes        4.1883
## Shibata      3.9881
## Hannan-Quinn 4.0729
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                          statistic   p-value
## Lag[1]                       13.74 0.0002097
## Lag[2*(p+q)+(p+q)-1][14]     16.81 0.0000000
## Lag[4*(p+q)+(p+q)-1][24]     18.68 0.0178866
## d.o.f=5
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic   p-value
## Lag[1]                      51.57 6.914e-13
## Lag[2*(p+q)+(p+q)-1][5]     51.89 1.810e-14
## Lag[4*(p+q)+(p+q)-1][9]     51.98 2.776e-13
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]    0.1481 0.500 2.000  0.7004
## ARCH Lag[5]    0.1629 1.440 1.667  0.9740
## ARCH Lag[7]    0.1931 2.315 1.543  0.9973
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  2.89
## Individual Statistics:              
## mu     0.03236
## ar1    0.03514
## ma1    0.03053
## ma2    0.01616
## ma3    0.19450
## ma4    0.11592
## archm  0.16558
## omega  0.02940
## alpha1 0.03043
## beta1  0.02887
## gamma1 0.03116
## shape  0.25538
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          2.69 2.96 3.51
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                     t-value      prob sig
## Sign Bias           1.78435 7.588e-02   *
## Negative Sign Bias  6.25317 2.371e-09 ***
## Positive Sign Bias  0.04329 9.655e-01    
## Joint Effect       41.14970 6.078e-09 ***
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     18.27       0.5044
## 2    30     30.80       0.3751
## 3    40     37.50       0.5386
## 4    50     35.75       0.9213
## 
## 
## Elapsed time : 21.6086
coef(garch.fit)
##            mu           ar1           ma1           ma2           ma3 
##  90.513891918   0.992428143   0.398065418  -0.021573077   0.004943522 
##           ma4         archm         omega        alpha1         beta1 
##  -0.026936575 -10.000000000   0.054931350   0.064814750   0.996858089 
##        gamma1         shape 
##  -0.170462661   2.237671383
Acf(residuals(garch.fit))

Acf(residuals(garch.fit)^2)

Acf(residuals(garch.fit, standardize="TRUE"))

Acf(residuals(garch.fit, standardize="TRUE")^2)

library(rugarch)

spec = ugarchspec() #the empty function specifies the default model. 
print(spec)
## 
## *---------------------------------*
## *       GARCH Model Spec          *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## ------------------------------------
## GARCH Model      : sGARCH(1,1)
## Variance Targeting   : FALSE 
## 
## Conditional Mean Dynamics
## ------------------------------------
## Mean Model       : ARFIMA(1,0,1)
## Include Mean     : TRUE 
## GARCH-in-Mean        : FALSE 
## 
## Conditional Distribution
## ------------------------------------
## Distribution :  norm 
## Includes Skew    :  FALSE 
## Includes Shape   :  FALSE 
## Includes Lambda  :  FALSE
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
set.seed(1234)

# Возьмем 80% как обучающие
train = final %>% sample_frac(.8)
# credits_train$Income %>% summary()
# создаем тестовый набор данных
# через анти-джойн, чтобы убрать все наблюдения, попавшие в обучающую выборку
test = anti_join(final, train, by = 'Date') %>% dplyr::select(-ind)

train = train %>% dplyr::select(-ind)
library(forecast)
library(xts)
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
## 
##     first, last
data_ts <- xts(train$PMItot, train$Date)   
class(data_ts) 
## [1] "xts" "zoo"
fit=Arima(data_ts,order=c(1,1,1),seasonal=list(order=c(0,1,1),period=12))
fit
## Series: data_ts 
## ARIMA(1,1,1)(0,1,1)[12] 
## 
## Coefficients:
##          ar1      ma1     sma1
##       0.4802  -0.6196  -1.0000
## s.e.  0.5607   0.5094   0.1195
## 
## sigma^2 = 5.427:  log likelihood = -358.41
## AIC=724.83   AICc=725.1   BIC=736.92
r=resid(fit)
sum(r)
## [1] 0.3830046
rr=r^2
par(mfrow=c(1,2))
acf(as.vector(rr),main="ACF of Squared Residuals"); 
pacf(as.vector(rr),main="PACF of Squared Residuals"); # homoscedasticity check

Engle’s ARCH Test.

