Unit of analysis: County level
Variable transformation: Z-score and Centered variables at their means
CT_A
: Total contribution per $1,000 assetsDAF_A
: Total DAFs per $1,000 assetsmedian_1000
: Median Household incomesk_index
: Social capital indexbachelor
: % bachelor’s degree holderscapital_z_C
: Centered capital index (median income, social capital, education)capital_z_C^2
: A squared term of centered capital indexGini
: Gini indexGiniC
: Centered Gini indexGiniC^2
: A squared term of centered Gini indexall_AT
: Total assetsall_AT_C
: Centered total assetsage_avg
: Averaged organizational ageage_avgC
: Centered averaged organizational ageUrbanity
: Urbanity (1-9 : urban-rural)UrbanityC
: Centered urbanitypop_100000
: Total population (per 100,000)pop_100000C
: Centered total population (per 100,000)summary(c_CT_m <- glm.nb(CT_A ~ median_1000 + sk_index + bachelor + Gini + all_AT +
age_avg + Urbanity + pop_100000, data = cf_data_clean_new))
##
## Call:
## glm.nb(formula = CT_A ~ median_1000 + sk_index + bachelor + Gini +
## all_AT + age_avg + Urbanity + pop_100000, data = cf_data_clean_new,
## init.theta = 1.570558108, link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.841 -0.874 -0.391 0.144 18.435
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.17e+00 3.40e-01 9.32 < 2e-16 ***
## median_1000 1.03e-02 2.49e-03 4.14 3.4e-05 ***
## sk_index 6.33e-02 2.37e-02 2.68 0.00747 **
## bachelor 4.56e-04 3.00e-03 0.15 0.87913
## Gini 4.44e-02 6.85e-03 6.48 9.0e-11 ***
## all_AT -4.42e-10 1.30e-10 -3.38 0.00071 ***
## age_avg -1.76e-02 1.35e-03 -13.07 < 2e-16 ***
## Urbanity -3.42e-02 8.77e-03 -3.90 9.4e-05 ***
## pop_100000 8.80e-03 5.85e-03 1.50 0.13244
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(1.57) family taken to be 1)
##
## Null deviance: 2776.1 on 2176 degrees of freedom
## Residual deviance: 2392.8 on 2168 degrees of freedom
## (92 observations deleted due to missingness)
## AIC: 25733
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 1.5706
## Std. Err.: 0.0441
##
## 2 x log-likelihood: -25713.0730
summary(c_DAF_m <- glm.nb(DAF_A ~ median_1000 + sk_index + bachelor + Gini + all_AT + age_avg +
Urbanity + pop_100000, data = cf_data_clean_new))
##
## Call:
## glm.nb(formula = DAF_A ~ median_1000 + sk_index + bachelor +
## Gini + all_AT + age_avg + Urbanity + pop_100000, data = cf_data_clean_new,
## init.theta = 0.8020071701, link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.294 -0.749 -0.148 0.302 8.662
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.39e+00 4.74e-01 9.26 < 2e-16 ***
## median_1000 5.76e-03 3.47e-03 1.66 0.09721 .
## sk_index -2.51e-01 3.30e-02 -7.63 2.4e-14 ***
## bachelor 1.52e-02 4.18e-03 3.65 0.00026 ***
## Gini 2.51e-02 9.54e-03 2.63 0.00866 **
## all_AT -1.20e-10 1.81e-10 -0.66 0.50976
## age_avg -8.97e-03 1.88e-03 -4.78 1.7e-06 ***
## Urbanity -2.68e-02 1.22e-02 -2.19 0.02837 *
## pop_100000 3.37e-04 8.15e-03 0.04 0.96708
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(0.802) family taken to be 1)
##
## Null deviance: 2950.0 on 2176 degrees of freedom
## Residual deviance: 2633.4 on 2168 degrees of freedom
## (92 observations deleted due to missingness)
## AIC: 29110
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 0.8020
## Std. Err.: 0.0228
##
## 2 x log-likelihood: -29089.5480
summary(c_CT_Z_C <- glm.nb(CT_A ~ capital_z_C + GiniC + all_AT_C + age_avgC +
UrbanityC + pop_100000C, data = cf_data_clean_new))
##
## Call:
## glm.nb(formula = CT_A ~ capital_z_C + GiniC + all_AT_C + age_avgC +
## UrbanityC + pop_100000C, data = cf_data_clean_new, init.theta = 1.567662604,
## link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.830 -0.870 -0.397 0.146 18.419
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.95e+00 1.72e-02 287.27 < 2e-16 ***
