# REPRODUCE INFERENTIAL TABLES (3-5) FROM PRIOR PAPER

rm(list=ls())


# Set working directory ---------------------------

setwd("/Volumes/caas/CADRE CLC Data Project5/Clean Data/AK-SU-NETWORKS-ROUT")


# Load libraries ---------------------------

library(haven)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
# Load  data ---------------------------

load("eda.RData")


# TAB 3: GLM, outcome: substance use, COVs: CDC guideline adherence ---------------------------

tab3_covs <- cov_dt %>%
  select(gender_3cat, ethnicity, essential_worker, income,
         covid_test, 
         daily_drinking, daily_opioid
  )

tab3_lm <- lm(data=tab3_covs, cdc_avg_out ~ .)
summary(tab3_lm)
## 
## Call:
## lm(formula = cdc_avg_out ~ ., data = tab3_covs)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.13558 -0.38166  0.05942  0.45349  1.26761 
## 
## Coefficients:
##                                                  Estimate Std. Error t value
## (Intercept)                                       2.16965    0.07911  27.424
## gender_3catcisgender_male                        -0.15434    0.03591  -4.297
## gender_3catnon-binary/other/prefer not to answer -0.28390    0.13721  -2.069
## ethnicityhispanic                                -0.04098    0.04337  -0.945
## essential_workeryes                              -0.05291    0.04094  -1.292
## income                                            0.02487    0.01048   2.373
## covid_testnegative                                0.08902    0.04762   1.869
## covid_testpositive                               -0.07286    0.09629  -0.757
## daily_drinkingdaily                              -0.06784    0.06815  -0.995
## daily_drinking1-6 days                            0.09358    0.03975   2.354
## daily_opioiddaily                                -0.55676    0.09756  -5.707
## daily_opioid1-6 days                             -0.32893    0.05299  -6.207
##                                                  Pr(>|t|)    
## (Intercept)                                       < 2e-16 ***
## gender_3catcisgender_male                        1.89e-05 ***
## gender_3catnon-binary/other/prefer not to answer   0.0388 *  
## ethnicityhispanic                                  0.3449    
## essential_workeryes                                0.1965    
## income                                             0.0178 *  
## covid_testnegative                                 0.0618 .  
## covid_testpositive                                 0.4494    
## daily_drinkingdaily                                0.3198    
## daily_drinking1-6 days                             0.0187 *  
## daily_opioiddaily                                1.49e-08 ***
## daily_opioid1-6 days                             7.70e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5827 on 1073 degrees of freedom
## Multiple R-squared:  0.1206, Adjusted R-squared:  0.1116 
## F-statistic: 13.38 on 11 and 1073 DF,  p-value: < 2.2e-16
# TAB 4: Logistic regression of SU vs any COVID-19 testing ---------------------------
# 
# tab4_covs <-cov_dt %>%
#   select(age, educationation, ethnicity,
#          # add race
#          essential_worker,
#          income,
#          household_size,
#          daily_opioid
#   )
# dim(tab)
# tab4_lm <- lm(data=tab4_covs, cov_dt$covid_test ~ .)
# summary(tab4_lm)

# TAB 5: LR, outcome stimulant use w/ +COVID-19 test, ---------------------------
## accounting for covariates, in the subset of participants
## reporting a COVID-19 test (n=279). 

tab5_covs <-cov_dt %>%
  select(ethnicity,
         # add household size
         # dwelling ownership
         essential_worker,
         income,
         #add household size
         daily_opioid
  )