This test is a Lagrange Multiplier test and uses the following hypothesis.

Ho: Residuals exhibits no ARCH effects.

H1: ARCH(lag) effects are present.

library(MTS)
archTest(r)
## Q(m) of squared series(LM test):  
## Test statistic:  18.17846  p-value:  0.05202688 
## Rank-based Test:  
## Test statistic:  27.59135  p-value:  0.002098008
spec = ugarchspec() #the empty function specifies the default model. 
print(spec)
## 
## *---------------------------------*
## *       GARCH Model Spec          *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## ------------------------------------
## GARCH Model      : sGARCH(1,1)
## Variance Targeting   : FALSE 
## 
## Conditional Mean Dynamics
## ------------------------------------
## Mean Model       : ARFIMA(1,0,1)
## Include Mean     : TRUE 
## GARCH-in-Mean        : FALSE 
## 
## Conditional Distribution
## ------------------------------------
## Distribution :  norm 
## Includes Skew    :  FALSE 
## Includes Shape   :  FALSE 
## Includes Lambda  :  FALSE
library(rugarch)
def.fit = ugarchfit(spec = spec, data = data_ts)
print(def.fit)
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,1)
## Mean Model   : ARFIMA(1,0,1)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## mu     53.521030    1.080398 49.53825 0.000000
## ar1     0.856798    0.050881 16.83923 0.000000
## ma1    -0.030408    0.097124 -0.31308 0.754220
## omega   1.973997    1.168352  1.68956 0.091113
## alpha1  0.118405    0.071988  1.64480 0.100012
## beta1   0.472030    0.255668  1.84627 0.064854
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## mu     53.521030    1.069328 50.05108 0.000000
## ar1     0.856798    0.044880 19.09076 0.000000
## ma1    -0.030408    0.075946 -0.40038 0.688874
## omega   1.973997    0.736451  2.68042 0.007353
## alpha1  0.118405    0.069039  1.71506 0.086335
## beta1   0.472030    0.142426  3.31421 0.000919
## 
## LogLikelihood : -361.8737 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       4.4591
## Bayes        4.5720
## Shibata      4.4566
## Hannan-Quinn 4.5049
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.1250  0.7236
## Lag[2*(p+q)+(p+q)-1][5]    0.6786  1.0000
## Lag[4*(p+q)+(p+q)-1][9]    3.7840  0.7405
## d.o.f=2
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                      1.106  0.2930
## Lag[2*(p+q)+(p+q)-1][5]     1.260  0.7987
## Lag[4*(p+q)+(p+q)-1][9]     1.964  0.9093
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3] 0.0003875 0.500 2.000  0.9843
## ARCH Lag[5] 0.3266040 1.440 1.667  0.9331
## ARCH Lag[7] 0.7918126 2.315 1.543  0.9449
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  1.3875
## Individual Statistics:              
## mu     0.19740
## ar1    0.26690
## ma1    0.07879
## omega  0.11200
## alpha1 0.21845
## beta1  0.11807
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          1.49 1.68 2.12
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           0.3426 0.7323    
## Negative Sign Bias  0.3693 0.7124    
## Positive Sign Bias  0.4153 0.6784    
## Joint Effect        1.7298 0.6303    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     13.79       0.7959
## 2    30     13.36       0.9942
## 3    40     42.76       0.3129
## 4    50     40.76       0.7928
## 
## 
## Elapsed time : 0.1131573
spec=ugarchspec(variance.model = list(model="gjrGARCH",garchOrder = c(1, 1))) 
def.fit1= ugarchfit(spec = spec, data = data_ts)
print(def.fit1)
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : gjrGARCH(1,1)
## Mean Model   : ARFIMA(1,0,1)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error   t value Pr(>|t|)
## mu     53.521465    1.077943 49.651491 0.000000
## ar1     0.857075    0.051104 16.771234 0.000000
## ma1    -0.031296    0.098546 -0.317572 0.750810
## omega   1.936338    1.290197  1.500808 0.133405
## alpha1  0.125074    0.143901  0.869162 0.384759
## beta1   0.477870    0.264254  1.808372 0.070549
## gamma1 -0.008893    0.164139 -0.054182 0.956790
## 
## Robust Standard Errors:
##         Estimate  Std. Error   t value Pr(>|t|)
## mu     53.521465    1.059137 50.533083  0.00000
## ar1     0.857075    0.045306 18.917489  0.00000
## ma1    -0.031296    0.078355 -0.399407  0.68959
## omega   1.936338    1.744301  1.110094  0.26696
## alpha1  0.125074    0.187654  0.666513  0.50508
## beta1   0.477870    0.292102  1.635967  0.10185
## gamma1 -0.008893    0.290616 -0.030602  0.97559
## 
## LogLikelihood : -361.8723 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       4.4712
## Bayes        4.6029
## Shibata      4.4678
## Hannan-Quinn 4.5247
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.1188  0.7303