## capital_z_C 6.39e-02 7.90e-03 8.09 6.0e-16 ***
## GiniC 3.66e-02 5.46e-03 6.71 2.0e-11 ***
## all_AT_C -4.25e-10 1.30e-10 -3.26 0.0011 **
## age_avgC -1.77e-02 1.35e-03 -13.11 < 2e-16 ***
## UrbanityC -3.52e-02 7.18e-03 -4.90 9.6e-07 ***
## pop_100000C 8.59e-03 5.76e-03 1.49 0.1358
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(1.57) family taken to be 1)
##
## Null deviance: 2771.1 on 2176 degrees of freedom
## Residual deviance: 2393.1 on 2170 degrees of freedom
## (92 observations deleted due to missingness)
## AIC: 25734
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 1.5677
## Std. Err.: 0.0441
##
## 2 x log-likelihood: -25717.7690
summary(c_DAF_Z_C <- glm.nb(DAF_A ~ capital_z_C + GiniC + all_AT_C + age_avgC +
UrbanityC + pop_100000C, data = cf_data_clean_new,
control = glm.control(maxit = 1000)))
##
## Call:
## glm.nb(formula = DAF_A ~ capital_z_C + GiniC + all_AT_C + age_avgC +
## UrbanityC + pop_100000C, data = cf_data_clean_new, control = glm.control(maxit = 1000),
## init.theta = 0.7811732932, link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.404 -0.797 -0.150 0.286 10.031
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.70e+00 2.43e-02 234.52 < 2e-16 ***
## capital_z_C 5.88e-03 1.11e-02 0.53 0.59745
## GiniC 5.51e-02 7.71e-03 7.15 8.5e-13 ***
## all_AT_C -1.98e-10 1.84e-10 -1.08 0.28159
## age_avgC -9.57e-03 1.90e-03 -5.04 4.7e-07 ***
## UrbanityC -7.76e-02 1.01e-02 -7.66 1.9e-14 ***
## pop_100000C 2.76e-02 8.13e-03 3.40 0.00068 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(0.781) family taken to be 1)
##
## Null deviance: 2879.5 on 2176 degrees of freedom
## Residual deviance: 2636.0 on 2170 degrees of freedom
## (92 observations deleted due to missingness)
## AIC: 29171
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 0.7812
## Std. Err.: 0.0221
##
## 2 x log-likelihood: -29155.3220
summary(c_CT_Z_C_sq <- glm.nb(CT_A ~ capital_z_C + GiniC + I(capital_z_C^2) + I(GiniC^2) +
all_AT_C + age_avgC + UrbanityC + pop_100000C,
data = cf_data_clean_new))
##
## Call:
## glm.nb(formula = CT_A ~ capital_z_C + GiniC + I(capital_z_C^2) +
## I(GiniC^2) + all_AT_C + age_avgC + UrbanityC + pop_100000C,
## data = cf_data_clean_new, init.theta = 1.576651791, link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.890 -0.876 -0.404 0.150 18.514
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.89e+00 2.20e-02 222.48 < 2e-16 ***
## capital_z_C 5.32e-02 8.60e-03 6.19 5.9e-10 ***
## GiniC 2.74e-02 5.84e-03 4.70 2.6e-06 ***
## I(capital_z_C^2) 6.41e-03 1.89e-03 3.39 0.00069 ***
## I(GiniC^2) 2.01e-03 8.87e-04 2.27 0.02304 *
## all_AT_C -4.46e-10 1.30e-10 -3.42 0.00062 ***
## age_avgC -1.69e-02 1.35e-03 -12.54 < 2e-16 ***
## UrbanityC -3.38e-02 7.19e-03 -4.70 2.6e-06 ***
## pop_100000C 9.33e-03 5.75e-03 1.62 0.10487
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(1.58) family taken to be 1)
##
## Null deviance: 2786.7 on 2176 degrees of freedom
## Residual deviance: 2391.9 on 2168 degrees of freedom
## (92 observations deleted due to missingness)
## AIC: 25723
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 1.5767
## Std. Err.: 0.0443
##
## 2 x log-likelihood: -25703.1300
summary(c_DAF_Z_C_sq <- glm.nb(DAF_A ~ capital_z_C + GiniC + I(capital_z_C^2) + I(GiniC^2) +
all_AT_C + age_avgC + UrbanityC + pop_100000C,
data = cf_data_clean_new))
##
## Call:
## glm.nb(formula = DAF_A ~ capital_z_C + GiniC + I(capital_z_C^2) +
## I(GiniC^2) + all_AT_C + age_avgC + UrbanityC + pop_100000C,
## data = cf_data_clean_new, init.theta = 0.789131465, link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.379 -0.789 -0.144 0.279 9.500
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.59e+00 3.10e-02 180.59 < 2e-16 ***