## Lag[2*(p+q)+(p+q)-1][5]    0.6655  1.0000
## Lag[4*(p+q)+(p+q)-1][9]    3.7622  0.7454
## d.o.f=2
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                      1.183  0.2768
## Lag[2*(p+q)+(p+q)-1][5]     1.329  0.7819
## Lag[4*(p+q)+(p+q)-1][9]     2.041  0.9001
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]  0.000781 0.500 2.000  0.9777
## ARCH Lag[5]  0.332140 1.440 1.667  0.9316
## ARCH Lag[7]  0.811904 2.315 1.543  0.9421
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  1.7448
## Individual Statistics:             
## mu     0.1945
## ar1    0.2665
## ma1    0.0779
## omega  0.1120
## alpha1 0.2217
## beta1  0.1166
## gamma1 0.4634
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          1.69 1.9 2.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           0.3283 0.7431    
## Negative Sign Bias  0.3998 0.6898    
## Positive Sign Bias  0.4349 0.6642    
## Joint Effect        1.8182 0.6110    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     14.03       0.7819
## 2    30     13.00       0.9954
## 3    40     45.18       0.2294
## 4    50     40.76       0.7928
## 
## 
## Elapsed time : 0.5074065
spec=ugarchspec(variance.model = list(model="apARCH")) 
def.fit2= ugarchfit(spec = spec, data = data_ts )
print(def.fit2)
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : apARCH(1,1)
## Mean Model   : ARFIMA(1,0,1)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error     t value Pr(>|t|)
## mu     53.449367    0.681753    78.39987  0.00000
## ar1     0.825809    0.018290    45.15198  0.00000
## ma1    -0.036833    0.040085    -0.91887  0.35816
## omega   0.075288    0.001320    57.05514  0.00000
## alpha1  0.012916    0.001791     7.21179  0.00000
## beta1   0.927268    0.000086 10767.77276  0.00000
## gamma1  1.000000    0.001362   734.04294  0.00000
## delta   0.155003    0.006642    23.33625  0.00000
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## mu     53.449367         NaN      NaN      NaN
## ar1     0.825809         NaN      NaN      NaN
## ma1    -0.036833         NaN      NaN      NaN
## omega   0.075288         NaN      NaN      NaN
## alpha1  0.012916         NaN      NaN      NaN
## beta1   0.927268         NaN      NaN      NaN
## gamma1  1.000000         NaN      NaN      NaN
## delta   0.155003         NaN      NaN      NaN
## 
## LogLikelihood : -361.7591 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       4.4819
## Bayes        4.6325
## Shibata      4.4775
## Hannan-Quinn 4.5431
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                   0.003545  0.9525
## Lag[2*(p+q)+(p+q)-1][5]  1.144746  0.9999
## Lag[4*(p+q)+(p+q)-1][9]  3.984171  0.6947
## d.o.f=2
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.8483  0.3570
## Lag[2*(p+q)+(p+q)-1][5]    2.9479  0.4166
## Lag[4*(p+q)+(p+q)-1][9]    4.2435  0.5481
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]   0.01913 0.500 2.000  0.8900
## ARCH Lag[5]   0.81055 1.440 1.667  0.7899
## ARCH Lag[7]   1.67903 2.315 1.543  0.7848
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  NaN
## Individual Statistics:              
## mu     0.24167
## ar1    0.17946
## ma1    0.05546
## omega  0.07974
## alpha1 0.12334
## beta1  0.07991
## gamma1     NaN
## delta  0.09259
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          1.89 2.11 2.59
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias          0.65007 0.5166    
## Negative Sign Bias 1.40655 0.1615    
## Positive Sign Bias 0.08221 0.9346    
## Joint Effect       2.07337 0.5573    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     27.61      0.09131
## 2    30     25.73      0.64003
## 3    40     54.88      0.04720
## 4    50     37.73      0.87925
## 
## 
## Elapsed time : 1.56774
#plot(def.fit2,wich=2)
plot(def.fit1,which=3)

Прогнозирование

bootp=ugarchboot(def.fit2,method=c("Partial","Full")[1],n.ahead = 72,n.bootpred=1000,n.bootfit=1000)
bootp
## 
## *-----------------------------------*
## *     GARCH Bootstrap Forecast      *
## *-----------------------------------*
## Model : apARCH
## n.ahead : 72
## Bootstrap method:  partial
## Date (T[0]): 2022-02-01
## 
## Series (summary):
##         min   q.25   mean   q.75    max forecast[analytic]
## t+1  47.954 54.391 55.698 57.077 62.216             55.588
## t+2  43.008 53.443 55.361 57.302 65.189             55.216
## t+3  43.163 52.915 55.198 57.535 65.754             54.908
## t+4  42.042 52.889 55.117 57.449 65.914             54.654
## t+5  41.056 52.808 54.956 57.466 65.408             54.444
## t+6  39.425 52.633 54.969 57.587 65.480             54.271
## t+7  37.724 52.669 54.955 57.542 65.245             54.128
## t+8  39.141 52.500 55.017 57.671 64.511             54.010
## t+9  40.796 52.480 55.031 57.807 65.830             53.912
## t+10 41.093 52.484 55.039 57.857 66.887             53.831
## .....................
## 
## Sigma (summary):
##         min  q0.25   mean  q0.75    max forecast[analytic]
## t+1  2.3063 2.3063 2.3063 2.3063 2.3063             2.3063
## t+2  2.2175 2.2222 2.3081 2.4032 2.4705             2.3129
## t+3  2.1386 2.1493 2.3111 2.3642 2.6188             2.3190
## t+4  2.0691 2.2217 2.3122 2.4242 2.6943             2.3248
## t+5  2.0073 2.1727 2.3102 2.4091 2.7998             2.3302
## t+6  1.9564 2.1549 2.3089 2.4316 2.9084             2.3353
## t+7  1.9054 2.1711 2.3042 2.4376 2.9961             2.3401
## t+8  1.8584 2.1421 2.2990 2.4332 3.0675             2.3445
## t+9  1.8172 2.1479 2.2936 2.4261 3.1369             2.3487
## t+10 1.7805 2.1270 2.2888 2.4414 3.0082             2.3525
## .....................
s_f=bootp@forc@forecast$seriesFor #this is for series forecasts
s_f
##      2022-02-01
## T+1    55.58829
## T+2    55.21571
## T+3    54.90803
## T+4    54.65394
## T+5    54.44412
## T+6    54.27084
## T+7    54.12775
## T+8    54.00958
## T+9    53.91199
## T+10   53.83141
## T+11   53.76486
## T+12   53.70990
## T+13   53.66452
## T+14   53.62704
## T+15   53.59609
## T+16   53.57053
## T+17   53.54943
## T+18   53.53200
## T+19   53.51760
## T+20   53.50572
## T+21   53.49590
## T+22   53.48780
## T+23   53.48110
## T+24   53.47557
## T+25   53.47101
## T+26   53.46724
## T+27   53.46413
## T+28   53.46156
## T+29   53.45943
## T+30   53.45768
## T+31   53.45623
## T+32   53.45504
## T+33   53.45405
## T+34   53.45323
## T+35   53.45256
## T+36   53.45200
## T+37   53.45154
## T+38   53.45116
## T+39   53.45085
## T+40   53.45059
## T+41   53.45038
## T+42   53.45020
## T+43   53.45006
## T+44   53.44994
## T+45   53.44984
## T+46   53.44976
## T+47   53.44969
## T+48   53.44963
## T+49   53.44959
## T+50   53.44955
## T+51   53.44952
## T+52   53.44949
## T+53   53.44947
## T+54   53.44945
## T+55   53.44944
## T+56   53.44942
## T+57   53.44941
## T+58   53.44941
## T+59   53.44940
## T+60   53.44939
## T+61   53.44939
## T+62   53.44939
## T+63   53.44938
## T+64   53.44938
## T+65   53.44938
## T+66   53.44938
## T+67   53.44937
## T+68   53.44937
## T+69   53.44937
## T+70   53.44937
## T+71   53.44937
## T+72   53.44937
s_f1=as.vector(s_f)
f=forecast(fit,h=112)
f