## capital_z_C -2.12e-02 1.21e-02 -1.75 0.0800 .
## GiniC 4.13e-02 8.22e-03 5.03 5.0e-07 ***
## I(capital_z_C^2) 1.27e-02 2.66e-03 4.79 1.7e-06 ***
## I(GiniC^2) 2.97e-03 1.25e-03 2.38 0.0174 *
## all_AT_C -2.30e-10 1.83e-10 -1.26 0.2082
## age_avgC -8.60e-03 1.90e-03 -4.54 5.8e-06 ***
## UrbanityC -7.62e-02 1.01e-02 -7.53 5.0e-14 ***
## pop_100000C 2.48e-02 8.10e-03 3.06 0.0022 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(0.789) family taken to be 1)
##
## Null deviance: 2906.5 on 2176 degrees of freedom
## Residual deviance: 2635.0 on 2168 degrees of freedom
## (92 observations deleted due to missingness)
## AIC: 29150
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 0.7891
## Std. Err.: 0.0223
##
## 2 x log-likelihood: -29129.9110
or1a <- exp(c_CT_m$coefficients)
var.diag1 = diag(sandwich::vcovCL(c_CT_m, cluster = ~ state, type = "HC1"))
or.se1a = sqrt(or1a^2 * var.diag1)
or1d <- exp(c_DAF_m$coefficients)
var.diag1d = diag(sandwich::vcovCL(c_DAF_m, cluster = ~ state, type = "HC1"))
or.se1d = sqrt(or1d^2 * var.diag1d)
or3a <- exp(c_CT_Z_C$coefficients)
var.diag3a = diag(sandwich::vcovCL(c_CT_Z_C, cluster = ~ state, type = "HC1"))
or.se3a = sqrt(or3a^2 * var.diag3a)
or3d <- exp(c_DAF_Z_C$coefficients)
var.diag3d = diag(sandwich::vcovCL(c_DAF_Z_C, cluster = ~ state, type = "HC1"))
or.se3d = sqrt(or3d^2 * var.diag3d)
or6a <- exp(c_CT_Z_C_sq$coefficients)
var.diag6a = diag(sandwich::vcovCL(c_CT_Z_C_sq, cluster = ~ state, type = "HC1"))
or.se6a = sqrt(or6a^2 * var.diag6a)
or6d <- exp(c_DAF_Z_C_sq$coefficients)
var.diag6d = diag(sandwich::vcovCL(c_DAF_Z_C_sq, cluster = ~ state, type = "HC1"))
or.se6d = sqrt(or6d^2 * var.diag6d)
Dependent variable: | ||||||
CT_A | DAF_A | CT_A | DAF_A | CT_A | DAF_A | |
Contributions (baseline) | DAF (baseline) | Contributions (index) | DAFs (index) | Contributions (squared) | DAFs (squared) | |
(1) | (2) | (3) | (4) | (5) | (6) | |
median_1000 | 1.01*** | 1.01+ | ||||
(0.01) | (0.01) | |||||
sk_index | 1.07** | 0.78*** | ||||
(0.16) | (0.06) | |||||
bachelor | 1.00 | 1.02*** | ||||
(0.01) | (0.01) | |||||
Gini | 1.05*** | 1.03** | ||||
(0.02) | (0.02) | |||||
all_AT | 1.00*** | 1.00 | ||||
(0.00) | (0.00) | |||||
age_avg | 0.98*** | 0.99*** | ||||
(0.01) | (0.005) | |||||
Urbanity | 0.97*** | 0.97* | ||||
(0.05) | (0.02) | |||||
pop_100000 | 1.01 | 1.00 | ||||
(0.01) | (0.01) | |||||
capital_z_C | 1.07*** | 1.01 | 1.05*** | 0.98+ | ||
(0.03) | (0.05) | (0.03) | (0.04) | |||
GiniC | 1.04*** | 1.06*** | 1.03*** | 1.04*** | ||
(0.02) | (0.03) | (0.02) | (0.02) | |||
I(capital_z_C2) | 1.01*** | 1.01*** | ||||
(0.004) | (0.003) | |||||
I(GiniC2) | 1.00* | 1.00* | ||||
(0.002) | (0.002) | |||||
all_AT_C | 1.00** | 1.00 | 1.00*** | 1.00 | ||
(0.00) | (0.00) | (0.00) | (0.00) | |||
age_avgC | 0.98*** | 0.99*** | 0.98*** | 0.99*** | ||
(0.01) | (0.01) | (0.01) | (0.005) | |||
UrbanityC | 0.97*** | 0.93*** | 0.97*** | 0.93*** | ||
(0.03) | (0.02) | (0.03) | (0.02) | |||
pop_100000C | 1.01 | 1.03*** | 1.01 | 1.03** | ||
(0.01) | (0.01) | (0.01) | (0.01) | |||
Constant | 23.80*** | 80.60*** | 142.00*** | 300.00*** | 133.00*** | 268.00*** |
(29.60) | (117.00) | (9.50) | (23.70) | (9.35) | (21.90) | |
Observations | 2,177 | 2,177 | 2,177 | 2,177 | 2,177 | 2,177 |
Log Likelihood | -12,858.00 | -14,546.00 | -12,860.00 | -14,579.00 | -12,853.00 | -14,566.00 |
theta | 1.57*** (0.04) | 0.80*** (0.02) | 1.57*** (0.04) | 0.78*** (0.02) | 1.58*** (0.04) | 0.79*** (0.02) |
Akaike Inf. Crit. | 25,733.00 | 29,110.00 | 25,734.00 | 29,171.00 | 25,723.00 | 29,150.00 |
Note: | (+ p<0.1; * p<0.05; ** p<0.01; *** p<0.001); Exponentiated coefficients (Incidence Rate Ratio) reported; Cluster-Robust standard errors in parentheses |