##     Point Forecast    Lo 80    Hi 80    Lo 95     Hi 95
## 166       56.27887 53.18070 59.37705 51.54062  61.01712
## 167       56.17760 52.09013 60.26507 49.92635  62.42885
## 168       56.63204 51.86205 61.40202 49.33698  63.92709
## 169       56.92522 51.60395 62.24648 48.78705  65.06339
## 170       56.72091 50.92167 62.52015 47.85173  65.59008
## 171       56.51112 50.27883 62.74341 46.97965  66.04258
## 172       58.20954 51.57617 64.84291 48.06468  68.35441
## 173       58.14074 51.13091 65.15058 47.42012  68.86136
## 174       57.54190 50.17558 64.90821 46.27609  68.80770
## 175       56.96365 49.25768 64.66962 45.17839  68.74892
## 176       56.84190 48.81078 64.87303 44.55936  69.12445
## 177       57.17645 48.83288 65.52002 44.41606  69.93684
## 178       57.02941 48.32398 65.73484 43.71560  70.34322
## 179       56.72362 47.67911 65.76813 42.89123  70.55601
## 180       57.07985 47.71217 66.44753 42.75322  71.40648
## 181       57.32588 47.64722 67.00455 42.52364  72.12813
## 182       57.09893 47.12462 67.07324 41.84454  72.35332
## 183       56.87827 46.61719 67.13934 41.18531  72.57123
## 184       58.57147 48.03160 69.11135 42.45213  74.69082
## 185       58.50016 47.68875 69.31157 41.96554  75.03479
## 186       57.90011 46.82386 68.97637 40.96044  74.83979
## 187       57.32129 45.98638 68.65621 39.98604  74.65655
## 188       57.19926 45.61145 68.78707 39.47724  74.92129
## 189       57.53368 45.69834 69.36902 39.43309  75.63427
## 190       57.38657 45.26223 69.51092 38.84399  75.92916
## 191       57.08075 44.68050 69.48100 38.11621  76.04530
## 192       57.43697 44.76952 70.10442 38.06378  76.81017
## 193       57.68300 44.75461 70.61138 37.91073  77.45526
## 194       57.45604 44.27893 70.63315 37.30339  77.60869
## 195       57.23538 43.81444 70.65631 36.70983  77.76092
## 196       58.92858 45.26832 72.58884 38.03701  79.82015
## 197       58.85727 44.96186 72.75268 37.60607  80.10847
## 198       58.25722 44.13060 72.38384 36.65242  79.86202
## 199       57.67840 43.32430 72.03250 35.72569  79.63110
## 200       57.55637 42.97831 72.13442 35.26116  79.85158
## 201       57.89078 43.09212 72.68945 35.25818  80.52339
## 202       57.74368 42.68776 72.79960 34.71764  80.76972
## 203       57.43786 42.13443 72.74129 34.03328  80.84244
## 204       57.79408 42.24926 73.33889 34.02033  81.56782
## 205       58.04010 42.25796 73.82224 33.90340  82.17680
## 206       57.81314 41.80528 73.82101 33.33123  82.29506
## 207       57.59248 41.36229 73.82268 32.77054  82.41442
## 208       59.28568 42.83628 75.73509 34.12850  84.44287
## 209       59.21437 42.54871 75.88004 33.72644  84.70231
## 210       58.61433 41.73518 75.49347 32.79991  84.42875
## 211       58.03550 40.94555 75.12545 31.89868  84.17233
## 212       57.91347 40.61526 75.21169 31.45814  84.36881
## 213       58.24789 40.74384 75.75194 31.47775  85.01802
## 214       58.10079 40.35740 75.84417 30.96462  85.23695
## 215       57.79497 39.82025 75.76968 30.30502  85.28491
## 216       58.15118 39.94996 76.35240 30.31482  85.98755
## 217       58.39721 39.97237 76.82205 30.21884  86.57557
## 218       58.17025 39.53336 76.80713 29.66759  86.67290
## 219       57.94959 39.10328 76.79589 29.12665  86.77253
## 220       59.64279 40.58947 78.69611 30.50325  88.78233
## 221       59.57148 40.31343 78.82953 30.11883  89.02413
## 222       58.97143 39.51081 78.43205 29.20898  88.73388
## 223       58.39261 38.73151 78.05371 28.32355  88.46166
## 224       58.27058 38.41100 78.13016 27.89798  88.64318
## 225       58.60499 38.54884 78.66115 27.93175  89.27824
## 226       58.45789 38.17388 78.74190 27.43618  89.47961
## 227       58.15207 37.64716 78.65699 26.79251  89.51163
## 228       58.50829 37.78647 79.23011 26.81700  90.19958
## 229       58.75431 37.81775 79.69088 26.73460  90.77403
## 230       58.52735 37.38779 79.66692 26.19717  90.85753
## 231       58.30669 36.96627 79.64711 25.66934  90.94405
## 232       59.99990 38.46060 81.53919 27.05838  92.94141
## 233       59.92859 38.19228 81.66489 26.68577  93.17140
## 234       59.32854 37.39700 81.26007 25.78715  92.86992
## 235       58.74971 36.62468 80.87475 24.91239  92.58704
## 236       58.62769 36.31079 80.94458 24.49694  92.75843
## 237       58.96210 36.45492 81.46928 24.54034  93.38386
## 238       58.81500 36.08791 81.54208 24.05692  93.57308
## 239       58.50918 35.56840 81.44995 23.42429  93.59406
## 240       58.86540 35.71438 82.01641 23.45898  94.27181
## 241       59.11142 35.75181 82.47102 23.38599  94.83685
## 242       58.88446 35.32824 82.44068 22.85833  94.91059
## 243       58.66380 34.91280 82.41480 22.33978  94.98782
## 244       60.35700 36.41290 84.30110 23.73766  96.97634
## 245       60.28569 36.15008 84.42130 23.37346  97.19792
## 246       59.68564 35.36004 84.01124 22.48285  96.88843
## 247       59.10682 34.59270 83.62094 21.61571  96.59793
## 248       58.98479 34.28356 83.68602 21.20752  96.76206
## 249       59.31921 34.43220 84.20621 21.25782  97.38059
## 250       59.17210 34.07098 84.27322 20.78325  97.56095
## 251       58.86628 33.55674 84.17582 20.15868  97.57388
## 252       59.22250 33.70758 84.73742 20.20080  98.24420
## 253       59.46852 33.74949 85.18755 20.13466  98.80239
## 254       59.24157 33.33065 85.15248 19.61423  98.86890
## 255       59.02090 32.91970 85.12210 19.10256  98.93924
## 256       60.71411 34.42410 87.00412 20.50701 100.92121
## 257       60.64280 34.16537 87.12023 20.14906 101.13654
## 258       60.04275 33.37922 86.70627 19.26441 100.82109
## 259       59.46393 32.61559 86.31226 18.40294 100.52491
## 260       59.34190 32.30999 86.37381 18.00016 100.68363
## 261       59.67631 32.46200 86.89063 18.05561 101.29702
## 262       59.52921 32.10517 86.95325 17.58776 101.47066
## 263       59.22339 31.59491 86.85186 16.96928 101.47749
## 264       59.57961 31.74943 87.40979 17.01702 102.14219
## 265       59.82563 31.79472 87.85654 16.95605 102.69521
## 266       59.59867 31.37949 87.81785 16.44116 102.75618
## 267       59.37801 30.97200 87.78402 15.93477 102.82125
## 268       61.07121 32.47968 89.66274 17.34424 104.79818
## 269       60.99990 32.22409 89.77572 16.99110 105.00871
## 270       60.39985 31.44094 89.35876 16.11102 104.68869
## 271       59.82103 30.68017 88.96190 15.25392 104.38814
## 272       59.69900 30.37728 89.02073 14.85529 104.54271
## 273       60.03342 30.53187 89.53496 14.91469 105.15214
## 274       59.88631 30.17847 89.59416 14.45209 105.32054
## 275       59.58049 29.67132 89.48967 13.83836 105.32263
## 276       59.93671 29.82869 90.04473 13.89047 105.98296
## 277       60.18273 29.87660 90.48887 13.83350 106.53197

PLot

library(ggplot2)

f=as.data.frame(f)
f
##     Point Forecast    Lo 80    Hi 80    Lo 95     Hi 95
## 166       56.27887 53.18070 59.37705 51.54062  61.01712
## 167       56.17760 52.09013 60.26507 49.92635  62.42885
## 168       56.63204 51.86205 61.40202 49.33698  63.92709
## 169       56.92522 51.60395 62.24648 48.78705  65.06339
## 170       56.72091 50.92167 62.52015 47.85173  65.59008
## 171       56.51112 50.27883 62.74341 46.97965  66.04258
## 172       58.20954 51.57617 64.84291 48.06468  68.35441
## 173       58.14074 51.13091 65.15058 47.42012  68.86136
## 174       57.54190 50.17558 64.90821 46.27609  68.80770
## 175       56.96365 49.25768 64.66962 45.17839  68.74892
## 176       56.84190 48.81078 64.87303 44.55936  69.12445
## 177       57.17645 48.83288 65.52002 44.41606  69.93684
## 178       57.02941 48.32398 65.73484 43.71560  70.34322
## 179       56.72362 47.67911 65.76813 42.89123  70.55601
## 180       57.07985 47.71217 66.44753 42.75322  71.40648
## 181       57.32588 47.64722 67.00455 42.52364  72.12813
## 182       57.09893 47.12462 67.07324 41.84454  72.35332
## 183       56.87827 46.61719 67.13934 41.18531  72.57123
## 184       58.57147 48.03160 69.11135 42.45213  74.69082
## 185       58.50016 47.68875 69.31157 41.96554  75.03479
## 186       57.90011 46.82386 68.97637 40.96044  74.83979
## 187       57.32129 45.98638 68.65621 39.98604  74.65655
## 188       57.19926 45.61145 68.78707 39.47724  74.92129
## 189       57.53368 45.69834 69.36902 39.43309  75.63427
## 190       57.38657 45.26223 69.51092 38.84399  75.92916
## 191       57.08075 44.68050 69.48100 38.11621  76.04530
## 192       57.43697 44.76952 70.10442 38.06378  76.81017
## 193       57.68300 44.75461 70.61138 37.91073  77.45526
## 194       57.45604 44.27893 70.63315 37.30339  77.60869
## 195       57.23538 43.81444 70.65631 36.70983  77.76092
## 196       58.92858 45.26832 72.58884 38.03701  79.82015
## 197       58.85727 44.96186 72.75268 37.60607  80.10847
## 198       58.25722 44.13060 72.38384 36.65242  79.86202
## 199       57.67840 43.32430 72.03250 35.72569  79.63110
## 200       57.55637 42.97831 72.13442 35.26116  79.85158
## 201       57.89078 43.09212 72.68945 35.25818  80.52339
## 202       57.74368 42.68776 72.79960 34.71764  80.76972
## 203       57.43786 42.13443 72.74129 34.03328  80.84244
## 204       57.79408 42.24926 73.33889 34.02033  81.56782
## 205       58.04010 42.25796 73.82224 33.90340  82.17680
## 206       57.81314 41.80528 73.82101 33.33123  82.29506
## 207       57.59248 41.36229 73.82268 32.77054  82.41442
## 208       59.28568 42.83628 75.73509 34.12850  84.44287
## 209       59.21437 42.54871 75.88004 33.72644  84.70231
## 210       58.61433 41.73518 75.49347 32.79991  84.42875
## 211       58.03550 40.94555 75.12545 31.89868  84.17233
## 212       57.91347 40.61526 75.21169 31.45814  84.36881
## 213       58.24789 40.74384 75.75194 31.47775  85.01802
## 214       58.10079 40.35740 75.84417 30.96462  85.23695
## 215       57.79497 39.82025 75.76968 30.30502  85.28491
## 216       58.15118 39.94996 76.35240 30.31482  85.98755
## 217       58.39721 39.97237 76.82205 30.21884  86.57557
## 218       58.17025 39.53336 76.80713 29.66759  86.67290
## 219       57.94959 39.10328 76.79589 29.12665  86.77253
## 220       59.64279 40.58947 78.69611 30.50325  88.78233
## 221       59.57148 40.31343 78.82953 30.11883  89.02413
## 222       58.97143 39.51081 78.43205 29.20898  88.73388
## 223       58.39261 38.73151 78.05371 28.32355  88.46166
## 224       58.27058 38.41100 78.13016 27.89798  88.64318
## 225       58.60499 38.54884 78.66115 27.93175  89.27824
## 226       58.45789 38.17388 78.74190 27.43618  89.47961
## 227       58.15207 37.64716 78.65699 26.79251  89.51163
## 228       58.50829 37.78647 79.23011 26.81700  90.19958
## 229       58.75431 37.81775 79.69088 26.73460  90.77403
## 230       58.52735 37.38779 79.66692 26.19717  90.85753
## 231       58.30669 36.96627 79.64711 25.66934  90.94405
## 232       59.99990 38.46060 81.53919 27.05838  92.94141
## 233       59.92859 38.19228 81.66489 26.68577  93.17140
## 234       59.32854 37.39700 81.26007 25.78715  92.86992
## 235       58.74971 36.62468 80.87475 24.91239  92.58704
## 236       58.62769 36.31079 80.94458 24.49694  92.75843
## 237       58.96210 36.45492 81.46928 24.54034  93.38386
## 238       58.81500 36.08791 81.54208 24.05692  93.57308
## 239       58.50918 35.56840 81.44995 23.42429  93.59406
## 240       58.86540 35.71438 82.01641 23.45898  94.27181
## 241       59.11142 35.75181 82.47102 23.38599  94.83685
## 242       58.88446 35.32824 82.44068 22.85833  94.91059
## 243       58.66380 34.91280 82.41480 22.33978  94.98782
## 244       60.35700 36.41290 84.30110 23.73766  96.97634
## 245       60.28569 36.15008 84.42130 23.37346  97.19792
## 246       59.68564 35.36004 84.01124 22.48285  96.88843
## 247       59.10682 34.59270 83.62094 21.61571  96.59793
## 248       58.98479 34.28356 83.68602 21.20752  96.76206
## 249       59.31921 34.43220 84.20621 21.25782  97.38059
## 250       59.17210 34.07098 84.27322 20.78325  97.56095
## 251       58.86628 33.55674 84.17582 20.15868  97.57388
## 252       59.22250 33.70758 84.73742 20.20080  98.24420
## 253       59.46852 33.74949 85.18755 20.13466  98.80239
## 254       59.24157 33.33065 85.15248 19.61423  98.86890
## 255       59.02090 32.91970 85.12210 19.10256  98.93924
## 256       60.71411 34.42410 87.00412 20.50701 100.92121
## 257       60.64280 34.16537 87.12023 20.14906 101.13654
## 258       60.04275 33.37922 86.70627 19.26441 100.82109
## 259       59.46393 32.61559 86.31226 18.40294 100.52491
## 260       59.34190 32.30999 86.37381 18.00016 100.68363
## 261       59.67631 32.46200 86.89063 18.05561 101.29702
## 262       59.52921 32.10517 86.95325 17.58776 101.47066
## 263       59.22339 31.59491 86.85186 16.96928 101.47749
## 264       59.57961 31.74943 87.40979 17.01702 102.14219
## 265       59.82563 31.79472 87.85654 16.95605 102.69521
## 266       59.59867 31.37949 87.81785 16.44116 102.75618
## 267       59.37801 30.97200 87.78402 15.93477 102.82125
## 268       61.07121 32.47968 89.66274 17.34424 104.79818
## 269       60.99990 32.22409 89.77572 16.99110 105.00871
## 270       60.39985 31.44094 89.35876 16.11102 104.68869
## 271       59.82103 30.68017 88.96190 15.25392 104.38814
## 272       59.69900 30.37728 89.02073 14.85529 104.54271
## 273       60.03342 30.53187 89.53496 14.91469 105.15214
## 274       59.88631 30.17847 89.59416 14.45209 105.32054
## 275       59.58049 29.67132 89.48967 13.83836 105.32263
## 276       59.93671 29.82869 90.04473 13.89047 105.98296
## 277       60.18273 29.87660 90.48887 13.83350 106.53197